ПРИЛОЖЕНИЯ
Приложение I
Поиски внеземных цивилизаций
Дело происходило в первый октябрьский день 1961 г. Мы - пара десятков завсегдатаев памятного кабинета Келдыша в здании Института прикладной математики, что на Миусской площади, собрались в очередной раз для обсуждения какого-то космического проекта. За четыре года до этого был запущен первый советский спутник, и энтузиазм, вызванный этим памятным событием, не остывал. Тогда наши космические дела были на крутом подъеме. Только что мир стал свидетелем феерического полета Гагарина. Не прошел еще восторг, вызванный зрелищем обратной стороны Луны. Неизгладимое впечатление произвел наш первый успешный полет к Венере. Постоянно во мне жило ощущение, что я являюсь участником грандиозных по своей значимости исторических событий. Гордость и восторг переполняли меня. И хотя я уже перевалил за сорокалетний рубеж, чувствовал себя как впервые полюбивший юноша. И такое состояние длилось свыше пяти лет.
Вместе со своими молодыми сотрудниками я с головой окунулся в новое увлекательное дело. В критические моменты меня неизменно поддерживал ректор МГУ Иван Георгиевич Петровский - умница и прекрасный человек. Для наблюдения межпланетных станций я предложил довольно простой, но весьма эффектный метод "искусственной кометы". Суть метода состояла в испарении на борту спутника небольшого количества (порядка двух-трех килограммов) натрия. Образующееся облако будет очень интенсивно рассеивать желтые лучи Солнца (это явление известно как "резонансная флуоресценция"). Вот это яркое облачко и должно наблюдаться наземными оптическими средствами. Следует заметить, что в те далекие годы подходящих радиосредств для достаточно точных наблюдений спутников у нас не было, и космическое руководство - в первую очередь Сергей Павлович Королев - решительно поддержало мое предложение.
Я настолько был увлечен реализацией этого проекта, что частенько оставлял мою смертельно больную мать одну, в жалкой комнатенке с глухонемыми соседями, что до конца дней своих не прощу себе. Решающее испытание "искусственной кометы" было проведено на знаменитом космодроме Капустин Яр. Глубокой ночью была запущена ракета. Было по-осеннему холодно. Я и мои ребята стояли примерно в километре от стартовой площадки. Теперь, конечно, никого не удивить зрелищем старта ракеты - с некоторых пор это стали показывать по телевизору. Но тогда, да еще в непосредственной близости, да еще с сознанием большой ответственности (ведь пуск был сделан специально для нашей "кометы"), это было незабываемым событием. Прошло несколько минут после старта. Уже погасло адское пламя, хлещущее из ракетных дюз. Уже сама ракета превратилась в еле видимую слабую световую точку - а на агатово черном небе решительно ничего не происходило! Время как бы остановилось. Светящаяся точка-ракета перестала быть видимой. Неужели катастрофическая неудача? И вдруг, прямо в зените, блеснула яркая искра. А потом по небу, как чернила на скатерти, стало расползаться ослепительно красивое, ярчайшее пятно апельсинового цвета. Оно расплывалось медленно, и через полчаса его протяженность достигла 20 градусов. И только потом оно стало постепенно гаснуть.
Эффективность предложенного метода была продемонстрирована с полной наглядностью. Вскоре "комета" отлично сработала в "боевой обстановке" на нашей лунной ракете, на полпути между Землей и Луной. Увы, этот метод не получил в дальнейшем должного развития. Правда, мой сотрудник Дима Курт, сделав серию фотографий, через несколько месяцев защитил кандидатскую диссертацию: по скорости диффузии атомов натрия удалось очень уверенно определить плотность земной атмосферы на высоте 550 км. Помню, как в разгар этой цветовой феерии я сказал Диме: "Полюбуйтесь, как сияет на небе ваша диссертация". Я потом предложил развитие метода "искусственной кометы" - использовать в качестве "рабочего вещества" вместо натрия литий. Такой же оптический эффект можно было получить, испаряя в десятки раз меньше вещества. А цвет литиевой "кометы" должен был быть багрово-красный. Космические корабли стали бы похожи на трассирующие пули! Ничего из этого не вышло - никто этим серьезно не заинтересовался. Тогда же я предложил в качестве "рабочего вещества" стронций и барий, подчеркнув богатые возможности этого метода для исследования земной магнитосферы. Через много лет в ФРГ были весьма успешно осуществлены эти эксперименты.
Вернемся, однако, к тому октябрьскому дню 1961 г., когда на очередном сборе космических деятелей Келдыш с обычно не свойственным ему пафосом обратился к нам со следующей речью: "В будущем году исполнится пять лет со дня запуска первого советского спутника. Эту замечательную дату надо отметить должным образом. В частности, нужно подготовить несколько монографий, отображающих всемирно- историческое значение этого события". И тут же мне в голову пришла хорошая идея. Я поднялся и сказал, что за оставшееся до срока время (рукописи надо было сдать к июлю будущего 1962 г.) я смогу написать уже начатую(?) мною монографию, посвященную весьма необычному сюжету: о возможности существования разумной жизни во Вселенной. Келдыш мою инициативу тут же одобрил.
Мой расчет был точен. Я был уверен, что никто из моих коллег в столь сжатые сроки не то что монографии - приличной статьи не напишет. Да и заняты были очень "космической суетой". Не оглянешься, как пролетят эти месяцы, а редакционный портфель будет пустой. И только моя рукопись будет представлена в срок. А юбилей никуда не перенесешь - 4 октября 1962 г. как раз и исполняется пять лет! В такой авральной обстановке моей рукописи будет дана зеленая улица.
Я не мог все время посвятить работе над книгой - слишком много было других обязанностей. Работал урывками - делал "большие выходы", обычно дня на три - четыре. Запомнилось, как в начале июня (самое любимое мое время года) я забрался на дачу брата в Вельяминово с целью написать молекулярно-биологическую, очень трудную для меня главу. Погода сыграла со мной злую шутку. Температура упала почти до нуля, изредка шел снежок, а чаще ледяной дождь с ветром. Я забрался на кухню - единственно отапливающееся помещение на даче, и героически пытался писать. От холода сводило руки, а писать надо было вдохновенно - иначе это было бы все напрасной затеей. Четыре дня терпел эту пытку - кое-как написал главу (потом все пришлось переделать) и убежал с дачи.
Наконец, труд был окончен - где-то в самом начале августа. Остались мелочи: название книги и оформление суперобложки. Последний вопрос решился быстро. В кабинете Келдыша на Миуссах (там, где проходили все наши космические бдения) висела картина малоизвестного тогда художника Соколова, изображавшая некий фантастический космический пейзаж. Мне она всегда нравилась, а самое главное - напоминала о месте, где была "заявлена" книга. Из этой картины действительно получилась прекрасная суперобложка. А вот с названием книги пришлось изрядно помучиться. Выбрал в конце концов простое название "Вселенная, жизнь, разум". Может быть, где-то в подкорке мозга осело название жутко ученой книги Вейля "Пространство, время, материя". Но это я потом уже доискался. А тогда я просто вздохнул с облегчением. Были еще проблемы. Надо было оснастить главы книги стихотворными эпиграфами. К общеастрономической главе хороший эпиграф дал мне знакомый литературный критик Бен Сарнов ("И страшным, страшным креном к другим каким-нибудь неведомым Вселенным повернут Млечный Путь" - это из Пастернака). Сложнее получилось с эпиграфом к футурологической главе, где я предавался мечтам в духе модернизированного Циолковского. Незадолго до этого я получил письмо от своего ныне покойного старого друга, товарища по Дальневосточному университету С. Д. Соловьева. Между прочим, в этом письме были такие строки: "... На днях перечитал новые стихи Асеева. К старости он стал писать лучше. Вот почитай слегка подправленные мною строфы:
А любопытно, черт возьми, Что будет после нас с людьми - Ведь вот ведь дело в чем! Какие платья будут шить? Кому в ладоши будут бить? К каким планетам плыть? ..."
|
Но ведь это и есть тот самый эпиграф, который мне так нужен! И только в корректуре я вспомнил приписку Соловьева насчет "слегка подправленных строф". Значит, эти понравившиеся мне строчки - не подлинный Асеев? Может получиться скандал! Тем более, как я узнал, у маститого поэта довольно резкий характер. С большим трудом нашел книжку Асеева, где напечатаны эти строки. Худшие мои опасения оправдались: у Асеева после "Кому в ладоши будут бить?" стояло звукоподражание "тим-там, тим-там, тим- там!" А ведь весь смысл был для меня в соловьевской строчке "К каким планетам плыть?" Пришлось выбросить эту концовку и обрубить строки на "ладошках", в которые "будут бить" наши потомки. Но зато в следующих изданиях, уже после смерти Асеева, я концовку Соловьева восстановил... Да простят меня ревнители неприкосновенности поэтического замысла и священности авторского права. Но чем я хуже всякого рода режиссеров и инсценировщиков, бессовестно кромсающих авторский текст и замысел классиков?
Мой расчет оказался точным. Холодным декабрьским деньком 1962 г. я вместе с моей сотрудницей Надей Слепцовой получил в издательстве свои 25 авторских экземпляров и испытал редкое ощущение счастья. Книга вышла! Шум поднялся довольно большой. Бурно выражал свое негодование А.И. Опарин. Я ему послал очень вежливое письмо - оно вернулось в конверте, будучи разорванным на мелкие части! А еще говорят, что нынешней науке не хватает страстности! А в общем, ничего страшного не случилось. Книга разошлась за несколько часов, хотя тираж был не малый - 50000 экземпляров! Она выдержала пять изданий и переводилась на многие иностранные языки. Я особенно горжусь, что книга вышла в издании для слепых - шрифтом Брайля! Четыре толстенных тома, сделанные на бумаге, похожей на картон, производят странное впечатление. Любопытна история американского перевода, который взялся реализовать тогда молодой и малоизвестный, а ныне очень знаменитый планетовед Карл Саган, работающий в Корнельском университете. По образованию он биолог, поэтому я попросил его в американском издании сделать, по его желанию, добавления, ибо, как я уже писал, биология - не моя стихия. Саган понял мою просьбу весьма "расширительно", и по прошествии довольно долгого времени, уже в 1966 г., я получил роскошно изданный толстенный том, озаглавленный "Intelligent Life in the Universe". Объем моей книги удвоился, зато на обложке были вытеснены имена двух авторов: Шкловский и Саган. Надо сказать, что некую честность Карлуша все-таки проявил: он оставил неизменным мой текст, выделив свой особыми звездочками. Часто это приводило к смешным недоразумениям. Например, я пишу: "...согласно философии диалектического материализма..." И сразу же после этого абзаца отмеченный звездочками текст Сагана: "Однако позитивистская философия Канта учит..." Совсем как в гофмановских "Записках Кота Мура"!
Выход в свет моей книги взбудоражил умы отечественных молодых астрономов. Приблизительно в это время Коля Кардашев опубликовал работу, в которой содержалась его знаменитая классификация космических цивилизаций по уровню технологического развития, характеризуемого величиной перерабатываемых энергетических ресурсов. Высшая форма цивилизации - использование ресурсов всей звездной системы, преобразованной силой разума. Это - цивилизация III типа. Очень скоро был найден на небе подходящий "кандидат" на такую суперцивилизацию. Это был явно внегалактический источник радиоизлучения СТА 102, у которого сотрудник моего отдела Гена Шоломицкий обнаружил переменность. Шум поднялся большой. Никогда не забуду пресс- конференцию в ГАИШе, посвященную столь выдающемуся открытию. Весь двор института был забит роскошными заграничными машинами: прибыло сотни полторы аккредитованных в Москве ведущих корреспондентов. Я представлял консервативно-скептическое начало. Шоломицкий был крайне сдержан. Очень скоро, впрочем, стало ясно, что СТА-102 - обыкновенный квазар с довольно большим (хотя и не рекордным) красным смещением.
В начале 1963 г. у Коли Кардашева возникла идея созвать Всесоюзную конференцию по проблеме внеземных цивилизаций.
По двум пунктам у меня с Колей была сразу достигнута полная договоренность: а) никакой прессы, иначе вместо конференции будет балаган, б) место конференции - Бюракан. Именно там, на фоне древних камней Армении, свидетелей ушедших цивилизаций, на виду у ослепительной красоты снежной вершины Арарата, надо было провести столь необычную конференцию.
Подготовка к созыву Бюраканской конференции отняла немало времени и сил. Прежде всего надо было договориться с хозяином Бюраканской обсерватории В. А. Амбарцумяном, для чего пришлось ловить этого нелегко уловимого человека в самых неожиданных местах. Помню, как мы с Колей ходили к нему в санаторий ЦК в Нижнюю Ореанду, что на Южном берегу Крыма. Самый решительный разговор, однако, произошел в Бюракане, куда мы прибыли специально для этой цели из Баку. Следует сказать, что Виктор Амазаспович с большим пониманием и даже энтузиазмом отнесся к нашему предложению.
Мне почему-то особенно запомнилась эта поездка в Бюракан из Баку. Нас никто не встречал в ереванском аэропорту. Пришлось добираться до Бюракана "своим ходом". Прибыли туда поздно, был субботний вечер, и на обсерватории никого не было. Мы были очень голодны и так, голодные и очень усталые, легли спать в отведенной нам комнате в обсерваторской гостинице. Проснулся я, как обычно, на рассвете и подошел к своему любимому месту у южных каменных ворот обсерватории. С этого места лучше всего по утрам любоваться Араратом. Сколько я ни бывал в Бюракане, всегда наслаждался этим неописуемой красоты зрелищем. Еще вся долина погружена в синюю предрассветную мглу. Не видно ни единого огня какого-либо жилья - после резни 1915 г. долина все еще безлюдна. И высоко в небе полоса нежнейшего розового света - это снежная вершина Большого Арарата. Быстро светает, и на иссиня-голубом небе удивительно нежной акварелью вырисовывается вся эта изумительной красоты панорама.
Налюбовавшись досыта удивительной горой, я пошел в наш номер, двери которого, так же как и всех других номеров, выходили на крытую террасу. У двери я обнаружил... кулек с грецкими орехами - трогательный дар самого Амбарцумяна. Это было как нельзя более кстати - со вчерашнего дня мы ничего не ели. Насытившись орехами, мы пошли бродить по живописнейшему селению Бюракан.
Недалеко стояла антенна, смотревшая куда-то в совершенно непонятном направлении. Позже здешние радиоастрономы вполне серьезно объяснили нам, что они наблюдают Кассиопею A через... задний лепесток. Мы немало подивились такому способу познания космических объектов.
В октябре 1964 г. первая Всесоюзная Бюраканская конференция по внеземным цивилизациям состоялась и прошла весьма успешно. В ней принимало участие немало выдающихся отечественных ученых. Интерес к этой проблеме резко поднялся.
Сразу же после конференции возникла идея организовать Международную конференцию по тому же сюжету. И здесь главным заводилой был Коля. К этому времени мы установили контакт, правда, не с внеземными цивилизациями, а с чешским энтузиастом этого дела доктором Пешеком. Последний предложил место для подобной конференции: один из средневековых чешских замков. Роскошная идея! И мы рьяно взялись за ее реализацию. Вопрос был значительно продвинут во время Международного астрономического съезда в Праге в августе 1967 г., где мы встретились с Пешеком. К сожалению, собраться в Чехословакии не удалось. Когда это стало ясно, решено было устроить конференцию опять в Бюракане. Окончательно об этом договорился Коля с Саганом во время командировки в США.
Вторая Бюраканская конференция, по существу, была советско- американской. Упирая на комплексный характер предмета конференции, я настаивал на приглашении не одних астрономов и радиофизиков, но и широкого круга гуманитариев. Именно так подошли к проблеме американцы. Организация такой беспрецедентной советско-американской конференции потребовала большого напряжения сил от всех сотрудников Бюраканской обсерватории. Ведь надо было комфортабельно устроить не менее 25 американцев. Не забудем, что это не город, а удаленная обсерватория. Конечно, без Амбарцумяна ничего не было бы сделано.
И вот, 4 сентября 1971 г., конференция открылась. Думаю, что давно не было более представительного ученого собрания. Я, во всяком случае, ни до, ни после ничего похожего не видел. Среди двух дюжин приехавших американцев было два лауреата Нобелевской премии, в том числе Чарлз Таунс, выдающийся физик и астрофизик, вместе с нашими Прохоровым и Басовым разделивший славу открытия лазеров и мазеров. Накануне приезда в Бюракан он сделал необыкновенно важное и эффектное открытие - космические мазеры на водяных парах (длина волны 1,35 см), сопутствующие образованию звезд из межзвездной среды. Приехали Саган, Моррисон, Дрэйк, широко известные своими пионерскими работами по проблеме внеземных цивилизаций. Были там знаменитые историки (О'Нил), кибернетики (Минский) и даже этнограф профессор Ли. На нем, пожалуй, стоит остановиться немного подробнее. Этот маленький щуплый человечек, дед которого был выходцем из российской черты оседлости и носил фамилию Либерман, был, по существу, пионером новой науки, которую с полным правом можно назвать экспериментальной антропологией. Я знаю по меньшей мере два его научных подвига. Полгода он провел в пустыне Калахари (Намиб) в орде бушменов. Он вел себя как бушмен, питался теми же ящерицами и прочей гадостью, мерз холодными ночами и в совершенстве выучил язык и обычаи этих древнейших аборигенов Африки. Еще более впечатляет другой подвиг внука шепетовского "человека воздуха". Несколько месяцев он провел в стае свирепых обезьян-бабуинов. "Главное - это не смотреть матерым самцам в глаза", - сказал мне этот бесстрашный человек.
Среди американцев обращал на себя внимание рослый, грузный, казавшийся старше своих лет Оливер. Это самый настоящий миллионер, вице- президент известнейшей фирмы по электронно-вычислительной технике Хьюлетт- Паккард. С ним приключилась трагикомическая история: по пути из Америки в Ереван, кажется, в Лондоне, у него пропал чемодан. Лишенный своего багажа, где у него, естественно, находилось все необходимое, мистер Оливер оказался в сложном положении: у бедняги- миллионера не оказалось даже смены белья. Иностранцев поселили, конечно, в роскошной "Армении" - знаменитой интуристовской гостинице в Ереване, т.е. в 45 километрах от Бюраканской обсерватории. Советских же участников конференции поселили в Бюракане. Два раза в день - утром и вечером - иностранцам приходилось трястись по горной дороге, что, конечно, не вызывало у них восторга. Как-то раз, после окончания вечернего заседания, иностранные гости, продолжая оживленную дискуссию, нехотя рассаживались в уже ожидавшие их автобусы. В толпе я увидел Ли, стоявшего несколько в стороне и делавшего мне какие-то знаки. Я подошел к нему и узнал, что он тайно решил остаться на обсерватории и заночевать здесь - тут ему очень нравится, а утром можно будет полюбоваться Араратом. Я растерянно стал бормотать, что, мол, мест нет и пр. Он выразительно посмотрел на меня, и я понял нелепость моих отговорок: для человека, ночевавшего со стаей бабуинов, переночевать на кустиках колючей бюраканской травы рядом с куполом башни - раз плюнуть... Утром я пришел проведать сильно помятого ученого. Тот попросил у меня зубной пасты, утверждая, что ночь провел превосходно...
Тем временем в Бюраканской обсерватории (точнее, в ее конференц-зале и примыкающих к нему открытых галереях) кипели научные страсти. Один удивительный доклад сменял другой, еще более впечатляющий. Спорадически вспыхивали жаркие дискуссии. В перерывах и за обедом (который происходил тут же, рядом - как это трудно было организовать, да еще на таком высоком уровне!) ученые баталии не утихали. Молодой, щеголеватый Саган пустил в ход эффектный термин "субъективная вероятность" - речь шла о вероятностных оценках распространенности разумной жизни во Вселенной на основе знаменитой формулы Дрэйка.
Вспоминаю живой, увлекательный доклад одного из основоположников СЕТI (что расшифровывается как "Communication with Extraterrestrial Intelligence") профессора Моррисона. Предмет доклада: как можно по радио передать всю мудрость какой-нибудь (в частности, земной) цивилизации. Оказывается, можно, и не так уж это много займет времени! Аналогичные расчеты я выполнил еще до Моррисона в моей книге "Вселенная, жизнь, разум". С большим запасом делается оценка, что все, написанное людьми, когда-либо жившими на Земле (а это, преимущественно, всякого рода пустопорожние бумаги, расписки и др.), можно выразить в двоичном коде 1015 знаками. Радиопередатчик с шириной полосы 100 мегагерц, непрерывно работая, может излучить всю эту "разумную" продукцию (включая содержание всех книг, когда-либо напечатанных на каком-нибудь языке) за несколько месяцев. Этот впечатляющий, хотя довольно простой результат Моррисона был несколько "подмочен" невинным вопросом спокойно-флегматичного Дрэйка: "Как Вы думаете, сколько бит информации содержит формула Эйнштейна E=mc2 Обычно очень находчивый Моррисон несколько растерялся, а собрание разразилось взрывом хохота.
Я уже говорил, что конференция была удачно организована. Своим вкладом в успешную работу конференции я, в частности, считаю приглашение в качестве главного синхронного переводчика Боба Белецкого. Никто никогда, ни мы, ни американцы, такого синхронного перевода не слыхали. Он еще молниеносно и притом - "на оба конца" улучшал текст вопросов и ответов! Можно не сомневаться, что без Боба у нас возникла бы ситуация вавилонского столпотворения. Еще поражала воображение участников конференции, особенно советских, американская стенотипистка, мисс Свенсон. Глядя на ее фантастическую по быстроте и точности работу, мы поняли, что и в секретарском деле может быть высокая поэзия. Итог работы американки был более чем весом: она подготовила стенограмму трудов конференции, когда конференция еще не кончилась. Это обеспечило выход тома трудов конференции с непостижимой для нас быстротой.
В положенное время конференция закончилась, и всем стало очень грустно. Не хотелось уезжать из Бюракана, еще не обо всем договорились, еще не доспорили и даже не доругались. Горечь от конца этого великолепного мероприятия была смягчена только перспективой прощального банкета, который должен был произойти на знаменитом озере Севан.
И вот мы все сидели за огромными банкетными столами. За широкой верандой - красивейшая панорама знаменитого, увы, сильно обмелевшего озера. Совсем близко, на бывшем острове, ставшем теперь полуостровом, виден древний купол монастыря святого Карапета. Среди американских участников заметно оживление: нашелся чемодан Оливера, по этой причине сам Оливер отсутствует - поехал в Ереванский аэропорт выручать свою ручную кладь. Тамадой единодушно избирают Амбарцумяна, а вице- тамадой - меня. Полагаю, что это была самая высокая должность, на которую я когда-либо избирался! Это были мои звездные часы: фактическим тамадой этого уникального сборища был все-таки я - Амбарцумян только изредка шевелил головой. Справа от меня сидел лауреат Нобелевской премии сэр Френсис Крик (тот самый, который открыл структуру ДНК), слева - сам тамада. Кажется, я был в ударе. Приведу два примера. Во-первых, следуя кавказскому обычаю, я вызвал на тост профессора Ли, потребовав от него, чтобы тост был произнесен... на бушменском языке! И тут окрестный величественный пейзаж огласился ни на что не похожими щелкающими и свистящими звуками - как пояснил антрополог, он пропел сверхдревний первобытный гимн, сопровождающий ритуал коллективного поедания какой-то деликатесной, остро-дефицитной живности. Впечатление от этого тоста было очень сильным.
В конце банкета я обратился к собравшимся со следующим спичем: "Господа и товарищи! На протяжении всех этих незабываемых дней мы много толковали о субъективной вероятности. Но если бы еще вчера я поставил перед Вами вопрос: какова субъективная вероятность, что потерянный чемодан мистера Оливера вернется к своему владельцу, Вы хором ответили бы мне: "Нуль". И что же? Сегодня достойный вице-президент фирмы Хьюлетт-Паккард получает свой чемодан и вместе с ним столь необходимые в этой восточной республике шорты и, кажется, перчатки! Это радостное событие вселяет в нас уверенность, что справедлива субъективная вероятность того, что где-то, далеко за пределами "созвездия Тау Кита", столь выразительно воспетого замечательным русским поэтом Высоцким, идет банкет, аналогичный нашему. Во всяком случае, субъективная вероятность столь радостного события не так уж мала. Поэтому - давайте выпьем. Рекомендую "три звездочки" местного разлива!"
Хочется верить, что этот спич заметно увеличил процент любителей "оптимистического" подхода к проблеме СЕТI. Увы, в наши дни голоса "пессимистов" становятся слышны все более и более. Но это уже другая история.
Приложение II
Возможна ли связь с разумными существами других планет?*)
Само название этой статьи, несомненно, покажется читателям "Природы" совершенно фантастическим. Можно ли вообще на страницах серьезного журнала обсуждать такую, по меньшей мере, необычную проблему? Уж не мистификация ли это вообще? Эти вопросы, сразу же возникающие у читателей, разумеется, вполне естественны. И все же попробуем показать, что постановка этой проблемы в наше время исключительно бурного научного и технического прогресса вполне закономерна. Более того, в самое последнее время сделаны первые шаги на пути решения этой грандиозной проблемы, стоящей перед человечеством.
*) Первая статья И. С. Шкловского, посвященная проблеме внеземных цивилизаций (“Природа”, №7,1960), послужившая основой первого издания книги “Вселенная, жизнь, разум”.
Существуют ли другие планетные системы?
Прежде всего возникает вопрос: в какой степени обосновано утверждение, что в Галактике имеется определенное число звезд, окруженных системами планет, наподобие нашей Солнечной системы? До сравнительно недавнего времени в астрономии и космогонии господствовало представление, что планетные системы во Вселенной - величайшая редкость. Согласно космогонической гипотезе английского астронома Джинса, господствовавшей до середины 30-х годов ХХ в., Солнечная система образовалась в результате катастрофического сближения, почти столкновения двух звезд. Учитывая чрезвычайно малую вероятность звездных столкновений в Галактике (величина межзвездных расстояний огромна по сравнению с размерами звезд), можно было прийти к выводу, что наша Солнечная система должна быть чуть ли не уникальным явлением в Галактике.
Крушение гипотезы Джинса
В тридцатых годах постепенно становилась ясной несостоятельность гипотезы Джинса. Именно в это время знаменитый американский астроном, ныне покойный Г.И.Рассел, доказал в принципе (качественно), что эта гипотеза не в состоянии объяснить одну из основных особенностей Солнечной системы - сосредоточение 98% ее момента количества движения в орбитальном движении планет. Окончательный удар по гипотезе Джинса нанесли расчеты советского астронома Н.Н.Парийского, полностью подтвердившие вывод Рассела. Было показано, что орбиты планет, образовавшихся при катастрофическом сближении двух звезд, имеют слишком малые размеры, следовательно, момент количества движения планет получается совершенно недостаточным.
После краха космогонической гипотезы Джинса рядом исследователей были развиты новые взгляды. Большое значение имела космогоническая гипотеза О.Ю.Шмидта и развивающие ее работы А.И.Лебединского и Л.Э.Гуревича. Эти исследования приблизили нас к пониманию процесса постепенного формирования планет из некоторого первоначального газопылевого облака, окружавшего Солнце, которое уже тогда было довольно похоже на современное. Однако гипотеза Шмидта не смогла дать достаточно обоснованного ответа на главный вопрос о происхождении первоначального газопылевого облака. Различные варианты с захватом Солнцем газопылевой межзвездной среды, выдвигавшиеся О.Ю.Шмидтом и другими авторами, встречались с большими трудностями.
В настоящее время становится все более ясным, что планеты и Солнце образовались совместно из одной общей, диффузной "материнской" туманности. Таким образом, космогония сейчас в значительной степени возвращается к классическим представлениям Канта и Лапласа.
Однако теперь эти представления стоят на несравненно более высоком уровне, чем полтора века тому назад. С тех пор наши сведения о Вселенной неизмеримо выросли, исследователи широко используют выдающиеся достижения теоретической физики. Если гипотеза Канта и Лапласа носила чисто механистический характер (что для того времени было, конечно, вполне закономерно), то сейчас, при разработке современных космогонических гипотез, широко используются результаты космической электродинамики и атомной физики.
Как правило, из первоначальной газопылевой туманности образуются двойные и вообще - кратные звезды. Около 50% всех известных звезд - кратные. Массы звезд, входящих в систему кратной звезды, могут сильно отличаться друг от друга. Существует довольно много звезд, спутники которых имеют незначительные массы, а следовательно, очень малые светимости. Такие звезды-спутники нельзя наблюдать даже в самые мощные телескопы. Их существование проявляется в ничтожных периодических изменениях положений главной звезды, обусловленных притяжением невидимого спутника. Классическим примером такого небесного тела является звезда 61 Лебедя, одна из ближайших к Солнцу звезд, подробно исследованная советским астрономом А.Н.Дейчем. Масса невидимого спутника этой звезды всего лишь в десять раз больше массы Юпитера. Таким способом, однако, можно установить существование невидимых спутников только для самых близких звезд и только тогда, когда массы спутников по крайней мере на порядок больше массы планет- гигантов. Никакими астрономическими наблюдениями нельзя обнаружить даже у ближайших звезд существование планетных систем, сходных с нашей.
Известный американский астроном О.Л.Струве следующим образом иллюстрирует это положение. Представим себе воображаемого наблюдателя, отдаленного от Солнца на расстояние 10 парсек (немного больше 30 световых лет) и находящегося в плоскости орбиты Юпитера. Мог ли бы он, располагая средствами современной наблюдательной астрономии, обнаружить около Солнца планету-гигант Юпитер? Как показывают подсчеты Струве, для решения этой задачи методами астрономии наблюдатель должен был бы уметь измерять углы на небе с точностью 0,0005", а если бы воображаемый наблюдатель применял спектроскопический метод, ему надо было бы уметь измерять лучевые скорости с точностью 10 м в секунду! Такие точности измерения современной астрономии недоступны. Заметим, однако, что приблизительно один раз в 11 лет он наблюдал бы прохождение Юпитера через диск Солнца. При этом видимая звездная величина Солнца ослабела бы на 0,01 звездной величины. Такое измерение для современной электрофотометрии на пределе еще доступно. Следует помнить, что если направление "наблюдатель - Солнце" будет составлять всего лишь несколько угловых минут с плоскостью орбиты Юпитера, то покрытие Юпитером Солнца уже нельзя будет наблюдать. Таким образом, прямыми астрономическими наблюдениями обнаружить большие планеты даже у ближайших к нам звезд практически невозможно.
Но это, конечно, не означает, что в процессе образования звезд из туманности не могут одновременно с массивной звездой создаваться космические тела достаточно малой массы, типа планет. Китайский астроном Су Шухуанг, работающий в США, анализируя эту проблему, пришел к выводу, что должна существовать непрерывная последовательность масс космических тел, образующихся из туманностей, идущая от обычных звездных масс через массы невидимых звезд типа спутника 61 Лебедя до планетных масс типа Земли, Марса, Меркурия. Отсюда непосредственно следует, что планетные системы типа Солнечной должны быть весьма распространены в Галактике. К этому же выводу можно прийти из совершенно других соображений.
О чем говорит вращение звезд
Большое значение для современной планетной космогонии имеет анализ вращения звезд различных типов. Вращение звезд было открыто спектроскопическим методом свыше тридцати лет тому назад О.Л.Струве и советским астрономом, ныне покойным Г.А.Шайном.
Оказывается, что сравнительно массивные горячие звезды характеризуются очень быстрым вращением. Самые горячие звезды (спектральные классы Ое, Ве), массы которых в десятки раз больше солнечной, вращаются с экваториальной скоростью 300 - 500 км/с. Менее горячие и массивные, очень часто встречающиеся в Галактике звезды спектрального класса А вращаются обычно со скоростью, несколько меньшей ~ 100 - 200 км/с. Вплоть до спектрального класса F5 главной последовательности скорости вращения превышают несколько десятков километров в секунду. Однако скорость вращения звезд около спектрального класса F5 резко, скачком обрывается. Для звезд-карликов классов G, К, М, температура поверхности которых меньше 6500°, а масса меньше 1,2 солнечной массы, экваториальные скорости вращения очень малы - порядка немногих километров в секунду. К этой части главной последовательности звезд принадлежит и Солнце.
Мы сталкиваемся здесь с чрезвычайно интересным и важным явлением: в то время как основные характеристики звезд (температура поверхности, светимость, масса) меняются вдоль главной последовательности непрерывно, такая важная характеристика, как скорость вращения, по какой-то неизвестной причине, почему-то в районе спектрального класса F5 резко, скачком меняется. Малая скорость вращения у звезд поздних спектральных классов означает, что их момент количества движения в десятки раз меньше, чем у звезд, более ранних, чем F5. Но массы последних сравнительно незначительно отличаются от масс карликов класса G. Между тем следует иметь в виду, что массы образующихся звезд определяются массами "материнских" туманностей, а их моменты количества движения - беспорядочными скоростями газовых масс в этих туманностях. Очень трудно, если не невозможно, представить себе, что при достаточно близких массах внутренние движения в туманностях, из которых образуются карлики класса G, должны качественно отличаться от внутренних движений в туманностях, порождающих звезды класса F5. Скорее всего, причиной аномально малого момента количества движения у карликовых звезд поздних спектральных классов служат движущиеся вокруг них невидимые маломассивные космические тела, орбитальный момент количества движения которых в десятки раз превосходит момент количества движения самой звезды, связанный с ее вращением. В этой связи укажем, что если бы весь момент количества движения Солнечной системы был сосредоточен в Солнце, экваториальная скорость его вращения достигла бы 100 км/с и стала бы такой же, как у большинства звезд спектральных классов А - F5.
Множественность планетных систем
В самое последнее время видный английский астроном В. Мак-Кри развил космогоническую теорию, в которой вышеизложенные качественные соображения даны количественно. По мысли Мак-Кри, первоначальная туманность в процессе ее конденсации разбивалась на большое число сгустков. В результате взаимодействия этих сгустков в конечном итоге образовалось массивное центральное тело - Солнце и некоторое количество планет, причем, согласно его расчетам, 96% момента количества движения системы сосредоточено в орбитальном движении планет. Это находится в превосходном согласии с наблюдаемым распределением момента количества движения в Солнечной системе.
Хотя расчеты Мак-Кри, разумеется, еще нельзя считать строгим доказательством, все же они подтверждают вывод, к которому астрофизика пришла в последние годы чисто эмпирически, т.е. с большой степенью вероятности можно утверждать, что большинство звезд-карликов спектральных классов G, К, М должны быть окружены семействами планет. Но это означает, что по крайней мере несколько миллиардов звезд в Галактике могут (или, вернее, должны) обладать планетными системами. Напомним, что всего в Галактике насчитывается свыше 150 миллиардов звезд всех типов. Как известно, наше Солнце расположено вблизи плоскости галактического экватора, около одного из спиральных рукавов. В сфере радиусом в 100 световых лет насчитывается около 10 000 звезд, причем значительная часть их, если не большинство, - карлики спектральных классов G, K, M.
Где может возникнуть жизнь?
Вполне естественно предположить, что при благоприятных обстоятельствах на планетах, окружающих эти звезды, должна возникнуть и развиваться жизнь. Проблема возникновения жизни на Земле есть одна из основных проблем естествознания. В 1957 г. в Москве впервые состоялся Международный конгресс, на котором эта проблема подверглась всестороннему обсуждению. Рядом виднейших специалистов было показано, что образование сложных органических молекул - "кирпичей жизни" - с необходимостью должно иметь место на сравнительно раннем этапе эволюции планеты. На протяжении дальнейшей эволюции жизни, насчитывающей сотни миллионов и миллиарды лет, организмы постепенно развивались, достигая высокой степени совершенства, причем одни виды непрерывно сменяли другие. На достаточно позднем этапе эволюции на Земле появилось разумное существо - человек. Коль скоро есть все основания предполагать, что планетных систем, сходных с Солнечной, в Галактике насчитывается несколько миллиардов, вполне естественно принять, что процесс зарождения жизни и ее эволюции там в общих чертах по своему характеру сходен с тем, что было на Земле. Разумеется, не на каждой планете возможно зарождение и развитие жизни.
1. Планеты, на которых возможно зарождение и развитие жизни, не могут обращаться вокруг звезды слишком близко или слишком далеко. Необходимо, чтобы температуры их поверхностей были благоприятны для развития жизни. Учитывая, однако, что одновременно с звездой должно образоваться сравнительно большое число планет (скажем, ~ 10), с большой вероятностью можно ожидать, что хотя бы одна или две планеты будут обращаться на расстоянии, при котором температура лежит в нужных пределах.
Заметим еще, что по мере перехода от сравнительно горячих звезд главной последовательности к более холодным зона расстояний планет от звезды, при которых температурные условия благоприятствуют развитию жизни, непрерывно уменьшается и приближается к поверхности звезды. Поэтому красные карлики спектрального класса М и даже поздние подклассы К вряд ли можно рассматривать как очаги, поддерживающие на своих планетах жизнь, так как энергия их излучения для этого недостаточна.
2. Массы образовавшихся планет не должны быть ни слишком большими, ни слишком маленькими. Это обстоятельство в свое время подчеркивал В. Г. Фесенков. В первом случае гигантские атмосферы этих планет, богатые водородом и его соединениями, исключают возможность развития жизни. Во втором случае за время эволюции атмосферы будут рассеиваться (тому пример Меркурий). Однако, учитывая сравнительно большое число образующихся планет, можно ожидать, что некоторое, пусть малое количество их, будет обладать нужной массой. При этом необходимо, чтобы такие планеты одновременно удовлетворяли первому условию.
Заметим, что первое и второе условия не являются независимыми. Ведь не случайно планеты Солнечной системы со сравнительно малой массой (так называемые планеты земной группы) находятся относительно близко от Солнца, а планеты-гиганты с атмосферами, богатыми водородными соединениями, находятся сравнительно далеко от Солнца. Поэтому мы можем считать, что по крайней мере значительная часть образовавшихся планет с подходящей для развития жизни массой в то же время находится и на подходящем расстоянии от звезды.
3. Высокоорганизованная жизнь может быть только на планетах, обращающихся вокруг достаточно старых звезд, возраст которых насчитывает несколько миллиардов лет. Ибо для того, чтобы в процессе эволюции такая жизнь возникла, необходимы огромные промежутки времени. Заметим, что третьему условию удовлетворяют почти все звезды- карлики интересующих нас спектральных классов.
4. Звезда в течение нескольких миллиардов лет не должна существенно менять своей светимости. И этому условию удовлетворяет подавляющее большинство интересующих нас звезд.
Звезда не должна быть кратной, ибо в противном случае орбитальное движение планет было бы существенно отлично от кругового, и резкие, если не катастрофические, изменения температуры поверхности планеты исключили бы возможность развития на ней жизни.
Сколько планет может быть колыбелью разумных существ?
Если даже учесть все изложенные выше ограничения, мы можем считать, что в Галактике существует по крайней мере миллиард планет, обращающихся вокруг карликовых звезд, подобных нашему Солнцу, или несколько более холодных, на которых возможна высокоорганизованная, а может быть, и разумная жизнь.
Необходимо, однако, сейчас обратить внимание на одно важное обстоятельство. Известно, что человек как биологический вид появился на Земле всего несколько сот тысяч лет назад. Можно ли утверждать, что человечество, непрерывно развиваясь, будет существовать сколь угодно долго, скажем, миллиарды лет?
Как нам представляется, вера в вечность человеческого рода на Земле (ибо речь может идти только о вере) столь же нелепа и бессмысленна, как и вера в личное бессмертие индивидуума. Все, что возникло - с неизбежностью должно рано или поздно погибнуть. И разумная жизнь на какой-нибудь планете не может составлять исключения.
Какова длительность в различных мирах психозойских эр, т.е. тех периодов, в которые начала развиваться жизнь мыслящих существ? На такой вопрос очень трудно ответить. Это могут быть сотни тысяч и даже многие миллионы лет.
Ограниченность психозойской эры во времени на различных планетах существенно уменьшает количество миров, где одновременно с нами обитают разумные существа. Так, например, если среднюю длительность такой эры принять за миллион лет, то в современную эпоху в Галактике может быть только несколько миллионов планет, населенных разумными существами с достаточно высоким уровнем цивилизации. В этом случае, в сфере радиусом 100 световых лет, окружающей Солнце, могут быть только одна-две такие планетные системы. Разумеется, сделанная нами только что поправка на ограниченность психозойских эр носит довольно произвольный характер. Однако, на наш взгляд, она совершенно необходима, ибо в противном случае оценка количества обитаемых миров во Вселенной получается грубо преувеличенной. Конечно, нельзя считать полностью исключенным, что миров, обитаемых разумными существами, значительно больше, чем мы предполагаем. Однако все же более вероятно, что их должно быть меньше. Таким образом, наука второй половины двадцатого столетия приходит к обоснованию гениальных идей великого итальянского мыслителя Джордано Бруно о множественности обитаемых миров. Возникает естественный вопрос: каковы же перспективы установления контакта с разумными обитателями планетных систем?
Межзвездная связь
Для высокоорганизованных цивилизаций, обитающих на некоторых планетах, наше Солнце должно представляться как звезда, вокруг которой могут обращаться планеты, где возможна разумная жизнь. Вполне естественно, что, располагая мощными техническими средствами, они должны стремиться установить какую-то связь с разумными существами, обитающими на какой-нибудь из планет Солнечной системы. Представим себе, что они уже давно, может быть, много тысяч лет тому назад, установили какой-то канал связи и терпеливо ожидают ответа...
Какова же природа этого канала связи?
Этой необычной проблеме была посвящена статья Д.Коккони и Ф.Моррисона в одном из сентябрьских номеров "Nature" за 1959 г. Проведенный этими авторами анализ показывает, что такую связь можно установить только при помощи электромагнитных волн. Необходимо еще иметь в виду, что эти волны не должны существенно ослабляться при прохождении через межзвездное пространство и планетные атмосферы. Кроме того, мощности передатчиков должны быть по возможности незначительными, а используемая техника - простой и надежной. Это сразу же ограничивает возможный диапазон электромагнитных волн радиодиапазоном с интервалом частот 10 - 104 МГц (что соответствует длинам волн от 30 м до ~ 3 см).
Мощные помехи космических источников радиоизлучения исключают возможность использования достаточно длинных волн, скажем, > 50 см. С другой стороны, тепловое радиоизлучение атмосфер планет исключает возможность использования очень коротких волн. Заметим, что при помощи находящихся за пределами атмосферы планеты искусственных спутников можно расширить диапазон в сторону более высоких частот .
Далеко ли дойдет сигнал?
Сразу же возникает вопрос: на каких же расстояниях можно уже сейчас установить прямую радиосвязь? Здесь необходимо подчеркнуть поразительно быстрый прогресс радиофизики за последние полвека.
На памяти нашего старшего поколения произошло важное для того времени событие: установление трансатлантической радиосвязи. В 1945 г. впервые посланный на Луну сигнал, отразившись от нее, был принят на Земле.
В прошлом, 1959 г. была осуществлена радиолокация Венеры. Это гораздо более трудная задача, чем локация Луны, ибо, как известно, при радиолокации необходима мощность передатчика, пропорциональная четвертой степени расстояния до лоцируемого объекта. Как следует из сообщения нашей печати, а также печати США, сейчас обсуждается возможность посылки космических ракет в направлении к Марсу и Венере. Это потребует осуществления надежной радиосвязи на расстояниях порядка 100 млн км.
При этом следует иметь в виду, что бортовая радиоаппаратура по ряду естественных причин будет малогабаритной и маломощной.
Между тем уже в настоящее время размеры зеркал радиотелескопов достигают 75 м, а чувствительность приемной аппаратуры на сантиметровом и дециметровом диапазонах, благодаря применению новых типов усилителей (например, молекулярных), резко выросла. Отсюда следует (как это будет показано ниже), что уже сейчас вполне возможно, используя самые большие из существующих антенн и самую чувствительную приемную аппаратуру, осуществлять радиосвязь на расстоянии ~ 10 световых лет.
Как преодолеть помехи
При расчете линии радиосвязи между двумя мирами нужно учитывать уровень помех. Следует иметь в виду два типа помех. Во-первых, радиоизлучение звезды, вокруг которой обращается населенная разумными существами планета; во-вторых, интенсивность радиопередатчика должна быть такой, чтобы его сигнал надежно выделялся на фоне неизбежных помех космического радиоизлучения.
Прежде всего ясно, что мощность передатчика в нужном направлении (т.е. в направлении на звезду, с которой пытаются установить связь) в некотором интервале частот должна быть больше теплового радиоизлучения звезды. Можно убедиться, что это условие реализуется легко. Поток радиоизлучения от передатчика, как показывают подсчеты, будет больше потока теплового излучения звезды даже при незначительной мощности передатчика *).
Значительно более существенны помехи от фона космического радиоизлучения. Здесь следует уточнить возможную область частот, на которых можно пытаться установить интересующую нас радиосвязь.
Моррисон и Коккони выдвинули весьма изящную идею, что такого рода связь, вероятнее всего, будут пытаться установить на волне 21 см. Хорошо известно, что это длина волны радиолинии водорода. Разумные существа, находящиеся на высоком уровне развития, должны проводить интенсивные исследования космоса именно на этой волне. Подобные исследования уже сейчас обогатили астрономическую науку рядом открытий первостепенного научного значения. Особенно следует подчеркнуть, что они будут неограниченно развиваться в дальнейшем, ибо успех таких исследований неразрывно связан с общим прогрессом радиофизики. Таким образом, особенно чувствительная приемная аппаратура должна быть именно на этой волне. Кроме того, на этой волне должны проводиться длительные и систематические исследования различных объектов на небе, что значительно увеличивает вероятность обнаружения сигнала. Наконец, водород - самый распространенный элемент во Вселенной, и поэтому его радиолиния является как бы природным эталоном частоты, эталоном, к которому с неизбежностью должна прийти всякая развивающаяся цивилизация.
В каком направлении производить поиск
Для сравнительно больших угловых расстояний от полосы Млечного Пути, составляющих примерно 2/3 небосвода, интенсивность Iv межзвездной радиолинии не превосходит интенсивности непрерывного радиоизлучения Галактики в этом же спектральном участке, которая равна 10-25Вт/м2Гц. В полосе Млечного Пути интенсивность радиолинии водорода в несколько десятков раз больше этой величины.
Поэтому выгоднее пытаться установить радиосвязь с объектами, находящимися в сравнительно высоких галактических широтах, где уровень помех (определяемых фоном космического радиоизлучения) много меньше. Расчеты **) показывают, что установление радиосвязи между цивилизациями, разделенными межзвездными пространствами, находится в пределах возможности техники сегодняшнего дня.
Можно предположить, что на каких-нибудь планетах обитающие там высокоорганизованные разумные существа непрерывно в течение огромных промежутков времени "держат" в главных лепестках своих гигантских антенн в ожидании ответного сигнала некоторое число (скажем, ~ 100) сравнительно близких к ним звезд, где, по их предположениям, возможна разумная жизнь.
Для высокоорганизованного общества такая своеобразная, длящаяся многие тысячелетия "служба космической радиосвязи" вполне "по средствам". И не исключено, что мы уже очень давно находимся в пучке электромагнитной радиации, непрерывно посылаемой к нам разумными существами, населяющими окрестности какой-нибудь хорошо нам знакомой звезды, отдаленной от нас на расстояние в несколько десятков световых лет.
Посылаемые сигналы должны иметь некоторые свойства, резко отличающие их от естественных космических радиошумов. Они могут представлять простейший код, например, первые несколько цифр натурального ряда в непрерывно повторяющейся последовательности или такие числа, как или e. Полоса частот, использованная для космической радиосвязи, должна быть сравнительно узкой. Орбитальное движение планеты, на которой установлен передатчик, вокруг звезды будет приводить к строго периодическим изменениям частоты (из-за эффекта Доплера). Если приблизительно считать, что ожидаемые относительные скорости при таком движении меняются в пределах ±100 км/с, то вариация частоты сигнала может быть в пределах ±300 кГц от основной частоты радиолинии водорода, равной 1420,3 МГц.
Конечно, не так уж много шансов установить радиосвязь с другими мирами, особенно за сколько-нибудь обозримый промежуток времени. Но, как совершенно справедливо замечают Моррисон и Коккони, если не делать никаких попыток в этом направлении, то шансы будут нулевые.
Идея о возможности установления радиосвязи с другими мирами уже на современном уровне радиофизики недавно стала реализоваться на Национальной радиоастрономической обсерватории в США. Известный американский радиоастроном Ф.Дрэйк разработал проект аппаратуры, способной решить поставленную задачу. Подробное описание этой схемы можно найти в статье Дрэйка, опубликованной в январском номере журнала "Sky and Telescope" за 1960 г. Уже изготовлены блоки этого приемника. Антенной у него будет параболическое зеркало диаметром 25,5 м. Наблюдения предполагается начать уже с 1960 г. Первыми объектами исследования будут две близкие, довольно похожие на Солнце звезды t Кита и Эридана, находящиеся на расстоянии 11 световых лет. В дальнейшем эту аппаратуру предполагается перенести на строящийся радиотелескоп с диаметром зеркала 45 м. Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали о связи с разумными существами, обитающими на разбросанных в беспредельных просторах Галактики планетных системах. Приходится только поражаться, как быстро наука подтвердила принципиальную возможность осуществления идеи такой связи и сделала первые шаги на пути ее реализации. Однако надо себе ясно представить огромную величину этого пути и те колоссальные трудности, с которыми предстоит встретиться. Будем же надеяться, что эта мечта когда-нибудь станет реальностью.
*) В самом деле, поток теплового радиоизлучения от Солнца на расстоянии R, выраженном в метрах, равен 10-15f2/R2 Вт/м2·Гц (где f - частота), а от передатчика W·G/R2, где W - мощность передатчика, а G - коэффициент направленного действия передающей антенны, определяемый ее диаметром: .
Таким образом, при d 100 м для волн дециметрового диапазона G 105. Отсюда следует, что f=103 МГц поток радиоизлучения от передатчика будет больше порога теплового излучения от звезды W>10-2Вт/Гц.
**) Если в качестве передатчика используется зеркало диаметра d1, то мощность, которую следует излучать в соответствующем направлении (например, в направлении нашей Солнечной системы), при условии, чтобы на приемной дистанции с диаметром зеркала d2 сигнал превысил космический фон, должна быть Вт/Гц
Отсюда следует, что при d1=d2=80м и при R=10 световых лет W=100 Вт/Гц, что технически осуществимо уже сейчас. Заметим, однако, что размеры передающих антенн и мощность передатчиков у высокоорганизованных цивилизаций могут быть, конечно, значительно больше принятых нами.
Приложение III
Существуют ли внеземные цивилизации?*)
Не приходится доказывать то давно известное обстоятельство, что наука не может получить достаточно полное представление об изучаемом объекте, если он известен в одном-единственном экземпляре. Изучение природы всегда начинается с классификации, систематики. Приведу два примера.
В настоящее время, несмотря на огромные успехи науки в исследовании планет (прежде всего - прямыми методами космонавтики) и Солнца, вопрос о происхождении нашей Солнечной системы весьма далек от ясности. Напротив, происхождение и эволюция звезд, несравненно более удаленных и потому недоступных исследованиям прямыми методами, стали известны достаточно хорошо. В этой области знания успехи просто поражают воображение. В чем причина такой парадоксальной ситуации? Она очевидна: планетная система нам пока известна в одном экземпляре, между тем как астрономы с помощью мощных инструментальных средств уже давно наблюдают гигантское количество звезд, находящихся на разных стадиях эволюции**).
Совершенно неясен и полностью запутан вопрос о происхождении жизни на Земле. Дело доходит до того, что один из ведущих биологов современности Ф.Крик сравнительно недавно пытался возродить вариант старинной гипотезы панспермии (корни которой восходят еще к учению отцов церкви о "зародышах жизни"). Неприемлемость гипотезы панспермии видна хотя бы из того, что жизнь есть категория историческая, а отнюдь не вечная, как считал С.Аррениус. Ее не могло быть на ранних этапах эволюции Вселенной, когда не существовало ни звезд, ни галактик, ни даже тяжелых элементов. Поэтому не уйти от ответа на вопрос: как же живое произошло от неживого? Нелепо для этого искать вместо первобытной Земли какие-то другие космические объекты с совершенно неясными физическими условиями.
Столь плачевное состояние этой проблемы объясняется тем простым обстоятельством, что других форм жизни во Вселенной (кроме земной) мы не знаем. Поэтому возникает важный вопрос о распространенности жизни во Вселенной. Не следует, однако, впадать в черный пессимизм. Мы, астрономы, возлагаем большие надежды на орбитальный оптический телескоп с диаметром зеркала 2,4 м, который начнет работать через год. Есть основания полагать. что с его помощью удастся обнаружить ближайшие к Солнцу планетные системы. Что касается внеземной жизни, то есть надежда обнаружить ее по тем преобразованиям, которые она в процессе своей эволюции осуществляет в атмосферах материнских планет (вспомним происхождение кислорода в земной атмосфере).
А пока мы можем только строить более или менее обоснованные гипотезы о распространенности жизни во Вселенной и возможных путях ее развития. При этом следует опираться на огромное количество фактов, уже известных нам о Вселенной, и, конечно, на биофизику, биохимию, генетику и эволюционную биологию. Так как материальными носителями жизни являются сложные и сверхсложные молекулы, в структуре которых решающую роль играют тяжелые элементы ***), то возникновение жизни во Вселенной следует отнести к эпохе, когда химический состав значительного количества звезд (но, разумеется, не всех) был уже близок к современному. Грубая оценка дает значение параметра красного смещения для этой эпохи Z1 4-5, откуда тогдашний возраст Вселенной T=T0(1+Z1)-1/2 109 лет, где T0 16 млрд лет - наиболее вероятное значение современного возраста Вселенной. Можно полагать, что с тех пор благоприятные условия для возникновения жизни время от времени возникали в разных галактиках. В нашей Солнечной системе, на одной из ее планет - Земле, такие условия появились довольно скоро после ее образования 4,6 млрд. лет назад****). Не следует при этом забывать, что сам процесс образования Солнечной системы был растянут на добрую сотню миллионов лет. Так как процесс образования звезд и планетных систем идет во Вселенной непрерывно, можно утверждать, что отдельные очаги жизни в ней могут иметь возраст (а следовательно, и время для своей эволюции) примерно от 15 млрд до немногих сотен миллионов лет.
Следовательно, наша земная жизнь принадлежит к числу довольно древних.
Мы, однако, в настоящее время решительно ничего не можем сказать о вероятности возникновения жизни на какой-нибудь молодой планете. Пример нашей Солнечной системы, в которой имеется только одна обитаемая планета - Земля, наглядно демонстрирует, что жизнь возникает далеко не на каждой планете. Сейчас нельзя исключить утверждение, что доля обитаемых планет может быть неопределенно малой.
И пока мы не откроем за пределами Солнечной системы планет, атмосферы которых преобразованы жизнью, ощутимого продвижения в решении этой увлекательной проблемы, по-видимому, не будет.
К решению этой проблемы, казалось бы, можно подойти с биохимической стороны, экспериментально синтезировав простейшее живое вещество "в пробирке". Вряд ли, впрочем, подобный эксперимент решит вопрос о механизме возникновения жизни на первобытной Земле, ибо мы слишком плохо, весьма "общо" представляем себе господствовавшие на ней физические и химические условия. Специфика проблемы жизни во Вселенной состоит в том, что эта проблема очень четко и ясно может быть сформулирована, но не может в обозримый промежуток времени быть решена научными, т.е. прежде всего - экспериментальным и наблюдательным, методами. В этом отношении она значительно труднее, чем такие острые проблемы современной физики, как, например, вопрос о конечной массе покоя нейтрино, спонтанном распаде протонов, Великом объединении взаимодействий и даже вопрос о других вселенных.
Особо стоит вопрос о разумной жизни за пределами Земли. Излишне подчеркивать, что с давних времен он волнует человечество больше всего, во всяком случае, больше, чем вопрос о "простой", неразумной жизни во Вселенной. Что же можно сказать по этому поводу? Конечно, если во Вселенной способны существовать отдельные очаги жизни, то почему бы и не быть очагам разумной жизни? Эволюция жизни от простейших форм к самым сложным - очень длительный и весьма сложный процесс. Основные движущие силы этого процесса - дарвиновский естественный отбор и мутации. Можно полагать, что это справедливо не только для земной, но и для внеземной жизни, ибо ресурсы питания и обеспечения жизнедеятельности организмов, где бы они ни развивались, всегда ограничены. В процессе эволюции по причине суровой необходимости возникали те или иные важнейшие, зачастую очень сложные "изобретения", обеспечивавшие выживание видов живых существ. К числу таких "изобретений" следует отнести, например, фотосинтез, "камерное" зрение и многое другое. Мы можем рассматривать разум как одно из подобных "изобретений". Как и другие "изобретения", возникшие в ходе эволюционного процесса, он дает соответствующему виду сначала небольшие, а потом все возрастающие преимущества в борьбе за существование.
Отличительная особенность разума - необычайно короткая временная шкала его развития. У вида Homo Sapiens эта шкала исчислялась вначале сотнями и десятками тысяч лет. Однако с наступлением технологической эры темп развития катастрофически ускорился. Вид, наделенный разумом, выходит из равновесия с биосферой и вступает в фазу взрывной экспансии. На этой фазе развития разум перестает быть одним из средств, обеспечивающих выживание вида. Он становится могучим самостоятельным фактором. Это хорошо заметно на примере эволюции человечества. Ведь для обеспечения существования вида Homo Sapiens было бы вполне достаточно мозга неандертальца. Разумному виду становится "тесно" на материнской планете. Начинается экспансия в космос с последующим его преобразованием. Этот процесс экспансии может быть уподоблен ударной волне. В сферу деятельности разумного вида вовлекаются все более значительные ресурсы вещества и энергии. Вполне надежные, научно обоснованные оценки показывают, что в принципе для овладения материальными и энергетическими ресурсами материнской планетной системы достаточно какой-нибудь тысячи лет. Если, например, нынешняя скорость переработки энергии примерно1020 эрг/с, то через тысячелетие она может достигнуть порядка 1030 эрг/с при расселении человечества во всей Солнечной системе, которую разумные существа способны преобразовать в искусственную биосферу с ресурсами, в миллиарды раз большими, чем естественные, "материнские". Одновременно высочайшего уровня достигнет искусственный разум, который, в сущности, уже нельзя будет отделить от носителей "естественного" разума. На такой путь развития много лет назад указал К.Э.Циолковский, а в недавнее время - Ф.Дайсон. Но этим прогресс (если это можно назвать прогрессом) не ограничится. С неизбежностью "ударная" волна разума начнет распространяться на всю Галактику, на что впервые обратил внимание Н. С. Кардашев. Для овладения ресурсами звездной системы и полного ее преобразования, по самым консервативным оценкам, потребуется только несколько миллионов лет. Этот срок совершенно ничтожен по сравнению с 10 - 15- миллиардолетней историей эволюции Галактики или даже с 200- миллионолетним периодом ее вращения!
Может показаться, что речь идет не о научной проблеме, а о каком-то фантастическом комиксе на модную еще недавно космическую тему. Увы, это не так. Речь идет о реальном анализе перспектив развития человечества на достаточно долгий срок. Отсюда следует, что проблема внеземных цивилизаций - проблема не только астрономическая, техническая и биологическая, но и социологическая, вернее, футурологическая. Мы имеем дело со сложнейшей комплексной проблемой.
Можно, конечно, предположить, что разумные существа, поняв гибельность неограниченной экспансии, стали на путь жесткого ограничения с прекращением количественного роста основных показателей своих цивилизаций. Вряд ли, однако, допустимо считать такую стратегию развития одинаковой для всех цивилизаций. Это нереально. Кроме того, развитие "только вглубь" скорее всего - иллюзия.
Неизбежен вывод, что хотя бы малая часть возникших во Вселенной, в частности в Галактике, цивилизаций должна стать на путь неограниченной экспансии. Но в таком случае мы наблюдали бы космические проявления разумной жизни, т.е. своего рода "космические чудеса". И здесь мы подходим к основному пункту: несмотря на неимоверно возросшую эффективность наших телескопов и приемников радиации во всем диапазоне электромагнитных волн, никаких "космических чудес" обнаружить не удалось. А ведь современная астрономия стала всеволновой! Не видно на небе никаких "сфер Дайсона", не слышно позывных наших предполагаемых "братьев по разуму", не наблюдаются следы космической строительной деятельности, никто, никогда не посещал нашу старушку Землю (а, казалось бы, - должны, уж очень симпатичная и комфортабельная планета!). И это при огромном желании землян встретиться с упомянутыми братьями, отражением чего является массовый психоз с "Неопознанными Летающими Объектами". Молчит Вселенная, не обнаруживая даже признаков разумной жизни. А могла бы! Ведь должны же быть, например, у сверхцивилизаций мощные радиомаяки. Можно утверждать, однако, что в соседней галактике М 31, насчитывающей несколько сот миллиардов звезд, ничего подобного нет.
"Молчание" космоса представляет собой важнейший научный факт. Он требует объяснения, так как находится в очевидном противоречии с концепцией неограниченно развивающихся могучих сверхцивилизаций. Таким образом, проблема "внеземных цивилизаций" оказалась как бы "перевернутой". Представлялось, что мы имеем дело с задачей о "поиске иголки в стоге сена". В действительности дело сводится к задаче о "шиле в мешке". Самое простое, можно сказать, тривиальное объяснение феномена "молчащей Вселенной": сверхвысокоразвитых внеземных цивилизаций в ближайших окрестностях Большой Вселенной (например, в Местной системе галактик) просто нет. Даже при широкой распространенности феномена жизни во Вселенной это вполне возможно. Нужно только сделать естественное предположение, что в процессе эволюции жизни искомые сверхцивилизации либо не реализуются совсем, либо в силу внутренних причин своего развития (например, неизбежного разрушения породившей их биосферы) имеют очень малое время существования.
Если мы придерживаемся вполне единственного взгляда, что разум есть одно из "изобретений" эволюционного процесса, то не следует забывать, что не все "изобретения" в конечном счете являются полезными для данного вида. Природа слепа, она действует "ощупью", методом "проб и ошибок". И вот оказывается, что огромная часть "изобретений" не нужна и даже вредна для процветания вида. Так возникают "тупиковые ветви" на стволе дерева эволюции. Количество таких ветвей неимоверно велико.
По существу, история эволюции жизни на Земле - это кладбище видов. Характерным признаком эволюционного тупика у некоторого вида служит гипертрофия какой-нибудь функции, приводящая к прогрессивно растущему нарушению гармонии. Вспомним чудовищно гипертрофированные средства защиты и нападения (рога, панцири и пр.) у рептилий мезозоя. Или, например, неправдоподобно развитые клыки саблезубого тигра. И невольно напрашивается аналогия: а не являются ли современные гипертрофированные в высшей степени противоречивые "применения" разума у вида Homo Sapiens указанием на грядущий эволюционный тупик этого вида?
Другими словами, не является ли самоубийственная деятельность человечества (чудовищное накопление ядерного оружия, уничтожение окружающей среды) такой же гипертрофией его развития, как рога и панцирь какого-нибудь трицератопса или клыки саблезубого тигра? Наконец, не является ли тупик возможным финалом эволюции разумных видов во Вселенной, что естественно объяснило бы ее молчание?
Став на точку зрения, что разум - это только одно из бесчисленных "изобретений" эволюционного процесса, да к тому же не исключено, приводящее вид, награжденный им, к эволюционному тупику, мы, во- первых, лучше поймем место человека во Вселенной и, во-вторых, объясним, почему не наблюдаются космические чудеса. А это совсем не мало...
Альтернативой набросанной выше отнюдь не "оптимистической" концепции выступает идея, что разум есть проявление некоего внематериального, трансцендентного начала. Это - старая идея бога и божественной природы человеческого разума. Далеким (и не всегда далеким) от науки индивидам эта концепция представляется куда более оптимистической и даже нравственной.
Трудно, однако, в наше время стоять на позиции, ничего общего с наукой не имеющей. Забвение того основополагающего факта, что мы - часть объективно существующего, познаваемого материального мира, никому ничего хорошего не сулит, даже если и создает лжеоптимистические иллюзии.
*) Последняя статья И. С. Шкловского по проблеме внеземных цивилизаций (“Земля и Вселенная”, № 3, 1985) была написана на основе доклада на Всемирном геологическом конгрессе в Москве и вышла в свет после кончины автора. **) Недавние наблюдения на специализированном спутнике IRAS, оснащенном инфракрасными телескопами, привели к обнаружению вокруг Веги и некоторых других близких звезд пылевых дисков или колец, возможно, являющихся ранней фазой образования планетных систем. Таким образом, эта важнейшая проблема сдвинулась с мертвой точки. ***) Элементы, атомы которых тяжелее гелия. ****) Проведенные недавно немецким геохимиком Шидловским исследования изотопного отношения 12C/13C для древних пород доказали, что жизнь на земле возникла по крайней мере 3,8 млрд. лет назад, т.е. не позже, чем спустя 0,8 млрд. лет после ее образования. Источник: alt-future.narod.ru.
Рейтинг публикации:
|
Статус: |
Группа: Гости
публикаций 0
комментариев 0
Рейтинг поста:
Александр Марков, Ольга Орлова
Проблема глобального потепления является одной из самых важных в современной экологии. Однако большинство экологов понимают, что для того чтобы оценить реальные масштабы опасности, необходимо сравнить сегодняшнее изменение климата с тем, как менялся климат на нашей планете в предыдущие исторические эпохи. Один из способов узнать об этом - это изучить состав древних слоев льда.
О ледовых исследованиях в Антарктиде рассказывает профессор кафедры общей экологии биологического факультета МГУ Алексей Гиляров
– Как в принципе можно узнать что-то об изменениях климата, которые были давным-давно?
– Существуют разные способы, но один из самых захватывающих способов и вместе с тем точных - это анализ ледовых керн, то есть колонок льда, образованных в Антарктиде и в Гренландии, которые поднимаются на поверхность. Во льду есть всегда пузырьки воздуха. Лед образовывался из тех атмосферных осадков, которые были во время его образования, и он захватывал воздух того времени. И у нас есть законсервированные пробы воздуха за много-много тысяч лет. В 1999 году в журнале Nature большой коллектив авторов, в том числе наши соотечественники, опубликовали работу, в которой представляли данные анализа колонки льда взятой на российской станции «Восток». Это – восточная Антарктида, очень удаленный от всех берегов район, поэтому там чрезвычайно суровая обстановка – среднегодовая температура минус 55, а зимой доходит до минус 80.
– Расскажите о методике работы с ледовыми кернами.
– Лед откладывается слоями. Падает снег, откладывается и формирует лед. Лед – это атмосферные осадки, замерзшие, за много-много лет, почти за миллион лет. 800 тысяч лет – сама длинная колонка в Антарктиде. И подняв колонку этого ледового керна, можно различными тонкими методами определить содержание в этих маленьких пузырьках воздуха углекислого газа, что нас больше всего интересует, метана (тоже парниковый газ, тоже нас всех интересует) и других газов, и кислорода, и разных изотопов.
– Как определяется возраст ледового слоя?
– Возраст определяется по скорости отложения льда. Известна скорость, с которой формируется лед, есть определенная модель. Кроме того, можно определить и температуру. Для этого берутся не пузырьки воздуха, а лед вокруг этих пузырьков, и лед этот растапливают и смотрят, каково в нем соотношение обычного водорода и дейтерия –тяжелого водорода. Дело в том, что тяжелые молекулы воды, которые конденсируются, чтобы выпасть в виде дождя или снега, требуют меньшего охлаждения для конденсации, чем более легкие. Молекулы, содержащие дейтерий, – более тяжелые, соответственно, при меньшем охлаждении они уже выпадают на землю. А содержащие обычный водород – более легкие, им требуется более сильное охлаждение. Соответственно, по изменению относительного содержания дейтерия в колонке льда мы наблюдаем за ходом изменения температуры.
– Какие результаты были получены на станции «Восток»?
– Во-первых, обнаружился ритм, он не очень отчетливый, но все-таки можно выделить самые крупные подъемы температуры - примерно раз в 100 тысяч лет. Это была колонка примерно 3,5 километра в длину – на «Востоке» такая толщина льда, и, соответственно, этот лед образовался за 420 тысяч лет. Примерно раз в 100 тысяч лет происходит быстрый подъем температуры – интенсивное потепления, а затем – медленное остывание и довольно длительный очень холодный период. Потом снова такой подъем – и снова длительное остывание. С чем это связано? Это связывают прежде всего с так называемыми циклами Миланковича.
Милутин Миланкович (1879 - 1958) – это сербский ученый, который в предположил, что наступление ледниковых периодов можно связать с регулярными изменениями земной орбиты. Орбита становится то немного более вытянутой – эллипсоидной, то более круговой; то меняется угол наклона земной оси к эклиптике, это тоже происходит регулярно, но с другой периодичностью. Кроме того, как такой волчок, ось земли описывает такой маленький конус. Представьте себе юлу, волчок, который останавливается, и он начинает так вилять туда-сюда. Вот Земля тоже немного «виляет». И вот эти «виляния» то становятся больше, то меньше. И это тоже со строго определенной периодичностью. Сложение этих всех составляющих, приводит к тому, что изменяется распределение солнечного излучения попадающего на Землю, и, соответственно, меняется количество тепла.
– Когда случилось самое раннее глобальное потепление, которое нам известно?
– Эти потепления были не сильнее, чем нынешнее – они случаются раз в 100 тысяч лет. Если судить по керну «Востока» – потепление было примерно 400 тысяч лет назад. Но предыдущие были послабее того, что происходит сегодня.
Сравнительно недавно в 2004 году был получен еще один очень длинный керн ледовый на другом месте, примерно в 500 километрах от станции «Восток», у станции европейского сообщества «Конкорди» (Concordia Station), в рамках европейского проекта. Мы, к сожалению, там не участвуем, там очень активны французы, итальянцы, другие. Уже учитывая наш опыт, они довольно быстро прошли толщу льда до скального основания. И пройдя примерно те же три с небольшим километра, они получили развертку во времени за почти 800 тысяч лет. Поскольку там суше, там более сухой климат, осадки выпадали меньше, соответственно, слои тоньше. Что замечательно, буквально в прошлом году были опубликованы тоже в журнале Nature эти результаты, и за первые 400 с лишним тысяч лет полностью подтвержден ход кривой, которая получена на станции «Восток».
– За все эти 800 тысяч лет подтверждается периодичностью потепления в 100 тысяч лет?
– Там несколько нарушаются цикличность. Она есть, но она несколько нарушается. И вот это сейчас предмет анализа и рассуждений, что могло вмешаться. Одно понятно: Земля – это же не вполне шар, там есть материки, есть океаны, и они вовсе не равномерно распределены, и это все носит какие-то свои коррективы в ее движение.
– На графиках, которые были получены, современное потепление, выглядит просто как оно из периодических потеплений. Следует ли из этого, что роль человека здесь, может быть, не так велика?
– Если бы никакой активности человека не было, то потепление все равно происходило бы.
– Потепление без участия человека было бы оно таким, каким мы его сейчас наблюдаем?
– Это большой вопрос. Потому что, на самом деле, таких высоких значений концентрации углекислого газа, которые мы наблюдаем сейчас за 700-800 тысяч лет не было. Они были в древние эпохи, , но за это время таких высоких еще не бывало. И темпы роста тоже необычайно высоки за последние 100 лет.
– Концентрация углекислого газа в воздухе и температура меняются синхронно?
– Да, они меняются строго синхронно. Графики концентрации углекислого газа и температуры идут просто параллельно. Вопрос в том, что является причиной, а что следствием? Дело в том, что чем теплее, тем больше начинает выделяться СО2 при гниении органических остатков и прочее. Поэтому процессы усиливают друг друга, это – положительная обратная связь.
– Не так давно было сообщение из университетов Флориды, где международная группа экологов анализировали концентрацию СО2 в вечной мерзлоте вокруг Северного полюса. Ученые пришли к выводу, что в вечной мерзлоте СО2 содержится больше, чем в атмосфере Земли. Можно ли сказать, что это специфическая ситуация только для современного глобального потепления или это было характерно и в прежние периоды - 300 – 400 тысяч лет назад?
– На Северном полюсе – лед морской, это совсем другая история. Нужно брать лед, который лежит на суше. Насколько я знаю по ледовым кернам, нигде никогда такой высокой концентрации СО2 не достигало. Другое дело, сейчас очень трудно сказать, насколько человек действительно влияет на увеличение СО2 и потепление. Потому что мы знаем точно и определяем только две цифры. Мы определяем концентрацию СО2, которая наблюдается в данный момент на разных широтах, в разных точках, это мы точно научились мерить. И кроме того, мы знаем, сколько выбрасывается углекислого газа в результате сжигания ископаемого топлива, это тоже достаточно точно мы знаем. Вот мы знаем точно только эти две цифры, все остальные цифры являются расчетными. Если бы весь углекислый газ, который образуется при сжигании ископаемого топлива, оставался в атмосфере, то концентрация его была бы существенно выше. Она – ниже. Он связывается. А вот определить места связывания, или как говорят геохимики, стока углерода в атмосфере чрезвычайно сложно. Потому что в любой природной экосистеме, в любом лесу, степи происходит одновременно и связывание углекислого газа в результате фотосинтеза растений, и выделение в результате дыхания прежде всего грибов и бактерий. Это происходит везде. И понять, куда эти потоки идут, очень сложная задача.
Радио Свобода © 2009 RFE/RL, Inc. | Все права защищены.