Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » И. С. Шкловский: ВСЕЛЕННАЯ, ЖИЗНЬ, РАЗУМ

И. С. Шкловский: ВСЕЛЕННАЯ, ЖИЗНЬ, РАЗУМ


20-08-2009, 09:55 | Файловый архив / Книги | разместил: VP | комментариев: (1) | просмотров: (6 569)

23. Теоретико-вероятностный анализ
межзвездной радиосвязи.
Характер сигналов

Мы сейчас остановимся на математическом анализе проблемы связи между инопланетными цивилизациями, выполненном немецким астрономом фон Хорнером. Анализ этот во многих отношениях является спорным. Однако он безусловно представляет методический интерес и хорошо иллюстрирует возможности и ограничения подобных исследований. Весь анализ фон Хорнера носит исключительно теоретико-вероятностный характер. Впрочем, необходимо уточнить, что мы понимаем под словом “вероятность” в нашем случае. Ведь на основании только одной-единственной известной нам цивилизации делать какие-либо вероятностные оценки затруднительно. Надежность таких оценок весьма неопределенна. Тем не менее какие-то оценки, хотя бы самые ориентировочные, производить необходимо. Такие вероятностные оценки на Бюраканском симпозиуме по внеземным цивилизациям получили название “субъективная вероятность”. Последнее понятие вполне подобно практикующейся в США оценке распределения субсидий на научные исследования по степени их важности. Хотя эти оценки носят “личный” характер и весьма субъективны, их нельзя считать произвольными, так как они делаются весьма компетентными специалистами.

В частном разговоре с автором этой книги известный американский астроном проф. Голд дал следующее шутливое пояснение понятию “субъективная вероятность”. В средние века богословский факультет Парижского университета распространил среди ведущих мыслителей тогдашней Европы анкету (мы пользуемся современным термином) со следующим, не совсем обычным вопросом: каков рост китайского императора? В те далекие времена представления о Китае были самые фантастические и ведущие умы Европы не имели решительно никакого представления о росте китайского императора... Поэтому ответы на анкету были самыми разнообразными. Но в среднем ответ получился более или менее правильным... Добавим к этому, что средневековые схоласты не сомневались, что в Китае есть император, между тем как подобного категорического утверждения в отношении внеземных цивилизаций мы сделать пока не можем...

Прежде всего, рассматривается вопрос о вероятных расстояниях между цивилизациями различных планетных систем. Обозначим через v0 долю всех звезд, вокруг которых имеются планеты, где могла развиваться разумная жизнь. Пусть далее Т0 — время, прошедшее от образования данной планетной системы до появления на ней технически развитой цивилизации, f — время существования технически развитой цивилизации, Т — возраст наиболее старых звезд, a v — доля звезд, вокруг которых в настоящее время имеются технически развитые цивилизации. Считая, что скорость процесса звездообразования оставалась постоянной в течение времени Т, получим


Пусть d0 — среднее расстояние между соседними звездами. Тогда среднее расстояние между соседними технически развитыми цивилизациями будет

Основную величину t фон Хорнер определяет, исходя из довольно произвольных предпосылок. Он рассматривает следующие пять причин, по его мнению, могущих ограничить длительность существования технически развитой стадии цивилизации:

1) полное уничтожение всякой жизни на планете;
2) уничтожение только высокоорганизованных существ;
3) физическое или духовное вырождение и вымирание;
4) потеря интереса к науке и технике;
5) Т неограниченно велико.

Последнюю возможность фон Хорнер считает совершенно невероятной. Далее, он считает, что во втором и третьем случаях на той же самой планете может развиться еще одна цивилизация на основе (или на обломках) старой, причем время такого “возобновления” мало по сравнению с Т0. Обозначим через t1, t2, t3, t4 и t5 средние времена жизни, соответствующие перечисленным пяти гипотезам, а через p1, p2, p3, p4 и p5 — “вероятности реализации” этих гипотез. Тогда будем иметь

где множитель учитывает возможность "возобновления" цивилизации. Так как
t = p1t1 + p2t2 + p3t3 + p4t4 + p5(T - T0) - средняя длительность технически развитой стадии цивилизации, то можно написать

Интересен вопрос о вероятном возрасте первой же инопланетной цивилизации, с которой мы можем столкнуться. Простые расчеты, которые мы здесь приводить не будем, дают

Для вероятности того, что перед данной цивилизацией на данной планете имелись еще другие цивилизации, получим

Чтобы от этих общих формул перейти к конкретным количественным оценкам, необходимо задать значения величин ti и рi. Оценки фон Хорнера, конечно, крайне субъективны. Однако, так как t в выражение для среднего расстояния между инопланетными цивилизациями

  входит в степени —1/3, неопределенность в оценке t не так уж сильно будет влиять на оценку d.

Все же любопытно, как фон Хорнер представляет себе длительность времени жизни технически развитой цивилизации при сформулированных пяти предположениях о характере их конца, а также вероятности этих предположений (табл. 10).

Сама по себе идея, что время существования технически развитой цивилизации ограниченно, представляется автору этой книги вполне разумной. Однако всякие попытки конкретизации этого обстоятельства и связанные с ними оценки вероятности являются весьма субъективными и поэтому могут привести к нелепым выводам.

При значениях ti и pi, приведенных в табл. 10, средняя длительность техноло-гической эры t = 6500 лет, а “фактор возобновления” Q = 4.

Таблица 10

Гипотеза

Возможный интервал значений г,, лет

Принятое значение г,, лет

Вероятность гипотезы PJ

tfi-лет

Полное разрушение

0 — 200

100

0,05

5

Уничтожение высшей жизни

0 — 50

30

0,60

18

Вырождение

104 — 105

3·104

0,15

4500

Потеря интереса

103 - 105

104

0,20

2000

Отсутствие ограничения

0,00

0

Далее, полагая Т= 1010лет, v0 = 0,06, d0 = 2,3 пк (среднее расстояние от Солнца до ближайших к нему звезд), найдем, что v = 2,6·10-7. Это означает, что в рамках предположения фон Хорнера только около одной из 3 млн звезд в настоящее время существует разумная жизнь. Среднее расстояние между инопланетными цивилизациями будет d = 360 пк или немного больше 1000 световых лет. Наиболее вероятный "технологический возраст" цивилизации, с которой впервые будет установлена связь, tb = 12000 лет. Далее, с вероятностью 75% можно будет утверждать, что эта цивилизация является “наследницей” старой цивилизации, до этого бывшей на планете, с которой установлен контакт. Любопытно, что расчеты указывают на очень маленькую вероятность встретить цивилизацию в той же самой фазе развития, что и современная наша земная цивилизация. Эта вероятность оказывается равной всего лишь около 0,5 %. Само собой разумеется, что все числовые оценки, которые были приведены, справедливы постольку, поскольку справедливы исходные значения для t и рi, которые, как подчеркивалось выше, являются произвольными.

Важным выводом из приведенных оценок является бесперспективность попыток обнаружить сигналы от отдельных звезд, подобно тому как это делалось в проекте “ОЗМА” (см. гл. 20). Ведь если до ближайшей цивилизации не меньше 1000 световых лет, то явно бесмысленно среди нескольких миллионов звезд искать ту, которая посылает сигнал точно в направлении на Солнце. Ни одна цивилизация, конечно, не будет посылать “запросов” в направлении Солнца, которое для нее ничем не выделяется среди миллионов других примерно таких же звезд. Более естественно ожидать, что сигналы посылаются по всем направлениям и носят характер “позывных”.

Другим, впрочем, довольно тривиальным, выводом является то, что цивилизации, которые будут тем или иным способом обнаружены, окажутся много “старше” нашей, а следовательно, они будут технологически более развиты. Наконец, значение d = 1000 световых лет, естественно, означает, что время ожидания “космического ответа” на “космический запрос” t0 должно быть свыше 2000 лет! Что и говорить, торопиться при таких “переговорах” вряд ли имеет смысл. Так как длительность технологической эры не так уж велика, то за все время существования цивилизации можно будет провести всего лишь, например, около 10 двусторонних переговоров...*) Следовательно, обмен информацией.в межзвездном масштабе оказывается весьма затрудненным.

Необходимо, однако, заметить, что возможное появление искусственных разумных существ должно ознаменовать новый, качественно отличный от предыдущих, этап развития материи. В частности, нельзя исключить возможность, что цивилизации искусственных высокоорганизованных разумных существ будут весьма долгоживущими. Можно представить даже, что отдельные искусственные разумные существа могут жить много тысяч лет и даже дольше.

*) Впрочем, для искусственных разумных существ, отличающихся огромным долголетием, это ограничение несущественно.

Следовательно, для них не существует специфической трудности, характерной для межзвездной радиосвязи, заключающейся в крайней “медленности” таких “переговоров”. Это, конечно, может значительно повысить интерес у этих существ к установлению и поддержанию межзвездной радиосвязи. Кроме того, долголетие астронавтов сделает совершенно необязательными полеты межзвездных ракет с почти" световыми скоростями (по крайней мере, если говорить о прямых контактах между сравнительно близкими инопланетными цивилизациями). Наконец, нельзя исключить и того, что для таких полетов будут “изготовляться” высокоспециализированные разумные существа, способные, с одной стороны, сравнительно легко переносить трудности полета, с другой — лучше всего выполнять поставленную перед ними задачу. Естественно, что при таком положении провести четкие грани между специализированным автоматом и искусственным живым, разумным существом уже нельзя. Может быть, даже шкала времени их технологического развития будет близка к космогонической.

Следовательно, анализируя проблемы связи между инопланетными цивилизациями, необходимо учесть, что сама разумная жизнь в масштабе Вселенной может в процессе своего развития претерпеть качественные изменения. Это не учитывает, в частности, фон Хорнер, который существенным образом исходит в своих теоретико-вероятностных расчетах из представления, что земная разумная жизнь — типичное явление.

Оценки времени существования высокоразвитых цивилизаций, таким образом, имеют кардинальное значение для прогнозирования “межзвездной” связи. Неудивительно поэтому, что на Бюраканском симпозиуме по проблемам внеземных цивилизаций они были предметом оживленной дискуссии. В частности, этому вопросу был посвящен обстоятельный доклад Плятта (США). Естественно, что такие оценки могут быть сделаны только на основе анализа главных тенденций в развитии нашей земной цивилизации. К сожалению, такой анализ неизбежно отличается субъективностью, и, следовательно, результаты его должны приниматься с осторожностью. Последнее обстоятельство мы подчеркивали раньше, при изложении взглядов на этот вопрос фон Хорнера.

Прежде всего Плятт обращает внимание на “взрывчатый” характер развития нашей цивилизации за последнее столетие. За этот сравительно небольшой промежуток времени основные технологические параметры, характеризующие развитие нашей цивилизации, гигантски увеличились. Представление о росте технологического потенциала дает приведенная Пляттом таблица (табл. 11). Из этой впечатляющей таблицы видно, что некоторые важные параметры развития нашей цивилизации уже довольно близки к физическим пределам.

Таблица 11

Параметр

Увеличение за 100 лет

Физические пределы

Скорость общения

в 107 раз

Скорость света

Скорость передвижения

102

Орбитальная скорость

Мощность источников энергии

103

Изменение климата

Мощность оружия

106

Уничтожение человечества

Скорость анализирования данных

106

Скорость света

В табл. 10 уже приводились значения величин ti и рi для разных вариантов кризисных ситуаций. Плятт рассматривает ряд таких ситуаций, угрожающих существованию человечества. Ожидаемые и возможные катастрофы, грозящие человечеству согласно Плятту:

а) ядерная катастрофа,
б) загрязнение среды и связанные с ней отрицательные изменения в биосфере.
в) экономические катастрофы,
г) неконтролируемый рост народонаселения,
д) истощение естественных ресурсов.

По оценкам, выполненным американским футурологом А. Раппортом при экстраполяции, естественных тенденций в развитии технологических цивилизаций, эти катастрофы должны реализоваться не позже 2030 года. Эта дата и по другим соображениям является критической (см. гл. 25). Следовательно, заключает Плятт, чтобы “выжить”, человечеству необходимо научиться анализировать кризисные ситуации и переходить на более высокий уровень оценки действий и регулирования взаимоотношений внутри цивилизации. Плятт, конечно, очень далек от идей коммунистического преобразования общества, которое снимет саму возможность перечисленных выше кризисных ситуаций.

Однако, замечает Плятт, если даже сама возможность перечисленных выше кризисных ситуаций будет устранена, перед высокоразвитыми внеземными цивилизациями может возникнуть проблема потери интереса к общению между цивилизациями. Основные интересы таких цивилизаций могут стать локальными. Плятт метко называет такую ситуацию стратегией “здесь и сейчас”. На возможность такой потери интереса указывал еще фон Хорнер. В зависимости от концепций, которыми руководствуются внеземные цивилизации, Плятт оценивает временные интервалы их существования в весьма широких пределах, от 102 до 109 лет.

Другой участник Бюраканского симпозиума, видный американский ученый Стент, опасается появления новой тенденции у развивающейся внеземной цивили-зации — исчезновения творческого начала, появления нового, благоразумного “золотого века”. Он проанализировал две основные тенденции, которыми на протяжении всей истории руководствовалось человечество. Первая тенденция — это достижение власти над природой путем активного познания ее законов, безудержный, ничем не ограниченный технологический прогресс, борьба за существование. Эту тенденцию Стент считает характерной для того, что он называет “западным типом цивилизаций”, хотя пример. Японии указывает, что это понятие отнюдь не является географическим.

Другая тенденция в развитии цивилизации — это стремление к слиянию с природой и “растворению” в ней. Типичным представителем этой тенденции является буддизм. Стент обращает внимание на то, что в современной Америке имеются представители этой тенденции развития (например, хиппи). В предельном случае такое развитие может привести к установлению некоего “райского уголка” или “золотого века”, как это было, по мнению Стента, на островах южных морей до появления там европейцев. Итак, полагает американский ученый, высокоразвитые внеземные цивилизации могут установить у себя некую “внутреннюю Полинезию” с отрицанием необходимости контакта с другими цивилизациями.

Несомненно, что соображения Плятта и Стента заслуживают самого серьезного внимания, хотя бы потому, что они отражают кризис буржуазной идеологии в передовых, высокоразвитых капиталистических странах. Можно и нужно спорить с отдельными конкретными положениями американских ученых. Например, вряд ли на островах южных морей царил некий идеальный “золотой век”. Ожесточенные племенные войны и каннибализм, по нашему мнению, никак не являются атрибутами идеального и гармоничного “земного рая”, столь красочно обрисованного американским профессором. Точно так же полинезийцев никак нельзя упрекнуть в недостатке предприимчивости и пытливости. Стоит вспомнить, хотя бы, их замечательные плавания на утлых пирогах через огромные, очень страшные просторы Тихого океана, колонизацию и освоение новых островов. А ведь по тем временам эти подвиги и связанные с ними трудности были вполне эквивалентны нашим современным проблемам, связанным с освоением космоса. И не так уже “замкнуты на себя” были великие азиатские цивилизации, исповедовавшие буддизм.

Но не будем придирчивы — зерно истины в концепциях Плятта, Стента, а также фон Хорнера, конечно есть. И есть вполне реальная возможность потери интереса к контактам у тех или иных внеземных цивилизаций. Ну и что же? Ведь не все цивилизации обязаны идти по такому пути. Ни Плятт, ни Стент никогда не утверждали, что потеря интереса — закономерный итог развития цивилизации. А фон Хорнер, правда, достаточно произвольно оценивает вероятность такой ситуации в 20% (см. табл. 10). Смешно определять количество высокоразвитых, способных к контактам внеземных цивилизаций в Галактике с точностью в 20 и 50 процентов... Ведь другие факторы, определяющие это количество (например, вероятность возникновения жизни), известны с несравненно меньшей точностью! Таким образом, следует признать, что хотя соображения Стента и Плятта любопытны, они практически никакого отношения к проблеме установления контактов с внеземными цивилизациями не имеют.

Ситуация с оценкой количества цивилизаций в Галактике может коренным образом измениться, если учесть то, что фон Хорнер называет “эффектом обратной связи”. Качественно этот эффект (на который обратил внимание также Брэйсуэлл — см. выше) состоит в следующем. Если “время ожидания” t значительно больше времени жизни технически развитой цивилизации t, ответы на запросы никогда не будут получены и интерес к поискам космических разумных соседей будет рано или поздно потерян. Но если t0 значительно меньше t, то вполне возможен весьма плодотворный и эффективный обмен информацией. При такой ситуации отдельные цивилизации, разбросанные в пространстве Галактики, будут помогать друг другу, что безусловно повлечет за собой увеличение (и, может быть, даже значительное) величины f. Такую ситуацию “Великого Кольца” фон Хорнер и называет “эффектом обратной связи”. Мы, однако, полагаем, что, даже если t0 > t и переговоры носят “односторонний” характер, “эффект обратной связи” может (и должен) иметь место, так как “бескорыстная” посылка информации в космос, будучи случайно “перехваченной”, может существенно помочь уловившей сигналы цивилизации в преодолении трудностей, стоящих на пути ее развития, и тем самым может удлинить t.

Для проблемы “обратной связи” (в смысле фон Хорнера, т. е. при t0 > t) большое значение имеет величина

где L— среднее время жизни наиболее часто встречающейся цивилизации,

(с — скорость света).

Принимая наиболее вероятные значения t и d по данным табл. 10, можно найти, что К = 10. В общем виде величину К можно записать так:

где .

Если положить d0 = 2,3 пк, T=1010 лет, v = 0,06 , с = 3·1010 см/с, Q = 4, то L= 4500 лет. При К > 1 может осуществиться "эффект обратной связи”. Следовательно, все дело в том, будет ли "неискаженное" эффектом обратной связи время технологической эры L больше или меньше L0 5000 лет.

Заметим, что L0 определяется довольно уверенно, так как все величины, от которых оно зависит, входят в степени 1/4. Поэтому даже очень большие ошибки в оценках d0, v0 и Q не могут внести существенную погрешность в оценке L0. Если L значительно больше 5000 лет, то из-за “эффекта обратной связи” оно может существенно увеличиться. Трудно, а может быть пока и невозможно, говорить, до какого значения по этой причине может увеличиться L. Сам фон Хорнер полагает маловероятным, чтобы L увеличилось, например, до миллиона лет. Скорее всего, L будет значительно меньше. Впрочем, как уже подчеркивалось раньше, его оценки весьма субъективны.

Для эффекта обратной связи могут быть весьма существенны флуктуации в пространственно-временном распределении инопланетных цивилизаций даже в случае, когда t'0 > t. Если в какой-нибудь пространственно-временной области благодаря таким флуктуациям обратная связь привела к существенному увеличению t, то это может иметь большое значение для многих технически развитых цивилизаций. Вполне может случиться, что для них L начнет расти, и этот процесс распространится на всю Галактику. Аналогом этому явлению может служить быстрое размножение живых организмов в подходящей среде.

Представляется довольно очевидным, что “эффект обратной связи” может иметь решающее значение для проблемы разумной жизни во Вселенной. В конечном итоге он может быть основным способом развития мыслящей материи в масштабе Галактики и даже Метагалактики. К этому вопросу мы еще вернемся в гл. 27.

Как уже отмечалось, очень важным результатом теоретико-вероятностного рассмотрения интересующей нас проблемы является вывод о том, что инопланетные цивилизации разделены огромными расстояниями порядка 1000 пк, что весьма осложняет межзвездную связь. В такой обстановке представляет интерес обсуждение характера ожидаемых радиосигналов. Согласно фон Хорнеру природа сигналов в конечном итоге определяется целью, для которой они служат. Кроме того, способ их передачи должен быть наиболее экономичным. Можно ожидать трех типов радиосигналов. Во-первых, радиоизлучение от различных планет, обусловленное наличием на них телевидения и других индустриальных факторов. Во-вторых, направленная радиосвязь между различными цивилизациями типа той, о которой речь шла в гл. 20. Наконец, логически следует ожидать сигналов, направленных на привлечение внимания “партнеров”, с которыми связь еще не установлена. Эти три типа сигналов фон Хорнер называет соответственно “местным радиовещанием”, “дальним вызовом” и “сигналом для установления контакта”.

Что касается “местного радиовещания”, то фактически о нем уже шла речь в гл. 15. Там было показано, что благодаря деятельности человечества мощность радиоизлучения Земли на метровом диапазоне составляет около 1 Вт/Гц, а яркостная температура Земли на том же диапазоне уже сейчас порядка сотен миллионов кельвинов, что составляет заметную долю от радиоизлучения спокойного Солнца на этом диапазоне. Если бы воображаемый наблюдатель находился на расстоянии 10 световых лет от Земли, где находятся ближайшие к нам звезды, поток радиоизлучения от Земли на метровом диапазоне был бы около 10-35 Вт/(м2-Гц) — величина совершенно ничтожная. Чтобы излучение при современных средствах наблюдения можно было обнаружить, мощность “индустриального” радиоизлучения должна быть увеличена в сотни миллионов раз. Такую возможность в будущем исключить нельзя. Тем не менее сигналы “местного радиовещания”, как можно полагать, будут очень слабыми.

Сигналы типа “дальних вызовов” могут быть обнаружены только случайно, если Земля будет находиться в направленном радиолуче, связывающем две какие-нибудь цивилизации. Фон Хорнер оценил вероятность такого “перехвата”, которая равна

где - ширина диаграмм направленности антенн (предполагаемых одинаковыми), на которых поддерживается межзвездная радиосвязь, q - отношение дальности, на которой сигнал еще можно обнаружить, к дальности, на которой он уверенно расшифровывается; q всегда больше единицы, так как обнаружить сигнал, конечно, проще, чем его расшифровать. Сделано предположение, что каждая цивилизация поддерживает связь с п соседними. Любопытно, что “вероятность перехвата” Р совершенно не зависит от L и с/.

Полагая, что Р достаточно велико, чтобы имело смысл организовать “службу перехвата” (например, Р = Ѕ), q = 5, = 1 мин. дуги, что соответствует диаграмме направленности больших современных радиотелескопов, нужно предположить, что n = 1300. Другими словами сигналы могут быть перехвачены только тогда, когда каждая цивилизация одновременно “разговаривает” с 1300 соседями. Похоже, что это маловероятно. Сохраняя требование Р = Ѕ и полагая n = 50, надо принять, что q = 10 и Р = 10 мин. дуги, что также довольно маловероятно. В общем следует ска-зать, что вероятность “перехватить” чужие каналы межзвездной радиосвязи невелика.

Очень большой интерес представляет анализ проблемы природы сигналов, цель которых — установить контакт с инопланетными цивилизациями. Прежде всего, такие сигналы должны привлечь к себе внимание. В то же время естественно предположить, что метод посылки этих сигналов должен быть достаточно “экономичным”. Это означает, что затрата усилий, энергии и пр. должна быть по возможности минимальной, а “радиус воздействия” их — максимальным. Остановимся на этом вопросе несколько более подробно. Пусть имеется несколько методов посылки “сигналов контактов” для привлечения внимания неизвестных инопланетных цивилизаций. Для каждого метода можно оценить некоторый эквивалент “стоимости” С, которую надо “затратить”, чтобы вероятность Pd обнаружить сигнал на расстоянии d за время td была достаточно большой. Можно принять, например, что Pd = Ѕ, d = 1000 световых лет, a td — порядка нескольких сотен лет. Тот из предложенных методов, для которого величина С наименьшая, и следует выбрать. Заметим, однако, что сам по себе критерий “экономичности” остается достаточно неопределенным. Как уже указывалось раньше, наши современные критерии экономичности могут весьма отличаться от аналогичных критериев у высокоорганизованных цивилизаций.

Фон Хорнер полагает, что величина С будет наименьшей, если вся мощность посылается в достаточно узком пучке, и притом на некоторой определенной частоте, которую неизвестные партнеры во Вселенной смогут заранее угадать. В гл. 20 мы уже подробно рассматривали идею Коккони —Моррисона, согласно которой частота сигнала должна быть равна универсальному природному эталону — частоте радиолинии водорода.

Очень большое значение для величины С имеет выбор правильного плана посылки “сигналов”. Это означает, что должна быть хорошо продумана система распределения передаваемой энергии в пространстве и времени. Кроме того, план может предусматривать некоторые регулярные изменения частоты посылаемых сигналов. Он должен быть достаточно простым и логичным, чтобы его заранее могли понять неизвестные партнеры. Так как длительность посылки сигналов достаточно велика, соображения “экономичности” требуют, чтобы в этих сигналах содержалась некоторая информация. Информация может содержаться либо в самом сигнале, например, путем его модуляции, либо путем указания на специальную частоту, на которой эта информация посылается.

Такое указание может быть сделано, например, следующим образом. “Сигнал привлечения внимания” должен состоять из большого количества сигналов, посылаемых на разных фиксированных частотах, симметричных по отношению к некоторой центральной частоте. По мере приближения к этой центральной частоте интервалы частот между соседними (по спектру) сигналами становятся все более и более узкими, а сами сигналы — все более узкополосными. Тем самым дается “указание”, что центральная частота имеет какой-то смысл и, следовательно, к ней привлекается внимание. На этой частоте через определенные промежутки времени (может быть, один раз в несколько лет, хотя эти промежутки времени, конечно, не могут быть кратными земным годам, месяцам или суткам) передается информация. Последняя может, например, сперва содержать “лингвистическое введение”.

Разумеется, этот пример имеет число иллюстративное значение.

Однако, пожалуй самым эффективным методом установления контакта между инопланетными цивилизациями является передача изображения . При этом предполагается, что все разумные существа, населяющие разнообразные планеты, должны быть зрячими . Такое предположение выглядит весьма правдоподобно. Ведь у нас на Земле зрением обладает огромное количество видов живых существ, от низших до самых высших. Зрение является мощнейшим способом получения живыми существами информации от внешнего мира, обеспечивающим огромное количество сохраняющих реакций (см. гл. 12).

Эффективность метода передачи информации посредством изображения была остроумно продемонстрирована Дрэйком на радиоастрономической конференции в Грин Бэнк (США). Допустим, сообщил он, что от некоторой звезды регулярно получаются радиоимпульсы малой длительности, разделенные интервалами, кратными длительности импульса. На первый взгляд, эти интервалы разбросаны беспорядочно. Через определенный промежуток времени та же последовательность импульсов повторяется. Это должно явно указывать на их искусственное происхождение. Если изобразить каждый импульс единицей, а “пустой” промежуток времени, по длительности равный длительности импульса,— нулем, то получится запись, представленная на рис. 104. Дрэйк предложил участникам конференции расшифровать этот сигнал. Самое удивительное то, что очень скоро значительное число участников с этой задачей справилось.

Ход их рассуждения был такой. Всего в записи содержится 1271 знак (единиц и нулей). Число 1271 есть произведение двух простых сомножителей 41 х 31. Естественно возникает предположение, что сигнал представляет собой кадр телевизионного изображения, в котором 31 строка и 41 элемент в строке (может быть, конечно, наоборот, но от этого изображение повернется на 90°, что не существенно). Так как большинство знаков — нули, изображение контурное. Развернем это изображение по строкам, причем вместо единиц будем ставить черные кружки. Тогда получится забавная картинка, представленная на рис. 105.

Эта картинка содержит довольно богатую информацию. Прежде всего видно, что разумные существа, населяющие планету, антропоморфны и размножаются таким же способом, как их коллеги по разуму, населяющие Землю. У них есть такая важная общественная ячейка, как семья. Грубая окружность в левом верхнем углу картинки должна изображать их Солнце, а ряд точек, расположенных вдоль левого края изображения сверху вниз,— его планетную семью. Против каждой из таких точек в двоичной системе счисления изображен порядковый номер планеты*). Левая фигура указывает рукой на четвертую (по порядку удаления от их Солнца) планету. Именно на этой планете имеется разумная жизнь.

От третьей сверху планеты горизонтально идет волнистая линия. Это можно истолковать таким образом: поверхность третьей планеты покрыта жидкостью (вероятно, водой). Под волнистой линией схематически изображено некоторое рыбообразное существо — представитель фауны этой планеты... Следовательно, можно сделать важный вывод: аборигены далекого мира могут совершать межпланетные перелеты. Жизнь на планете основывается на тех же примерно химических процессах, что и у нас на Земле, ибо в верхней части изображения схематически представлены (слева направо) атомы водорода, углерода и кислорода. Изображение содержит также информацию о размерах разумных существ, населяющих этот чужой мир. Справа от фигур находится “метка роста”, посредине которой изображено число 11. Значит, рост взрослых особей —11 единиц некоторого масштаба. Что это за масштаб? Так как передача изображения велась на волне 21 см, естественно считать длину волны межзвездной радиолинии единицей масштаба. Значит, наши “братья по разуму” заметно выше нас: их рост достигает 231 см... Наконец, над вытянутой рукой правой фигуры изображено число 6. Похоже на то, что эти существа шестипалые, что делает весьма вероятным предположение, что они пользуются двенадцатиричной системой счисления...

Приходится только удивляться, какое большое количество информации мы получили из простого анализа 1271 элемента. Этот пример наглядно иллюстрирует возможности обмена информацией методом передачи изображения. В принципе такое ничтожно малое количество элементов может быть передано в очень узкой полосе частот за весьма малый промежуток времени.

Если полоса частот достаточно широка и передача носит длительный характер, количество информации, которая может быть передана, существенно превзойдет всю сумму знаний человечества. Чтобы “почувствовать”, так ли это, приведем следующий пример. Известно, что за всю историю человеческой культуры было написано около 100 млн книг и рукописей. Будем считать (условно), что средний объем одной книги — 10 авторских листов. Так как в одном авторском листе содержится, по существующим стандартам, 40 тыс. печатных знаков, то полное количество таких знаков в 100 млн книг будет 40·1013. Если каждый знак кодировать в двоичной системе и передаче информации предпослать сколь угодно обширное лингвистическое введение, полное число знаков двоичного кода, которое должно быть передано, будет порядка (1 - 2) · 1014. Если теперь полоса частот передающегося сигнала будет 1000 МГц (что легко достижимо в диапазоне 21 см), то потребуется 105с или всего лишь немногим более суток, чтобы передать содержание всего, что когда-либо было написано людьми! Разумеется, такие сложные передачи должны следовать за более простыми “сигналами” типа картинки, изображенной на рис. 105.

*) В двоичной системе каждое число представляется суммой степеней 2: n = a020 + a121 + a222 + ... , где a принимают значения либо 1, либо 0. В первом случае ставится точка, во втором делается пропуск. Например, число 11 можно представить как 1·23 + 0·22 + 1·21 + 0 или... На рис. 105 слева от изображения каждого числа дополни-тельно ставится еще точка, как это делается, например, при телеграфировании.

Конечно, передавать подряд содержание 100 млн книг есть варварский способ установления контактов между инопланетными цивилизациями. Все это можно сделать несравненно более экономично. Наиболее эффективные методы установления таких контактов должны разрабатываться совместными усилиями специалистов по кибернетике, математической логике, радиоэлектронике.

Вырисовываются контуры совершенно новой науки. Назовут ли ее “космической лингвистикой” или как-нибудь иначе — вопрос второстепенный. Ясно только то, что такая наука обязательно будет развиваться.

Уже сейчас первые шаги в этом направлении сделаны в Нидерландах. Мы имеем в виду разработанный доктором Фройденталем проект универсального языка для связи с инопланетными цивилизациями. Этот язык даже получил название — “линкос”. Речь идет о создании чисто логического языка, полностью “очищенного” от таких ненужных нагромождений, как всякого рода исключения из правил, синонимы и пр. Это чисто “семантический” язык, освобожденный от какого бы то ни было фонетического звучания. Слова этого языка никогда и никем во Вселенной произноситься не будут. Закодированные в какой-нибудь системе (например, двоичной, хотя и это совершенно не обязательно), они будут передаваться в космос радиопередатчиком подходящей мощности.

Для “линкоса” большое значение имеет четкая и логически безупречная система классификации и нумерации отдельных частей “космического послания” — глав, параграфов и т. д. Без этого послание нелегко будет расшифровать. Напротив, четкое разграничение отдельных частей его позволит при дешифровке легко переходить, скажем от “математической” главы к “биологической” или еще какой-нибудь, представляющей специальный интерес для “космического корреспондента”.

Передачи “линкос” должны начинаться с самых элементарных понятий математики и логики. Они должны состоять из небольших частей - параграфов, которым предшествуют заголовки (“шапки”). Рассмотрим пример вводной передачи: “Курс — элементарный, раздел науки — математика, глава 1, параграф 1. Заголовок: Ряд натуральных чисел...”. Урок состоит из серии простых (т. е. не кодированных) импульсов. Сначала передается один такой импульс, потом два и т. д. Смысл такой передачи должен быть совершенно очевидным для космических корреспондентов. Следующая передача: “Параграф 2. Заголовок: Код чисел: -= 1, - = 2, - =3...”. Из этой передачи корреспондент усвоит понятие “равняется” и обо-значение соответствующих чисел в системе “линкос”. Читатель может выразить естественное сомнение: правильно ли поймет такую передачу космический корреспондент? На такое сомнение мы ответим так: если корреспондент не разберется в таком универсальном послании, нельзя предполагать, что у него могут быть мощные радиотелескопы для приема таких сигналов... Даже если у корреспондента и останутся кое-какие сомнения, следующая, третья, часть послания их устранит: “Параграф 3. Заголовок: Сложение: 1+2 = 3, 1 + 3 = 4, 2 + 3 = 5...”.

Далее таким же образом будут переданы уроки “вычитание”, “умножение”, “деление”, а затем, постепенно, более сложные разделы математики (число П, натуральные логарифмы, алгебра, анализ). Для обучения геометрии могут быть полезны передачи изображений в сочетании со словами “линкоса”.

Пройдя таким образом, курс математики, космический корреспондент овладеет большим количеством важных понятий, как-то: “подобно этому”, “больше”, “меньше”, “отлично от”, “верно”, “неверно”, “примерно”, “максимум — минимум”, “растет”, “убывает” — и даже пресловутым “легко показать, что...”. Все эти понятия, логический смысл которых совершенно бесспорен, пригодятся корреспонденту при последующей дешифровке.

По мысли Фройденталя, “линкосом” могут быть переданы и значительно более трудные понятия “гуманитарного” характера, такие как “трусость”, “гнев”, “сообразительность”, “альтруизм”. Это достигается разыгрыванием небольших сцен между воображаемыми персонажами. Сперва такие сцены будут носить только математический характер.

Поясним это примером. “Курс — элементарный, область науки — поведение. Тема беседы — способность к мышлению”. Человек А говорит человеку В (обозна-чим это символом А-->В): сколько будет 2 + 3?

В -->А: 2+3 = 5.
А -->В: верно.

Далее ряд аналогичных сцен. Затем появляется персонаж С.

А -->В: сколько будет 15*15?
В -->А: 15*15 = 220.
А -->В: неверно.
А -->С: сколько будет 15*15?
С -->А: 15*15 = 225.
А -->С: верно. С более разумный, чем В.

После этой передачи следует ряд аналогичных сцен нарастающей трудности.

Рано или поздно корреспондент поймет, что в этих передачах речь идет не о математике (это уже было, да и примеры нарочито наивны). Это — театр, представление. А раз так, возникают понятия эмоций, чувств, поступков.

Выше уже говорилось, что лингвистические передачи разумно чередовать с передачей изображений. Такие передачи могут содержать уже богатую научную информацию (см. рис. 87). Не представляет труда передавать изображения и схемы устройства различных животных, веществ, структур, сопровождая их пояснениями на “линкосе”. Так, например, периодическая система элементов Менделеева может быть передана простым изображением (построенным по принципу рис. 106). По оси абсцисс откладывается число протонов в ядре соответствующего элемента, по оси ординат — число нейтронов. Из этого изображения легко понять, сколько устойчивых изотопов соответствует каждому элементу. (Следует представить, что три полосы на рис. 106 в действительности образуют одну полосу, идущую слева вверх направо. Приведенная на рис. 106 форма изображения обусловлена соображениями экономии места.)

Не представляют принципиальных затруднений передачи физических, астрономических или химических постоянных. Можно принять и объяснить корреспонденту единицу длины, например 21 см, и через нее выразить все линейные единицы; единица массы может быть связана, например, с массой электрона, а единица времени определяется из скорости света и принятого эталона длины. В конечном итоге таким способом можно экономично передавать любую сколь угодно сложную научную информацию.

Не следует, однако, закрывать глаза на те гигантские трудности, с которыми может столкнуться проблема дешифровки сигналов. Хорошо известно, что письменность значительного количества исчезнувших с поверхности Земли цивилизаций, несмотря на большие усилия нескольких поколений ученых, все еще не расшифрована. А ведь создавали эту письменность люди, т. е. существа с системой мышления, с системой отражения в своем сознании внешнего мира, вполне тождественной нашей! К тому же соответствующие цивилизации были на гораздо более низком научном и технологическом уровне, чем наша современная цивилизация. Что же можно ожидать от “космического послания”, составленного хотя и высокоинтеллектуальными, но совершенно другими существами? Ведь внешний мир в их сознании может отражаться совершенно иначе, чем в нашем.

Вполне естественно поэтому, что на Бюраканском симпозиуме по внеземным цивилизациям многие высказывания по этому поводу носили довольно пессимистический характер. Так, например, Моррисон высказал опасение, что скорость получения сигналов может оказаться больше нашей способности к их пониманию. Даже если дешифровка сигналов не станет проблемой, может, как полагает Моррисон, возникнуть специфическая трудность. Он оценивает весь объем опыта всего человечества в 1021 -1022 бит. Как видим, эта величина гораздо больше, чем информация, содержащаяся во всех когда-либо написанных книгах и рукописях (см. выше). По мнению Моррисона, большая часть человеческого опыта не выражена — она относится к внутренним переживаниям отдельных индивидуумов. С другой стороны, если когда-нибудь будет получен космический сигнал искусственного происхождения, то скорость прироста информации будет около 1010— 1011 бит в секунду. Эта скорость определится шириной полосы частот радиоканала, которая вряд ли превысит 1010—1011 Гц. Отсюда, заключает Моррисон, потребуется много тысяч лет для удвоения объема информации, которым располагает человечество. Следовательно, пессимистически заключает Моррисон, прием сигнала от внеземных цивилизаций, кроме самого факта приема, ничего не изменит в человеческом опыте.

Гораздо проще добавочную информацию накопить самим... Однако большинство участников Бюраканского симпозиума никак не могло согласиться с этим софизмом. Например, Дрэйк очень спокойно спросил у Моррисона: "Как Вы думаете, сколько бит информации содержится в формуле Эйнштейна E = mc2 ?" Вопрос Дрэйка попал, что называется, в точку. Ведь учет только количества информации является совершенно неправомерным формальным приемом. Для оценки информации необходимо пользоваться какими-то другими критериями, учитывающими не только количество, но и качество информации.

По основной проблеме дешифровки сигналов крайне пессимистическая точка зрения была высказана на Бюраканском симпозиуме советским радиоастрономом Б. Н. Пановкиным. Он подчеркнул, что материальные предметы не являются непосредственным содержанием нашего знания. Процесс познания имеет дело с образами, в которых как бы “сливаются” объективные свойства предметов и субъективные характеристики мышления отдельных индивидуумов. Поэтому, заключает Пановкин, для понимания сообщения необходима идентичность исторического пути развития обоих “корреспондентов”. Понимание сообщения возможно или при “догадке” о его структуре, или при мощном кибернетическом анализе. В частности, Пановкин считает невозможным обмен информацией при помощи космических языков типа “линкос”.

Соображения Б. Н. Пановкина заслуживают серьезного рассмотрения. Мы, однако, не разделяем его пессимизма. Конечно, проблема дешифровки сигнала очень трудна. Однако Пановкин явно недооценивает интеллектуальные возможности получателей сигнала. Ведь в принципе можно осуществить вероятностное моделирование мышления передающих сигнал “корреспондентов”, хотя это и нелегкая задача.

Короче говоря, мы полагаем, что были бы сигналы, точнее, цивилизации, их посылающие, а уж расшифровать их сумеют, как бы это ни было трудно...

На Бюраканском симпозиуме по внеземным цивилизациям довольно оживленно обсуждался и другой немаловажный вопрос: полезно или вредно будет установление контактов с “небожителями”. По этому поводу высказывались самые разные предположения. Ряд американских участников симпозиума высказал определенные опасения. Так, например, видный американский историк Мак Нейл подчеркивал, что на Земле сильная (т. е. более развитая) культура всегда доминировала над более слабой, вне зависимости от политического подчинения. Он полагает, что при установлении контакта с внеземными цивилизациями, уровень которых значительно выше нашего, возможно “угнетение” нашей цивилизации, вплоть до ее растворения в более высокой цивилизации.

Внеземные цивилизации в принципе могут посылать информацию “разлагающего” характера — например, передать структуру какого-нибудь супергалюцигенного препарата невиданной силы. Может быть, для внеземной цивилизации применение таких препаратов — норма существования, между тем как для нашей — оно смертельно.

Еще раз подчеркнем, что прежде чем будет налажен оживленный обмен информацией между инопланетными цивилизациями, должны быть установлены более простые контакты между ними. Мы полагаем, например, что для сигналов “привлечения внимания” лучше всего использовать по возможности мощный изотропный (т. е. излучающий равномерно во все стороны) источник радиоизлучения. При этом сигнал должен уже содержать богатую информацию. В гл. 27 мы рассмотрим очень интересную идею посылки космических сигналов, высказанную Н. С. Кардашевым.

Возвращаясь к теоретико-вероятностным расчетам фон Хорнера, содержание которых излагалось в начале этой главы, мы считаем необходимым высказать одно критическое замечание. При всем остроумии этих расчетов они исходят из технических возможностей нашей современной, “земной” цивилизации. Между тем необходимо считаться с тем фактом, что уровень развития разумной жизни, по крайней мере у некоторых инопланетных цивилизаций, может (и должен) быть существенно выше. Поэтому нельзя не считаться с тем, что оценки фон Хорнера могут быть самым коренным образом изменены. Чтобы сделать правильный прогноз в этом направлении, очень важно суметь выявить существенные тенденции в развитии разумной жизни на Земле. Нам представляется, что исключительно широкие перспективы развития автоматики, кибернетики и молекулярной биологии могут коренным образом изменить оценки фон Хорнера. Об этом будет идти речь в гл. 27 нашей книги.

24. О возможности прямых контактов
между инопланетными цивилизациями

В предыдущих главах мы разобрали несколько мыслимых методов установления контактов между инопланетными цивилизациями. Довольно подробно были рассмотрены вопросы межзвездной радиосвязи, оптической сигнализации с помощью лазеров, а также возможности применения для этой цели автоматических ракет-зондов. А между тем остался не рассмотренным один, если можно так выразиться, “тривиальный” способ связи — непосредственные контакты между разумными обитателями различных планетных систем. Совершенно очевидно, что такой тип установления контактов между инопланетными цивилизациями предполагает возможность межзвездных перелетов разумных существ на соответствующих летательных аппаратах.

Имеется огромное количество фантастической и полуфантастической литературы, в которой такие межзвездные перелеты астронавтов описывались с большим количеством захватывающих подробностей. Меньше всего нам хотелось бы повторять эти наивные, большей частью банальные и нередко смешные повествования. Но, с другой стороны, наша книга была бы недостаточно полной, если бы в ней не была отражена возможность прямых контактов между различными разумными обитателями космоса.

Такой способ контактов имеет в принципе ряд преимуществ перед другими, например основанными на посылке электромагнитных сигналов. Прежде всего, межзвездная связь на электромагнитных волнах осуществляется слишком уж медленно. По меньшей мере несколько тысяч лет должно пройти, прежде чем наладится двусто-ронний разговор — срок, расхолаживающе большой. Далее, все-таки нет 100%-ной гарантии, что выбранная длина волны (например, 21 см) является универсальным для всех инопланетных цивилизаций каналом связи. Если же будет разнобой в стандарте длины волны, межгалактическая связь окажется довольно затруднительной. Разумеется, все эти обстоятельства не являются сколько-нибудь решающим возражением против метода контактов с помощью электромагнитных волн. Скорее, они указывают на трудности такой связи. Но и без этого ясно, что установление межзвездной радиосвязи — дело далеко не простое...

Мы сейчас приведем аргумент в пользу метода непосредственных контактов между цивилизациями, носящий принципиальный характер. Дело в том, что “электромагнитный” метод установления связи между цивилизациями совершенно исключает два типа контактов: а) контакты между технологически развитыми и технологически неразвитыми цивилизациями, б) обмен материальными предмегами между различными инопланетными цивилизациями *). Контакты типа а) могут представлять большой познавательный интерес для высокоразвитых цивилизаций. Следует еще учесть, что возможная длительность “дотехнической” стадии у многих цивилизаций может быть весьма значительной. Поэтому количество цивилизаций такого типа может намного превосходить количество технически развитых цивилизаций. Потребность в контактах типа б) может возникнуть, например, после установления между высокоразвитыми цивилизациями электромагнитного канала связи. Далее очевидно, что контакты типа а) могут быть неразрывно связаны с контактом типа б).

*) Впрочем, имеется принципиальная возможность передать по радио самую исчерпывающую информацию о материальном предмете любой сколь угодно высокой степени организации (например, о разумном существе). На основе этой информации инопланетная цивилизация из своих материальных ресурсов сможет изготовить такой предмет.

Таким образом, у высокоразвитых цивилизаций безусловно возникнет потребность в установлении непосредственных контактов со своими “братьями по разуму”. Осуществлять такие контакты могут либо живые существа, либо автоматические кибернетические устройства. В принципе, однако, нельзя провести резкую границу между обоими этими случаями.

Проблема установления прямых контактов есть, прежде всего, проблема осуществления межзвездных перелетов. Уже давно известна одна замечательная особенность таких перелетов. Если скорость движения летательного аппарата достаточно близка к скорости света с, время для “пассажиров” этого аппарата течет заметно медленнее по сравнению с течением времени на оставленной ими планете. Мы здесь не будем пояснять этот общеизвестный вывод теории относительности. Таким образом, для пассажиров летательного аппарата открывается принципиальная возможность совершить перелет на огромные расстояния, исчисляемые сотнями и тысячами световых лет, и остаться при этом в живых, только немного постарев.

Поясним сказанное на конкретных примерах. Пусть летательный аппарат движется с постоянным ускорением а и затем на полпути до цели полета начнет тормозиться с тем же ускорением. На основании расчетов Пешека и Зенгера, опубли-кованных соответственно в 1956 и 1957 гг., Саган дает следующее выражение для времени полета t, отсчитанного “по часам” пассажиров летательного аппарата:

где S — длина межзвездной трассы, ch — гиперболический косинус. Вычисления показывают, что при таком характере полета и при a=g (ускорение силы тяжести Земли) наш аппарат долетит до ближайших звезд за несколько лет, до галактического ядра, удаленного от нас на расстояние около 30 тыс. световых лет,— за 21 год, а до ближайших галактик (например, до туманности Андромеды) — за 28 лет (по часам его пассажиров!). Заметим, что а может быть равно 2g и даже Зg — ускорение, “привычное” для разумных обитателей больших планет (если таковые, конечно, есть). В этих случаях значение t может быть уменьшено почти в два раза. С дру-гой стороны, пока летательный аппарат совершит свой полет в оба конца, на планете, которую покинули космонавты, пройдет время, гораздо большее, чем t. Это время приблизительно равно удвоенному расстоянию до цели полета, выраженному в световых годах (время разгона до релятивистской скорости при движении с постоянным ускорением д будет около одного года — значение, для “дальних рейсов” ничтожно малое). Например, по календарю “материнской” планеты пройдет свыше 3 млн лет, пока астронавты совершат полет к туманности Андромеды и обратно, а до скопления галактик в созвездии Волос Вероники — несколько сот миллионов лет. При полетах на достаточно большие (например, трансгалактические) расстояния формула для t немного упрощается и принимает вид

откуда при S = 2·1026 см (расстояние до скопления галактик в Волосах Вероники) t = 38 лет.

Неоднократно указывалось, что полет с почти световой скоростью сопряжен с исключительными трудностями. Так как ускорение и замедление ракеты требуют огромных ресурсов энергии, специфические трудности, которые при этом возникают, вряд ли даже в принципе преодолимы. Дело в том, что при сколько-нибудь приемлемом отношении полной начальной массы ракеты (обозначим ее через Мi) к массе, оставшейся после выгорания горючего (М0), скорость ракеты после выгорания горючего (V) составит лишь малую часть скорости света (с). Это будет иметь место даже, тогда, когда в качестве источника энергии будут использоваться ядерные реакции как распада (уран), так и синтеза (термоядерная реакция). В самом деле, напишем основную формулу теории реактивного движения

где W— скорость выброса рабочего вещества ракеты. Максимально возможная величина W при урановой реакции будет около 13000 км/с. Для термоядерной реакции W немного больше. Следовательно, для того чтобы скорость ракеты после выгорания горючего V была порядка скорости света с, надо, чтобы Мi было в сотни миллионов раз больше, чем М0, что явно неприемлемо. Отсюда можно сделать вывод, что только фотонная ракета (если бы, конечно, ее удалось когда-нибудь построить), для которой W= с, может обеспечить межзвездный полет со скоростью, достаточно близкой к скорости света. При этом, однако, возникают новые трудности.

Из теории реактивного движения следует, что ускорение ракеты b определяется простой формулой

где Р — отношение мощности двигателей ракеты к ее полной массе. В случае фотонной ракеты эта формула принимает еще более простой вид

Из этой формулы сразу же следует, что если мы хотим, чтобы ускорение ракеты b равнялось привычной для нас величине земного ускорения g, нужно, чтобы Р = 3 млн Вт/г. Эта величина является чудовищно большой. Чтобы почувствовать, что это такое, приведем пример.

Современная американская подводная лодка с атомным двигателем мощностью в 15 млн Вт имеет вес 800 т. Следовательно, для нее Р = 0,02 Вт/г. Это в 150 млн раз меньше той “удельной мощности”, которая требуется для того, чтобы наша гипотетическая фотонная ракета двигалась с ускорением b = g. Если бы для такого межзвездного корабля был построен двигатель мощностью в 15 млн Вт (что достаточно для удовлетворения потребности в энергии небольшого города), он весил бы ...5 граммов! Заметим, что в этот вес входят (в случае двигателя фотонной ракеты) масса горючего, масса гигантских рефлекторов (необходимых для обеспечения работы фотонной ракеты) и масса аппаратуры.

Из этого расчета с достаточной очевидностью следует, что трудности “количественного” характера настолько велики, что явно перерастают в качественные. Если мы попытаемся сколько-нибудь значительно уменьшить P, пропорционально уменьшится ускорение b и ракета уже не сможет за приемлемое время достигнуть релятивистской скорости.

Таким образом, вопреки мнению писателей-фантастов, межзвездные фотонные ракеты, движущиеся с релятивистской скоростью, вероятнее всего, никогда не будут построены. Каждой эпохе свойственно переоценивать свои технические возможности. Вспомним в этой связи, что в XIX столетии серьезно обсуждались проекты полета на Луну... с помощью парового двигателя. Еще раньше некоторые писатели-фантасты надеялись совершить такое путешествие ... на воздушном шаре. В наши дни мы являемся свидетелями явной переоценки возможностей реактивной техники.

Эта техника является идеальной при полетах на межпланетные расстояния и при грядущем преобразовании Солнечной системы человеком (см. гл. 26). Более того, ракеты могут быть мощным средством постепенной экспансии цивилизации от одной планетной системы к другой, находящейся в непосредственной близости. В гл. 22 мы уже рассматривали такую возможность в связи с проектом Брэйсуэлла. Существенно, однако, что при такой “экспансии” (или “диффузии”) цивилизации движение ракет будет происходить с нерелятивистской скоростью. Но для непосредственного контакта между разумными существами, разделенными межзвездными расстояниями (а для этого нужны фотонные ракеты, движущиеся с релятивистской скоростью), реактивная техника из-за указанных выше трудностей, по-видимому, непригодна.

Имеется, однако, принципиальная возможность совершенно по-новому подойти к проблеме межзвездных и трансгалактических перелетов с почти световыми скоростями. В последние годы эту новую идею выдвигал ряд авторов, но наиболее полное рассмотрение принадлежит Бюссару. Речь идет о возможности использования межзвездной среды, с одной стороны, как термоядерного горючего, с другой — как рабочего вещества ракеты. Так как межзвездный газ состоит преимуще-ственно из водорода, на ракете должно быть установлено термоядерное устройство, синтезирующее из ядер водорода ядра дейтерия. Сооружению такого устройства не препятствует ни один из известных законов физики. Поэтому можно полагать, что когда-нибудь такой термоядерный реактор будет построен.

Особенность такого летательного аппарата реактивного действия состоит в том, что поверхность, через которую должен всасываться межзвездный газ, должна быть очень большой. Расчеты показывают, что “поверхностная плотность” ракеты этого типа должна быть 10-8 г/см2 при условии, что в окружающем пространстве в 1 см3 имеется один атом водорода. В общем случае поверхностная плотность ракеты обратно пропорциональна концентрации межзвездного газа nн. Если масса ракеты равна, например, 100 т, а nн = 1 см-3, поверхность, через которую должен всасываться межзвездный газ, равна 1015 см2. Это означает, что радиус такой поверхности должен быть около 700 км. В метагалактическом пространстве, где nн < = 10-5 см-3, “радиус всасывания” должен быть еще в сотни раз больше. Конечно, это большая трудность. Но кто же может поручиться, что в перспективе нескольких столетий (а может быть, и быстрее) эта трудность не будет преодолена?

Если когда-нибудь этот способ передвижения в космосе будет освоен, наши потомки станут свидетелями удивительного “возврата” принципов космического полета от ракеты к... самолету, для полета которого, как известно, необходима материальная среда.

Имеется еще одна фундаментальная трудность, возникающая при движении летательного аппарата с почти световой скоростью. Столкновение такого аппарата с межзвездными атомами и особенно пылинками может иметь губительные последствия для экипажа звездолета. В самом деле, максимальная скорость ракеты при ее полете по описанной выше программе, как показывают вычисления, будет равна

Если, например, S = 30 тыс. световых лет (что соответствует расстоянию до ядра Галактики), то v отличается от с только на одну миллионную часть процента. При такой скорости каждый столкнувшийся с ракетой атом межзвездного водорода будет подобен частице космических лучей с энергией 1013 эВ. Если в межзвездном пространстве на 1 см3 приходится один атом водорода, то поток энергии в форме космических лучей через переднюю поверхность ракеты будет 3·1023 эВ/см2 или 2·1011 эрг/см2.

Это, конечно, чудовищная величина. Уровень губительной жесткой радиации будет при такой бомбардировке недопустимо высок даже при полетах к ближайшим звездам. Вряд ли экранировка аппарата каким бы то ни было веществом будет эффективной, особенно если учесть очень малое значение отношения полезной массы к массе топлива в случае ракет “обычного” типа и пропорциональность поверхности всасывания межзвездной среды массе летательного аппарата — в случае ракеты, использующей для движения межзвездную среду. Мы не рассмотрели последствия столкновений с пылевыми частицами межзвездной среды, которые при таких скоростях могут быть просто катастрофическими.

Все же перечисленные трудности не дают оснований сделать вывод (как это сделал фон Хорнер), что осуществление межзвездных полетов с почти световой скоростью невозможно даже в ближайшие столетия. Ведь перспектива полета человека на аппарате тяжелее воздуха еще 100 лет назад казалась совершенно неясной. Опыт развития науки и техники учит нас, что, если есть некоторая общественная потребность в изобретении, осуществлению которого принципы науки не препятствуют, оно обязательно рано или поздно будет сделано. А темпы развития науки и техники растут из десятилетия в десятилетие.

Уже в наши дни появляются некоторые идеи, позволяющие в принципе преодолеть трудности, стоящие перед межзвездными полетами. Например, можно представить, что “встречные” межзвездные атомы будут ионизоваться с помощью некоторого агрегата, стоящего на борту ракеты, после чего ионизованные частицы будут отклоняться в сторону сильным магнитным полем.

Таким образом, принципиальных возражений против возможности полетов летательных аппаратов реактивного действия со скоростью, близкой к скорости света, не существует. Коль скоро это так, мы, рассматривая все варианты установления контактов между инопланетными цивилизациями, не можем исключить возможности прямых контактов путем межзвездных перелетов на специальных летательных аппаратах.

При этом возникает волнующий вопрос: не посещалась ли наша планета в прошлом (не обязательно весьма отдаленном) инопланетными астронавтами?

Это — классический сюжет фантастических произведений многих авторов, начиная от Герберта Уэллса и кончая Станиславом Лемом. М. М. Агресту принадлежит заслуга постановки этой проблемы на научную основу.

Основная идея М. М. Агреста, сформулированная им в 1959 г., состоит в следующем. Предположим, что инопланетные астронавты некогда посетили нашу Землю и встретились с людьми. В этом случае столь необыкновенное событие должно было найти свое отражение в легендах и мифах. Для примитивных аборигенов Земли астронавты должны были представляться как существа божественной природы, наделенные сверхъестественным могуществом. Особое значение в таких мифах должно было отводиться небесам, откуда прилетели эти загадочные существа и куда они потом, по всей вероятности, “вознеслись”. Эти “небожители” в принципе могли обучать землян полезным для них ремеслам и даже основам наук, что также должно было найти отражение в легендах и мифах.

Сама постановка вопроса М. М. Агрестом нам представляется вполне разумной и заслуживающей тщательного анализа. Хорошо известно, что мифы и легенды, рождавшиеся у народов, еще не знавших письменности, имеют большую историческую ценность. Так, исгория не имевших письменности народов Черной Африки доколониального периода сейчас реставрируется в значительной степени по их фольклору, основой которого служат легенды и мифы.

Карл Саган привел в этой связи весьма любопытный пример. В 1786 г. знаменитый французский мореплаватель Лаперуз посетил индейцев северо-западной Америки. Спустя столетие анализ легенд и мифов об этом посещении позволил с большой точностью восстановить даже внешний вид кораблей Лаперуза. Этот пример вполне адекватен, так как первобытными народами первые посещения их европейцами воспринимались примерно так же, как если бы с небес спустились астронавты. На канву фактов из поколения в поколение нанизывается цепь более или менее фантастических вымыслов, но основа все же остается, тем более что и фантастические наслоения на истинный рассказ происходят по определенным правилам, по-видимому, известным этнографическим и лингвистическим наукам.

М. М. Агрест смело считает, что совокупность многих удивительных событий, описанных в Библии, имеет в качестве своей первоосновы посещение Земли инопланетными астронавтами. Так, например, обстоятельства разрушения городов Содома и Гоморры весьма напоминают ядерный взрыв в описании малокультурных наблюдателей... Всякого рода “вознесения на небеса” жителей Земли (например, вознесение Еноха) можно, по Агресту, объяснить взятием астронавтами (“ангелами”) кого-нибудь из жителей Земли на борт космического корабля. Таких возможностей интерпретации библейских легенд М. М. Агрест приводит довольно большое количество.

Развивая свои идеи, М. М. Агрест в порядке постановки вопроса выдвигает такую гипотезу: не могут ли те или иные памятники материальной культуры прошлого быть связанными с “визитом” инопланетных космонавтов? В этой части, однако, высказывания М. М. Агреста по меньшей мере спорны. Например, известным советским журналистом Г. Н. Остроумовым было доказано, что пресловутого “стального параллелепипеда”, якобы хранящегося в музее Зальцбурга, никогда не существовало в природе. Знаменитая стальная нержавеющая колонна в Индии является выдающимся достижением порошковой металлургии древности и никак не связана с космическими пришельцами... Наконец, наделавшее много шума изображение “марсианского бога” в скафандре на фресках сахарских скал представляет собой изображение человека в ритуальной маске и балахоне. Вообще вокруг таких вопросов широкая пресса как в нашей стране, так и за рубежом слишком часто поднимает сенсационную шумиху. Это, конечно, вполне естественно, если учесть огромный интерес к проблемам внеземной разумной жизни со стороны самых широких слоев населения. Тем больше осторожности требуется при анализе появляющихся иногда в печати сообщений о различных удивительных находках.

Пока еще ни один материальный памятник культуры прошлых веков не может с какой-то степенью достоверности связываться с мыслящими пришельцами из космоса. Это, конечно, не означает, что всякие попытки найти такие памятники вздорны и антинаучны. Нужно только с большой критичностью относиться к исследуемому материалу и всегда помнить старую, мудрую китайскую пословицу, которая уже приводилась в гл. 17...

Возвращаясь к концепции М. М. Агреста о возможности в мифах и легендах различных времен найти указания на прилет инопланетных космонавтов, мы еще раз хотим подчеркнуть, что она весьма интересна и заслуживает всяческого внимания. Очень изящной нам представляется также мысль Агреста, что инопланетные астронавты могли оставить материальные следы своего посещения на... обратной стороне Луны. В самом деле, логично допустить, что они опасались оставлять такие “заявочные” столбы на Земле, так как низкий уровень цивилизации аборигенов нашей планеты с несомненностью привел бы к их разрушению и расхищению... Они могли рассчитывать, что когда человечество освоит обратную сторону Луны, оно тем самым выдержит экзамен на право называть себя разумным и цивилизованным...

В 1962 г. гипотезу, анологичную предложенной Агрестом, высказал Саган. Прежде всего, Саган находит частоту непосредственных контактов между инопланетными цивилизациями. Он исходит из своих довольно произвольных оценок количества таких цивилизаций в нашей звездной системе. Согласно его оценкам, в Галактике одновременно существует около 106 технически развитых цивилизаций. Вряд ли стоит подробно анализировать все предпосылки, которые легли в основу такой оценки. Укажем только, что время существования технически развитой цивилизации (а этой величине, очевидно, пропорционально полное количество таких цивилизаций) у Сагана принимается порядка 107 лет, что, пожалуй, является слишком оптимистической оценкой. Принимается, что эти цивилизации планомерно, без “дублирования” исследуют космос. Если каждая такая цивилизация ежегодно (имеется в виду “земной” год) посылает один межзвездный корабль для подобных исследований (такое допущение, конечно, совершенно произвольное), то средний интервал между двумя последовательными “посещениями” окрестностей какой-нибудь “обычной” звезды, как показывает простой расчет, будет равен 105 лет.

Средний интервал времени между посещениями планетных систем, на которых имеется разумная жизнь (а такие посещения, естественно, будут в связи с их особой перспективностью более частыми), можно в рамках исходных предположений принять равным нескольким тысячам лет.

Следовательно, имеется отличная от нуля вероятность, что на Земле такие посещения могли быть в историческую эпоху. Подобно Агресту, Саган сосредоточивает свое внимание на различных легендах и мифах. Из всех легенд и мифов он выделяет шумерийский эпос, в котором повествуется о систематическом появлении в водах Персидского залива удивительных существ, обучавших аборигенов основам наук и ремесел. Возможно, что эти события происходили вблизи древнейшего шумерийского города Эриду в первой половине четвертого тысячелетия до нашей эры. Вообще, согласно Сагану, представляется поразительным почти скачкообразный переход шумерийской культуры от долгих тысячелетий варварства и застоя к пышному расцвету городов, построению сложной ирригационной системы и расцвету наук, в частности астрономии и математики.

На наш взгляд гипотезы Агреста и Сагана в их “конкретном” оформлении не противоречат друг другу. Библейские легенды, как известно, имеют достаточно разветвленные вавилонские корни. Нельзя исключить, что тексты Библии и мифы Вавилона являются отголосками одних и тех же событий. Конечно, ни гипотеза Агреста, ни вариант ее, развитый Саганом, пока не имеют достаточно серьезных научных оснований. Тем не менее они представляют большой интерес и заслуживают внимания.

Любопытно, что, если верить оценкам Сагана (по нашему мнению, повторяем — произвольным), в сравнительно близком будущем можно ожидать очередного прилета на Землю инопланетных астронавтов... Эти астронавты будут весьма удивлены теми “сдвигами”, которые произошли у земной цивилизации “за отчетные 5500 лет”...

Ну, а если говорить серьезно, то современная наука не располагает ни одним фактом, указывающим на возможное посещение инопланетянами Земли. Между тем имеется огромный поток “свидетельств очевидцев” о наблюдениях неких “неопознанных летающих объектов” (“НЛО”), получивших распространенное название “летающих тарелок”. Во всех случаях, однако, когда эти “наблюдения” подвергали серьезному научному анализу, они находили вполне естественное объяснение. В наше время в атмосфере и в ближнем космосе проводится очень много всяческих экспериментов, сопровождаемых оптическими явлениями, и неискушенные наблюдатели, к тому же являющиеся жертвами массового психоза, за-частую принимают это за проявления деятельности космических пришельцев.

25. Замечания о темпах и характере
технологического развития
человечества

Прежде чем остановиться на увлекательной проблеме грядущего переустройства человечеством Солнечной системы (а может быть, и более удаленных областей Галактики), целесообразно хотя бы вкратце обсудить темпы развития человечества и проанализировать перспективы на сравнительно близкое будущее.

Прежде всего, как быстро увеличивалось население нашей планеты за последние столетия? Воспользуемся данными, показывающими динамику роста народонаселения земного шара, которые приведены в журнале “Коммунист” № 3 за 1964 г.

Эти данные охватывают период с 1000 г. н. э. Мы представим эти данные в виде графика, который приведен на рис. 107 (по вертикальной оси принят логарифмический масштаб). На этом графике нанесена также точка, соответствующая 2000 г. н. э., когда население Земли, по данным ЮНЕСКО, превысит 6 млрд человек.

Приведенная на рис. 107 кривая весьма примечательна. Прежде всего, она не может быть представлена экспонентой

  В масштабе рис. 107 экспонента выглядела бы как прямая линия, чего заведомо нет. Лучше всего кривая роста народонаселения Земли может быть представлена гиперболическим законом:

Доказательством этого утверждения является линейная зависимость обратной N величины от времени (рис. 108). Точки на этой кривой (вернее, прямой) пропорциональны значениям t0 - t, полученным для разных дат (величины 1/N можно получить из кривой на рис. 107). Из рис. 108 с большой точностью получается величина   Если бы рост населения следовал гиперболическому закону и дальше, то около 2030 г. население земного шара стало бы бесконечно большим . Этот вывод, очевидно, абсурден, что следует хотя бы из того, что в 2000 г. население Земли будет “всего лишь” 6,2 млрд и, в силу ограниченности биологических возможностей человека, через 30 лет после этого оно никак не может стать бесконечно большим...

Какой же отсюда следует вывод? Только один: в течение ближайших нескольких десятилетий сам закон роста народонаселения должен претерпеть радикальные изменения.

Естественным законом увеличения народонаселения является экспоненциальный закон. Последний получается из простого условия, что ежегодный прирост народонаселения пропорционален величине народонаселения. Математически это запишется так:

Нынешний гиперболический закон увеличения народонаселения всего земного шара (который действует по крайней мере несколько сот лет) обусловлен не столько биологическими, сколько социальными факторами. Согласно этому закону, ежегодный прирост народонаселения определяется уравнением

Преодолев социальные кризисы, человечество может обеспечить “нормальный” экспоненциальный рост народонаселения, разумным образом подобрав величину а. При таком законе катастрофическое перенаселение (следующее из гиперболического закона) человечеству угрожать никогда не будет. На рис. 107 пунктирная линия изображает характер увеличения народонаселения Земли в будущем.

Возникает основной вопрос: опережает ли развитие производительных сил человечества рост народонаселения или отстает от него? Хорошим индексом производительных сил человечества является производство энергии всех видов. Соответствующие данные, охватывающие период от конца XVIII в. до наших дней, содержатся, например, в книге Роуза “Физика плазмы и управляемые термоядерные реакции”. Оказывается, что рост производства энергии за это время очень хорошо следовал экспоненциальному закону, который представлен на том же рис. 107. В масштабе этого рисунка годичное производство энергии на душу населения земного шара определяется разностью кривых роста производства энергии и роста народонаселения. Мы видим, что эта разность, вплоть до настоящего времени росла. Заметим, однако, что в будущем, и притом довольно близком, ситуация может радикально измениться к худшему (см. ниже). Следует подчеркнуть, что увеличение населения всего земного шара в течение последнего периода определялось в основном развивающимися странами.

Коль скоро человечество преодолеет нынешний кризис, вызванный наличием на нашей планете двух антагонистических систем — социализма и капитализма, единственным фактором, лимитирующим неуклонный экспоненциальный рост производительных сил общества, будет ограниченность материальных ресурсов, которая обусловлена конечными (хотя и относительно большими) размерами нашей планеты, а также катастрофическое загрязнение Окружающей среды. То, что эти факторы могут стать существенными довольно скоро, мы покажем на следующем простом примере.

В наши дни человечество ежегодно производит энергию, соответствующую производству ~5 млрд т антрацита. Ежесекундное производство составляет около 6·1019 эрг, причем каждые 20 лет эта величина удваивается (см. соответствующую кривую на рис. 107). Эта тенденция довольно устойчива и держится уже около 200 лет. При таких темпах через 200 лет производство энергии вырастет в тысячу раз и достигнет 3·1022 эрг/с. Вполне вероятно, что это наступит даже раньше, так как ресурсы угля и нефти сравнительно невелики и в ближайшие десятилетия следует ожидать революции в энергетике, связанной с массовым производством ядерной энергии. 3·1022 эрг/с составляют уже около 1 % потока солнечной энергии, непрерывно падающей на Землю. Дальнейшее увеличение производства энергии с неизбежностью повлечет за собой изменение теплового режима Земли, что может привести к весьма неприятным последствиям. Разумеется, до этого начнется широкое использование солнечной энергии, но здесь есть предел: вероятнее всего, можно будет использовать не более 1 % от всего потока энергии излучения Солнца.

Не подлежит сомнению, что неограниченно растущий технологический потенциал развивающегося общества за сравнительно короткое время должен вступить в противоречие с ограниченностью естественных ресурсов Земли. Уже в наше время все большее и большее внимание уделяется угрожающему нарушению равновесия между человечеством и окружающей его экологической средой — биосферой. Проблема загрязнения атмосферы, мирового океана и внутренних водоемов, почвы и растений становится весьма острой. Бесконтрольное стихийное развитие производительных сил может привести человечество к катастрофе (см. ниже).

Если представить себе некий воображаемый космический корабль, экипаж которого улетел в далекий звездный рейс, рассчитанный на многие годы, то каждый поймет, что члены этого экипажа должны с величайшей бережливостью и благоразумием относиться к своим крайне ограниченным ресурсам кислорода, питания, топлива и пр. Сознание мыслящих людей должно все больше и больше проникаться мыслью, что наша Земля — очень большой космический корабль, который почти пять миллиардов лет путешествует в глубинах крайне “негостеприимной” для жизни Вселенной. Этот “космический корабль” весьма удобно вышел на стационарную, почти круговую орбиту вокруг устойчиво излучающего желтого карлика и ис-пользует его энергию... Но как бы ни были велики ресурсы этого огромного космического корабля — они все же ограничены. И его экипаж (т. е. мы, земляне) должны об этом постоянно помнить.

А между тем, по-видимому, уже сейчас бесконтрольное развитие производительных сил привело к ряду необратимых и весьма неприятных последствий. Мы не будем говорить здесь о вымирании огромного количества видов животных, многие из которых являются важными звеньями в экологической цепи, выкованной Природой за миллиарды лет естественного отбора. Обратим только внимание на одно немаловажное обстоятельство. Мы уже упомянули, что основным “поставщиком” свободного кислорода в атмосферу Земли является планктон. По крайней мере несколько десятков процентов кислорода поставляется в атмосферу нашей планеты благодаря жизнедеятельности растений в тропических лесах. Сейчас, в конце XX столетия, в связи с хищнической вырубкой практически сведены тропические леса Африки и Южной Азии. Они остались только в бассейне Амазонки и, похоже, через несколько десятилетий будут и там уничтожены. Значит, бездумная деятельность экипажа космического корабля, называемого “Земля”, уже теперь привела к нарушению кислородного баланса атмосферы.

Приведем другой пример. Как уже упоминалось выше, сейчас ежегодно добывается топливо, соответствующее примерно 5 млрд тонн каменного угля. Это топливо сжигается, т. е. соединяется с атмосферным кислородом. В результате получается углекислый газ плюс энергия, которая и утилизируется. Следовательно, этот варварский способ получения энергии сопровождается изъятием из земной атмосферы около 20 миллиардов тонн кислорода ежедневно. Много ли это или мало? Чтобы ответить на этот вопрос, оценим полное количество кислорода в земной атмосфере. Это очень легко сделать. Над каждым квадратным сантиметром земной поверхности имеется около 200 г кислорода. Так как поверхность земного шара приблизительно равна 500 миллионов км2 или 5·1018 см2, полное количество кисло-рода в земной атмосфере около 1021 г или 1015 т. Это означает, что для “поддержания” горения добываемого на Земле топлива земной атмосферы хватит на 50000 лет. Подчеркнем, что на Земле действуют и другие естественные причини, приводящие к связыванию свободного кислорода ее атмосферы. Как оказывается, сжигание топлива сейчас составляет несколько процентов от действия естественных факторов, приводящих к связыванию кислорода земной атмосферы. В итоге существенная часть кислорода свяжется через несколько тысяч лет. Только жизнедеятельность растений непрерывно пополняет эту убыль кислорода из атмосферы. И вот неразумное вмешательство людей в этот миллионами лет устоявшийся кислородный баланс Земли привело к тому, что он нарушается как бы “с двух концов”: уничтожая леса, мы уменьшили “поставку” кислорода в атмосферу по крайней мере на 10%, а сжигая его с топливом, увеличили скорость его ухода из атмосферы на несколько процентов. Если бы в атмосфере кислорода было сравнительно немного — последствия сказались бы очень скоро. Но так как кислорода в земной атмосфере запасено очень много — последствия скажутся только через несколько тысяч лет — характерное время установления динамического равновесия кислорода в атмосфере. Через этот промежуток времени, благодаря деятельности людей за последние несколько десятилетий, равновесное количество кислорода в земной атмосфере уменьшится примерно на 15 — 20%.

Но ведь сейчас темп добычи ископаемого горючего и его сжигания продолжает расти! Если так будет продолжаться, то через сотню лет добыча угля и нефти увеличится в несколько десятков раз. А это приведет к катастрофическому уменьшению кислорода в земной атмосфере за какие-нибудь несколько сот лет! Заметим, что мировых ресурсов угля и нефти, особенно еще не разведанных, вполне достаточно для этого самоубийственного дела: не забудем, что каменный уголь — это бывшие растения! Такая “деятельность”, с позволения сказать, “разумных” существ приводит к непрерывному увеличению содержания углекислого газа СO2, что, помимо других вредных последствий, резко нарушает тепловой баланс Земли, о чем речь уже шла раньше.

Приведем теперь другой пример. Недавно было обращено серьезное внимание на угрозу разрушения озонного слоя Земли некоторыми газообразными промышленными отходами. Наиболее опасными разрушителями этого слоя являются молекулы, входящие в разные сорта фреона, — вещества, заполняющего все холодильники. Эти молекулы содержат хлор и фтор. В настоящее время ежегодно около 10 миллионов тонн испарившегося фреона поступает в атмосферу. Там молекулы фреона перемешиваются с ее основными компонентами и заносятся при этом на высоты 20 — 30 км, где жадно вступают в химические соединения с молекулами озона. При последующих реакциях с молекулами кислорода фреон опять восстанавливается и, таким образом, он постепенно накапливается в верхних слоях атмосферы. В настоящее время мировое производство фреона растет примерно на 20% в год. Если в ближайшие годы это безобразие не прекратить, то, как показывают расчеты, через несколько десятилетий толщина озонного слоя в атмосфере начнет ощутимо уменьшаться. Но ведь хорошо известно, что слой озона — это броня, защищающая биосферу от губительных ультрафиолетовых лучей Солнца в диапазоне длин волн 0,24 — 0,29 мкм. Неразумное и даже самоубийственное поведение человечества вполне можно уподобить поведению сошедшего с ума экипажа космического корабля, буравящего его стенки, что неизбежно приведет к разгерметизации.

Вдумаемся, что происходит: миллиарды лет создавался удивительно тонкий и сложный баланс биосферы Земли. И вот появляется, казалось бы, самый совершенный продукт эволюции биосферы — человек, называющий себя разумным, и варварски разрушает то, что привело к его появлению и без чего невозможно его дальнейшее развитие и совершенствование. Только принятие самых радикальных мер в течение ближайших 2—3 десятилетий может предотвратить самоубийство человечества. Какие это меры? Прежде всего — революция в энергетике, переход на использование атомной и солнечной энергии. Это избавит человечество от кошмара загрязнения атмосферы и обеднения ее кислородом, но может породить новые проблемы, не менее острые. Но так или иначе, мы всегда должны помнить, что находимся на космическом корабле с конечными ресурсами, с которыми обращаться следует с величайшей осторожностью. Ниже мы остановимся на пределах роста нашей цивилизации более подробно. Теперь же обсудим некоторые перспективы дальнейшего прогресса науки и техники.

Неоднократно отмечалось, что технологическое развитие нашей цивилизации за последние сотни лет носит катастрофически быстрый, почти взрывной характер. Наглядной иллюстрацией к сказанному является табл. 12, составленная известным английским ученым и писателем-фантастом Кларком.

Левая половина таблицы дает краткую хронологическую сводку основных технических достижений человечества в различных областях его деятельности с 1800 г. и до наших дней. Правая половина этой таблицы дает соответствующий прогноз на довольно близкое будущее. Сама по себе попытка построить такую таблицу является в такой же степени смелой, как и увлекательной. Конечно, можно не соглашаться с Кларком по поводу отдельных деталей левой половины этой таблицы. Так, например, трудно согласиться с тем, что Кларк придает “одинаковый” вес технологии извлечения магния из морской воды (кстати сказать, пока еще далекой от совершенства) и открытию эффективных методов получения атомной энергии. По нашему мнению, нельзя ставить также “на одну доску” открытие “языка” пчел и антибиотиков. Последнее для прогресса человечества имело, конечно, неизмеримо большее значение. В основном же, на наш взгляд, левая половина таблицы Кларка неплохо отражает основные вехи технологического развития человечества за последние полтора — два столетия.

Что же можно сказать о правой половине таблицы Кларка? Хотя “грядущие годы таятся во мгле”, перспективы, открывающиеся перед человечеством на протяжении ближайших 13 десятилетий, невольно поражают. Конечно, эта часть таблицы Кларка является весьма спорной, отдельные предсказанные открытия не обязательно будут совпадать с соответствующими датами. Забавно, например, что согласно Кларку легче колонизировать планеты, чем научиться управлять погодой.... Что поделаешь — может быть, он и прав. Любопытно отметить, что Кларк почти точно предсказал время высадки астронавтов на Луне.

Если верить этой таблице, радиоконтакт с внеземными цивилизациями будет установлен между 2030 и 2040 гг. Иными словами, дети наших молодых читателей доживут до этого времени. Что же, им можно только позавидовать...

С нашей точки зрения, очень трудно предвидеть фундаментальные открытия в области физики. Весьма туманным, например, представляется “разрушение пространства — времени”, планируемое через столетие... Автор этой книги также вряд ли согласится с тем, что около 2100 г. состоится волнующая встреча с разумными существами, обитающими на других планетных системах. Вопрос сводится к тому, кто кого найдет? Если они нас, то это, очевидно, может произойти когда угодно — либо через 10 лет, либо через тысячелетия. Некоторые оптимисты считают, что такая встреча уже состоялась, причем в историческое время (см. предыдущую главу). Если же как “активный фактор” выступят земляне, то срок такой встречи будет зависеть не столько от уровня нашего технологического развития, сколько от удаленности от нас ближайших планетных систем, населенных разумными существами. Если Кларк считает, что в 2080 г. будет запущен первый звездолет, а в 2100 г. состоится встреча с разумными аборигенами других планет, то это означает, что последние удалены от нас на расстояние, не превышающее 20 световых лет. Тем самым он становится на ту весьма оптимистическую точку зрения, что практически каждая планетная система населена разумными существами — нашими современниками.

Таблица 12

ПРОШЛОЕ

Год

Транспорт

Связь, информация

Технология

Биология, химия

Физика

1800

Локомотив Пароход

Телеграф

Паровой двигатель

Неорганическая химия Синтез мочевины

Атомная теория

1850

Автомобиль

Телефон Фонограф

Механические станки Электричество

Органическая химия Красители

Спектроскопия Сохранение энергии Электромагнетизм

1900

 

 

Дизельные двигатели

 

Рентгеновы лучи

 

Самолет

 

Газолиновые двигатели

Генетика

Электрон

 

 

Вакуумная трубка

Массовое производство

Витамины

Радиоактивность Специальная теория относительности

1910

 

Радио

 

Пластики

Изотопы

1920

 

 

 

Хромосомы Гены

Общая теория относительности Строение атома

 

 

 

 

 

Волновая механика

1930

 

Телевидение

 

Язык пчел Гормоны

Нейтроны

1940

Ракеты Вертолет

Радиолокация Магнитная запись Электроника

 

 

Деление урана Ускорители

 

 

Электронно- вычислительные машины

Магний из моря

Антибиотики

 

 

 

Кибернетика

Атомная энергия

Кремний

Радиоастрономия

1950

Спутники

Транзисторы Мазер Лазер

Автоматика, водородная бомба

Успокаивающие средства

МГГ Несохранение четности

1960

Космические корабли

 

 

Структура белка

 

БУДУЩЕЕ

Год

Транспорт

Связь, информация

Технология

Биология, химия

Физика

1970

Космическая лаборатория, посадка на Луну

 

Электрические аккумуляторы

Китовый язык

 

 

 

Машинный перевод

 

 

 

 

Ядерная ракета

 

 

 

 

1980

Посадка на планеты

 

 

 

Гравитационные волны

 

 

Персональное радио

 

Экзобиология, искусственный организм

 

 

 

 

Термоядерный синтез

 

 

1990

 

Искусственный разум

Передача энергии по радио

Увеличение восприятия

Внутриядерная структура

2000

Колонизация планет

Всемирная библиотека

Освоение моря

 

 

2010

Путешествие к центру Земли

Телепатические устройства

Контроль погоды

 

 

 

 

Логический язык

 

Контроль наследственности

Ядерный катализ

2020

Межзвездный зонд

 

 

 

 

 

 

Робот

Космическая геология

 

 

2030

 

Контакт с внеземными цивилизациями

 

Биоинженерия

 

 

 

 

 

Разумные животные

 

2040

 

 

 

Обесчувствление

 

2050

Контроль над гравитацией

 

 

 

 

 

 

Запасная память

 

 

 

 

 

 

Планетная инженерия

 

 

2060

 

 

 

 

Разрушение пространства-времени

 

 

 

 

Искусственная жизнь

 

2070

Околосветовые скорости

 

Контроль над климатом

 

 

2080

Межзвездный полет

 

 

 

 

2090

Передача материалов

Мировой мозг

Астроинженерия

Бессмертие

 

2100

Встреча с инопланетными существами

 

 

 

 

В гл. 22 и 23 были приведены, на наш взгляд, достаточно серьезные аргументы против такой оптимистической концепции. Скорее всего, ближайшие планетные системы, населенные разумными существами, удалены от нас на расстояния, превышающие многие сотни, если не тысячи световых лет. Это объективно существующее обстоятельство, конечно, значительно удалит дату встречи с нашими космическими братьями по разуму.

Волнующим является вопрос о принципиальной возможности бессмертия для каждого индивидуума человеческого общества. В отличие от Кларка, мы понимаем под этим не способность данного индивидуума жить вечно (что явно бессмысленно), а существенное продление его жизни, скажем, в десятки и даже сотни раз. Такая перспектива, особенно в связи с возможностью создания искусственных разумных существ, нам представляется вполне реальной. Об этом, в частности, речь будет идти в предпоследней главе нашей книги.

В целом таблица Кларка при ее внимательном изучении производит сильное впечатление. Из нее непосредственно, например, следует, что к 2100 г. возможности человечества существенно перерастут скромные земные ресурсы. В этом же и состоит вся сущность проблемы дальнейшего развития нашей цивилизации. Неограниченный экспоненциальный и даже “сверхэкспоненциальный” рост всех показателей развития за последние 3—4 столетия есть сугубо неравновесный процесс. Человечество, возникшее как часть биосферы, вышло из состояния равновесия с этой оболочкой Земли, что неизбежно должно привести его к критической ситуации, к необходимости сделать выбор и коренным образом изменить стратегию своего поведения. От этого будет зависить вся предстоящая история человечества. Как же будет выглядеть развитие человечества в будущем ?

Всестороннее математическое исследование этой проблемы в последние годы проводилось группой весьма компетентных специалистов, известных под названием “Римский клуб”. Сложность задачи состоит в том, что параметры развития человечества (например, промышленное производство на душу населения, загрязнение среды обитания и пр.) являются взаимно связанными. Надо еще иметь в виду, что все глобальные процессы (рост производства и народонаселения, загрязнение среды обитания и пр.) имеют инерцию. Математически задача сводится к решению системы из многих тысяч совместных дифференциальных уравнений, что можно было сделать только с помощью современной вычислительной техники. Соответствующая этой задаче область науки известна как системный анализ.

Прежде всего тщательно оценивались все ресурсы Земли, которые необратимо расходуются в процессе технологического прогресса человечества. Далее, используя все данные экономики и статистики, находят рост производства этих ресурсов и зависимость этого роста от времени, а затем оценивают “время исчерпания” соответствующего вещества. Некоторые результаты этого анализа приведены в табл. 13.

Таблица 13

Вещество

Глобальные запасы, т

% роста в год

т, годы

Вещество

Глобальные запасы, т

% роста в год

т, годы

Алюминий

1,2·109

6,4

55

Железо

1,0·1011

1,8

173

Хром

1,7·108

2,6

154

Свинец

108

2,0

64

Уголь

5·1012

4,1

150

Нефть

4,5·1011

4,0

50

Медь

3·108

4,6

48

Природный газ

3·1013 м3

4,7

49

Время исчерпания ресурсов вычислено в предположении, что в течение будущих десятилетий разведанные ресурсы вырастут в пять раз по сравнению с данными, приводимыми в этой таблице. Конечность ресурсов Земли и их грядущее исчерпание в сочетании с прогрессирующим загрязнением среды обитания является решающим фактором в будущей истории нашей цивилизации.

Участники “Римского клуба” особенно тщательно исследовали вопрос о загрязнении окружающей среды деятельностью человека. Поучителен рис. 109, дающий уменьшение кислорода в воде около дна Балтийского моря, которое, по существу, стало мертвым. Важно, что очистка отходов — очень дорогое дело, если мы хотим получить достаточно чистые отходы, а именно это и нужно (рис. 110).

Авторы этого исследования рассчитывают несколько моделей дальнейшего развития человеческого общества. Прежде всего, рассчитывается “стандартная” модель, описывающая дальнейшее развитие так, как оно происходило в прошлом. Соответствующие графики основных параметров развития приведены на рис. 111, который можно озаглавить: “Что произойдет, если ничего не предпринимать”. Анализ этих кривых производит устрашающее впечатление. Вплоть до начала следующего, XXI века будет происходить тот же рост, что и приведенный на рис. 107. Однако после 2030 г. очень быстро наступит катастрофическая ситуация. Численность населения, а также промышленная продукция начнут резко снижаться, а загрязнение среды — расти. Цивилизация прекратит свое существование (“коллапс”) и вместе с нею исчезнет и загрязнение. Увы, нас это не должно уже радовать!

Любопытна модель развития цивилизации, которая получается при неограниченном увеличении ресурсов (рис. 112 и 113). В этом случае причиной коллапса будет катастрофическое загрязнение среды. В поисках выхода из положения авторы из “Римского клуба” предлагают установить жесткий контроль рождаемости при остановке роста промышленности. На рис. 114 приведена соответствующая модель, где рост населения прекращается с 1975 г., рост промышленной продукции прекращается с 1985 г. (эти сроки уже прошли...). Хотя ситуация и смягчается, но все равно коллапс цивилизации только отодвигается на 2 — 3 столетия.

Следует подчеркнуть, что авторы описанных выше расчетов рассматривают идеализированную модель. Совершенно не учитывается крайняя неравномерность развития, наличие двух антагонистичных систем, острые проблемы развивающихся стран. Не учитывается и возможность возникновения войн, которая реально существует в разделенном на лагери мире. Все эти факторы должны действовать в одном, крайне нежелательном направлении. В качестве панацеи от ожидаемой человечеством в будущем катастрофы авторы “Римского клуба” предлагают коренным образом изменить стратегию поведения цивилизации. Вместо стратегии неограниченного роста — полная остановка роста производительных сил и их точная регулировка (концепция “равновесной” цивилизации).

Разработка вопросов, касающихся глобальных динамических моделей развития человечества, была выполнена двумя группами советских авторов (В. А. Геловани с коллегами и В. А. Егоров). Прежде всего они математически доказали, что предлагаемое авторами “Римского клуба” “глобальное равновесие” отнюдь не может предотвратить кризис — оно только отодвигает его на сотню — другую лет. И вообще модели, рассматривавшиеся западными авторами, не допускают “нетривиальных” стационарных решений. А “тривиальное” решение, если говорить не на математическом языке, означает смерть (точнее, равенство нулю всех параметров глобальной модели, как-то: уровня производства, населения, загрязнения среды и пр.). В качестве альтернативы советские авторы выдвинули и рассчитали модель, в которой “коллапс” устраняется не остановкой роста, а разумным управлением инвестициями капитала. Для этого, однако, надо большую часть этих инвестиций направить на борьбу с загрязнением, восстановлением ресурсов и ликвидацию эрозии обрабатываемой земли. Как это делать, однако, пока не ясно. По существу, эта модель, допускающая “нетривиальное” стационарное состояние, означает установление на нашей планете режима космического корабля, следующего вместе с космонавтами в неопределенно длительный рейс: каждый грамм вещества на учете и все должно регенерироваться.

Мы, однако, сомневаемся в том, что модель советских авторов снимает проблему “коллапса”. Только остановка роста производства и жесткая регламентация в использовании ресурсов и их регенерации, сочетающаяся с тратой львиной доли национального продукта на борьбу с загрязнением среды, как мы надеемся, может решить проблему. Впрочем, надо торопиться, — осталось не так уж много времени (см. рис. 111 — 114), а “эффекты задержки” исчисляются десятилетиями.

Все приведенные рассуждения рассматривают развитие человечества на изолированной маленькой планете с ограниченными ресурсами. Но справедливо ли такое рассмотрение? Об этом речь будет идти в следующей главе.

26. Разумная жизнь
как космический фактор

Уже неоднократно в этой книге шла речь об одной важнейшей тенденции развития разумной жизни — ее активном воздействий на космос. Так, деятельность человека изменила такую существенную характеристику Земли как космического тела, какой является радиоизлучение планеты. Уже сейчас человек начинает менять “генеральный план” Солнечной системы. У Венеры и Марса появились искусственные спутники. А ведь естественных спутников достаточных размеров у Венеры не было в течение миллиардов лет! Вокруг Земли по самым различным орбитам теперь движутся многие тысячи сделанных руками людей спутников. Человек умеет сейчас вызвать такие грандиозные явления природы космического характера, как полярные сияния и магнитные бури. Для этого достаточно взорвать водородную бомбу высоко над поверхностью Земли. К сожалению, поразительная мощность человеческого разума далеко не всегда используется на благо человечества. И как раз ядерные взрывы на больших высотах являются хорошим тому примером...

Но ведь мы наблюдаем только самое начало вступления человечества в космическую эру. Ведь прошло только тридцать лет после события, возвестившего о наступлении этой эры. Что же будет дальше?

Очень трудно сейчас даже представить, какие изменения сможет внести человек в Солнечную систему. Например, Саган предложил радикальную идею “переделки” атмосферы Венеры. Для этого нужно забросить в эту атмосферу некоторое количество одного из видов водоросли хлореллы. Бурно размножаясь в венерианской атмосфере, хлорелла довольно быстро разложит имеющиеся там в большом обилии молекулы СO2. В результате жизнедеятельности этих водорослей атмосфера Венеры начнет обогащаться кислородом. Изменение химического состава атмосферы повлечет за собой значительное уменьшение “парникового эффекта”, отчего температура поверхности Венеры понизится. В конце концов, “негостеприимная” планета станет пригодной для обитания*)...

Но почему, собственно говоря, мы должны ограничивать деятельность человечества Солнечной системой? И невольно возникает вопрос: не приведет ли в будущем (пусть далеком) деятельность человека к таким радикальным изменениям в Солнечной системе, что они могут быть наблюдаемы со звездных расстояний? В гл. 10 было показано, что никакими из известных современной астрономии методов нельзя обнаружить наличия планет типа Земли даже у ближайших к нам звезд. Но не может ли деятельность разумных существ достигнуть такого масштаба, что этот вывод станет уже неверным? Если это так, то открывается увлекательная возможность по некоторым наблюдаемым характеристикам какой-нибудь звезды сделать вывод, что около нее есть планета, населенная высокоразвитыми разумными существами.

Идеи о грядущей перестройке человеком Солнечной системы неоднократно высказывал К. Э. Циолковский. Например, в книге “Грезы о Земле и небе”, изданной в 1895 г., он обращает внимание на несуразность такого положения, когда Земля “перехватывает” только одну двухмиллиардную часть потока солнечного излучения. Он считал, что рано или поздно человечество должно будет овладеть “всем солнечным теплом и светом” и начать расселяться в просторах Солнечной системы.

*) Забавно, что сразу же появились возражения против этого остроумного проекта. Так, например, некоторые авторы считают вообще недопустимым “загрязнение” Венеры земными формами жизни... Это “возражение” применительно к Венере представляется смешным, однако вопрос о тщательной стерилизации космических кораблей достаточно серьезен.

Этот длительный процесс “колонизации” всего околосолнечного пространства человеком, по мысли Циолковского, должен состоять из нескольких этапов. Первый этап — преобразование пояса астероидов. В “Грезах о Земле и небе” разумные существа управляют движением малых планет так, “как мы управляем лошадьми”. Энергия, необходимая для поддержания жизни людей на преобразованных астероидах, извлекается с помощью “Солнечных моторов”. Лет 90 назад гений Циолковского предсказал появление солнечных батарей — основы энергетики бортовой аппаратуры современных космических ракет!

Преобразованные деятельностью человечества астероиды образуют, по Циолковскому, “цепь эфирных городов”. Для создания этих “городов” строительный материал берется вначале из астероидов, “масса которых разбирается до дна”. Из этого материала люди будут “лепить” искусственные космические тела с наиболее выгодной формой поверхности. Затем, когда материал астероидов будет исчерпан, в “дело” пойдет Луна (на перестройку Луны Циолковский “кладет” несколько сотен лет).

Наступит очередь Земли, а затем больших планет. По Циолковскому, процесс преобразования околосолнечного пространства займет сотни тысяч и даже миллионы лет. Перестроенная Солнечная система сможет обеспечить теплом и светом жизнь “3·1023 существ, подобных человеку... Это число в 15·1013 раз больше числа жителей на земном шаре, полагая их равным 2·109...”.

Циолковский был глубоко убежден в ничем не ограниченных возможностях человеческого разума. Так, в книге “Воля Вселенной. Неизвестные разумные силы”, изданной в Калуге в 1928 г., он написал следующие вдохновенные строки: “...Что могущественней разума? Ему — власть, сила и господство над всем космосом. Последний сам рождает в себе силу, которая им управляет. Она могущественнее всех остальных сил природы...”. Это подлинный гимн мощи человеческого разума!

Гениальные и дерзновенные мысли К. Э. Циолковского в начале нашего века казались тем немногим его современникам, которые о них знали, смешным чудачеством провинциального школьного учителя. Как изменились времена! Ведь не так уж давно потрясенный мир, затаив дыхание, смотрел по телевидению первый выход человека — советского космонавта А. А. Леонова — в свободное космическое пространство (рис. 115). Со всей очевидностью была продемонстрирована способность человека работать в межпланетном пространстве. А выдающиеся достижения экипажей “Салютов”, проводивших разнообразную работу в космосе! А достижения экипажей американских “Аполлонов”, проделавших большую работу на поверхности Луны! Это все первая материализация грез Циолковского о перестройке Солнечной системы волей, руками человека. Насколько далеко Циолковский смотрел вперед, видно хотя бы из того, что в 1960 г. его основные идеи, которые мы сформулировали, были, по существу, повторены крупным английским физиком-теоретиком Дайсоном, который, вероятно, не знал ничего о книге Циолковского. Конечно, работа Дайсона написана на основе достижений физики второй половины XX столетия, между тем как высказывания К. Э. Циолковского не имели под собой такого прочного фундамента. Тем более достойна удивления та прозорливость, с которой основоположник астронавтики сумел правильно оценить существенную тенденцию в развитии разумной жизни на нашей планете — необходимость ее экспансии в космос.

Мы сейчас более подробно остановимся на работе Дайсона, потому что она содержит попытку количественног о анализа проблемы перестройки будущим человечеством Солнечной системы. Прежде всего, исследователь обращает внимание на поразительно высокие темпы научного и технического развития, характерного для общества разумных существ в “технологическую эру”. “Шкала времени” такого развития очень коротка по сравнению с астрономическими и геологическими интервалами времени. В гл. 22 мы уже подчеркивали это применительно к прогрессу радиофизики за последние полвека.

Однако имеется один важный материальный фактор, ограничивающий в конечном итоге научное и техническое развитие общества. Дело в том, что ресурсы вещества, необходимые для такого развития, не являются неисчерпаемыми. Об этом уже шла речь в предыдущей главе. В настоящее время ресурсы вещества, которые используются человечеством в его практической деятельности, ограничиваются биосферой Земли, масса которой порядка 5·1019 г, т. е. около одной стомиллионной массы земного шара. Количество энергии, ежесекундно потребляемой человечеством, приблизительно равно 6·1019 эрг (см. предыдущую главу). Не приходится сомневаться, что ресурсы каменного угля, нефти и других горючих ископаемых будут исчерпаны в течение ближайшей сотни лет (см. предыдущую главу).

С наступлением эры освоения космоса проблема ресурсов цивилизации в принципе меняется самым радикальным образом.

Вполне естественно, что на определенном, достаточно высоком, этапе развития общества с необходимостью возникает тенденция использовать ресурсы вещества и энергии, находящиеся вне Земли, но в пределах Солнечной системы. Каковы же эти ресурсы? Если говорить о ресурсах энергии, то, прежде всего, следует иметь в виду излучение Солнца. Ежесекундно оно излучает 4·1033 эрг. Что касается ресурсов вещества, то здесь основным источником могут быть массы больших планет. Масса планеты гиганта Юпитера составляет, например, 2·1030 г. Чтобы полностью “распылить” массу Юпитера, необходимо затратить энергию порядка 1044 эрг, что равно энергии, излученной Солнцем за 800 лет. Наиболее рациональным способом использования массы Юпитера согласно Дайсону будет сооружение гигантской сферы радиусом около одной астрономической единицы (т. е. 150 млн км), в центре которой будет находиться Солнце. При этом, как легко можно подсчитать, толщина сферы была бы такой, что над каждым квадратным сантиметром ее поверхности находилось бы около 200 г вещества. Оболочка такой толщины вполне могла бы быть обитаемой. Вспомним, что масса атмосферы над каждым квадратным сантиметром земной поверхности близка к 1 кг. Человек, как известно, фактически является “двумерным” существом, так как он освоил только поверхность земного шара. Поэтому вполне допустимо считать, что человек в перспективе 2,5 — 3 тыс. лет создаст “искусственную биосферу” на внутренней поверхности “сферы Дайсона”. После реализации этого грандиозного проекта человечество сможет использовать всю энергию, излучаемую его “материнской звездой” — Солнцем. Необходимые для утилизации солнечной энергии машины могут быть размещены на поверхности сферы Дайсона или где-нибудь внутри ее. Поверхность этой сферы будет примерно в 1 млрд раз больше поверхности земного шара. Сообразно с этим население сферы вполне может до-стигнуть предсказанной 90 лет назад Циолковским величины...

Дайсон обращает внимание на одно интересное обстоятельство: ряд совершенно независимых величин — массы больших планет, толщина искусственной биосферы, общая энергия солнечного излучения, время существенно технологического развития общества и время, нужное для распыления масс больших планет, — оказывается очень хорошо согласованным. “Поэтому,— заключает Дайсон, — если исключить возможность случайной катастрофы, вполне закономерно ожидать, что разумные существа в конце концов будут вынуждены прибегнуть к подобной форме эксплуатации доступных им ресурсов. Следует ожидать, что в пределах нескольких тысяч лет после вступления в стадию технического развития любой мыслящий вид займет искусственную биосферу, полностью окружающую его материнскую звезду”.

До этого пункта исследование Дайсона, по существу, было повторением идеи Циолковского, но, конечно, на уровне науки второй половины XX столетия. Далее, однако, Дайсон делает принципиально новый шаг. Он ставит вопрос, как будет “выглядеть со стороны” цивилизация, распространившаяся по внутренней поверхности сферы, окружающей звезду. Так как излучение “центральной звезды” не пройдет сквозь непрозрачную сферу Дайсона, то в межзвездное пространство будет излучать только наружная поверхность этой сферы. Температура последней должна быть примерно такой же, как и средняя температура Земли, т. е. около 300 К. При такой температуре, согласно хорошо известным из физики законам излучения нагретых тел, сфера будет испускать преимущественно инфракрасные (тепловые) лучи с длиной волны от 10 до 20 мкм. Полная мощность излучения сферы Дайсона в инфракрасной области спектра должна быть такой же, как и у центральной звезды в “видимой” области. В противном случае излучение звезды внутри сферы “накапливалось” бы, что привело бы к катастрофическому нагреву искусственной биосферы.

Таким образом, инопланетная цивилизация, .развивающаяся в описанном направлении, должна “со стороны” наблюдаться как очень мощный источник инфракрасного излучения. Атмосфера Земли прозрачна для излучения с длиной волны от 10 до 20 мкм. Следовательно, инфракрасное излучение от подобных объектов (если они, конечно, существуют) будет свободно проходить через это “окно прозрачности” в земной атмосфере и вполне может быть наблюдаемо с помощью больших современных телескопов. Чувствительность современной приемной аппаратуры позволяет зарегистрировать такое излучение, если звездная величина “материнской” звезды ярче 8-й, что соответствует расстояниям порядка 100 световых лет (если звезды более или менее похожи на наше Солнце). В ближайшие десятилетия можно ожидать значительного увеличения чувствительности приемной аппаратуры в диапазоне 10 до 20 мкм. Это даст возможность обследовать все объекты до 10—12-й звездной величины. Соответствующие звезды могут быть удалены от нас на расстояния в несколько сотен световых лет. Поэтому Дайсон предлагает для обнаружения инопланетных цивилизаций предпринять систематические поиски “точечных” источников инфракрасного излучения внеземного происхождения.

В принципе возможно, что такое избыточное инфракрасное излучение существует у некоторых звезд, давно уже наблюдаемых оптическими методами. Это может быть либо в том случае, когда инопланетная цивилизация из-за нехватки “строительного материала” — вещества больших планет — не смогла использовать всю энергию излучения от центральной звезды, либо когда она располагается вокруг одной из звезд кратной системы. Мы знаем, согласно исследованиям Су Шу-хуанга, что жизнь может развиваться и около компонент двойных звезд (см. гл. 11). Первоочередной задачей Дайсон поэтому считает планомерное обследова-ние ближайших к нам звезд, особенно обладающих “невидимыми” спутниками.

< > Важные результаты в этом направлении были получены с помощью инфракрасного космического телескопа (ИРАС). Телескоп имел зеркало диаметром 57 см, которое для обеспечения подавления собственного инфракрасного излучения охлаждалось до температуры 10 К (всего на 10 Кельвинов выше абсолютного нуля). Инфракрасные детекторы в фокусе зеркала охлаждались до 3 К. Телескоп работал в четырех диапазонах: 8 — 15, 20 — 30, 40 — 80 и 80—120 мкм. Спутник был в-веден на почти полярную орбиту (угол наклона плоскости орбиты к плоскости земного экватора 99 °) так, что он двигался постоянно над границей день — ночь над Землей, что удобно для проведения картографирования всего неба при постоянных условиях освещенности Солнцем. Работа телескопа продолжалась непрерывно в течение 1983 г. и была закончена в результате израсходования ресурса жидкого гелия. За время работы было исследовано 98% всей небесной сферы и было открыто около 200000 инфракрасных астрономических объектов. Обработка каталога этих объектов продолжается до настоящего времени.

Для обсуждаемой здесь проблемы результаты ИРАС интересны в нескольких направлениях.

Во-первых, были обнаружены оболочки из твердых частиц около молодых звезд, возможно, указывающие на продолжающийся процесс образования планет. Такие оболочки обнаружены около звезды Вега (а Лиры, расстояние 25 световых лет), Фомальгаут (а Южной Рыбы, 23 световых года), е Эридана (11 световых лет) и Р Живописца (50 световых лет). Вскоре после этого открытия Смит и Терил с помощью наземного телескопа с коронографом и мозаичного приемника света подтвердили, что оболочка около Р Живописца представляет собой искривленный протопланетный диск. Затем протопланетные диски были обнаружены с помощью наземных телескопов около некоторых молодых звезд типа Т Тельца (например, около HL Тельца), возраст которых 0,1—1 миллион лет. Очень интересно, что сходные диски были обнаружены и у некоторых солнцеподобных звезд, которые, как оказалось, обладают аномальным инфракрасным излучением. Для одного из таких источников IRS 1551 диск был открыт по аномальному радиоизлучению в миллиметровом диапазоне с помощью 45-метрового радиотелескопа в Японии.

Оуман и Жиллет считают, что по данным ИРАС из 335 звезд в пределах 80 световых лет от нас 68 звезд (т. е. около 20%) показывают избыточное инфракрасное излучение, в особенности это относится к звездам классов А и F. Таким образом, около половины А звезд имеют пылевые оболочки, и они сохраняются примерно половину жизни этих звезд — 100 миллионов лет, что как раз совпадает со временем, необходимым для образования больших планет. Это, возможно, указывает и на то, что для более старых звезд типа Солнца планетных систем столько же, сколько и звезд. Но это, конечно, только косвенное указание.

Среди объектов, обнаруженных ИРАС, имеется большое количество таких, которые излучают только в инфракрасном диапазоне и потому не отождествляются ни с какими другими астрономическими объектами. Эти объекты напоминают по характеру спектра излучение от сфер Дайсона. Однако примерно такими же характеристиками должны обладать звезды, относящиеся к классу красных гигантов — класс звезд с массами, близкими к солнечной, но в своей эволюции зашедшими дальше. В ядре звезды ядерные реакции прекращаются и оно становится более компактным, а атмосфера звезды расширяется до радиуса в несколько астрономических единиц. На периферии атмосферы возникает опять плотная пылевая оболочка.

В. И. Слыш выделил из каталога ИРАС пять наиболее интенсивных объектов (рис. 116), спектр которых наиболее близок к спектру черного тела, не отождествленных с известными астрономическими объектами. Среди них источник G 357,3 — 1,3 — сильнейший объект каталога ИРАС. По форме спектра температура соответствует — 53°С. Если предположить, что это излучение исходит от сферы Дайсона и его мощность примерно равна светимости Солнца, то расстояние до объекта всего 20 световых лет. Никаких объектов в оптическом или радиодиапазонах в этой части неба не обнаружено.

Другие объекты, выделенные В. И. Слышом:

0507 + 528 РО5, спектр соответствует температуре +17°С, однако в направлении источника видна звезда — красный гигант, расстояние до которого составляет 2500 световых лет. Если предположить, что это сфера Дайсона, как и выше, то расстояние оказалось бы равным всего 70 световым годам. Отличительной особенностью красных гигантов с пылевыми оболочками является также генерация излучения в радиолинии молекулы гидроксила на волне 18 см.

0453 + 444 РОЗ, температура + 67 °С — вероятно, объект похож на предыдущий. В диапазоне 3 мкм обнаружена спектральная деталь, характерная для полосы поглощения льда.

0536 + 467 РО5, температура +17°С — если этот объект соответствует сфере Дайсона, то расстояние до него около 70 световых лет. Детальных наземных наблюдений не проводилось.

0259 + 601 РО2 — холодный объект, температура которого -188°С; если это сфера Дайсона, то расстояние до нее 400 световых лет.

Более тщательный анализ данных ИРАС показывает, что в направлении на центр Галактики имеется большое скопление подобных объектов. В радиусе 5° вокруг центра обнаружено около 2500 источников, температуры которых находятся в интервале -23 -- +177°С. По-видимому, большая часть из них — это погруженные в пыль сверхгигантские звезды со светимостями, в две-три тысячи раз превышающими светимость Солнца, если они находятся на расстоянии 30000 световых лет (расстояние да центра Галактики). Однако важным выводом из наблюдений ИРАС является и то, что теперь есть кандидаты для более детального изучения, как возможные гигантские астроинженерные конструкции < >.

Идея Дайсона примечательна тем, что дает некоторый конкретный пример такого преобразования планетной системы, которое вполне может быть наблюдаемо с межзвездных расстояний. Является ли, однако, сооружение сферы Дайсона единственно возможным путем развития цивилизации, желающей в максимально возможной степени использовать энергетические ресурсы своей планетной системы? По-видимому, нет. Мы сейчас укажем на другой мыслимый источник энергии, может быть, даже более эффективный, чем 100 %-ное использование энергии излучения центральной звезды. Речь идет о принципиальной возможности использования масс больших планет в качестве ядерного горючего для реакции синтеза. Как известно, большие планеты состоят преимущественно из водорода. При массе Юпитера 2·1030 г запас ядерной энергии в нем, которая может быть освобождена при синтезе ядер водорода в ядра гелия, составляет около 1049 эрг. Это чудовищно большое количество энергии такого же порядка, как и энергия взрыва сверхновой звезды (см. гл. 5). Ядерную энергию можно будет освобождать постепенно, в течение длительного промежутка времени. Если, например, ежесекундно освобождать 4·1033 эрг (что равно мощности солнечного излучения), то запаса ядерной энергии Юпитера хватит почти на 300 млн лет. Этот срок, вероятно, превосходит длительность “шкалы времени” любой развивающейся цивилизации.

Наконец, почему бы не представить, что высокоорганизованная цивилизация может “перестраивать” свою звезду, около которой она когда-то возникла? Например, без “большого ущерба” для ее светимости можно “позаимствовать” у этой звезды несколько процентов ее массы. Право, мы не можем предложить сейчас рецепт, как осуществить такую перестройку. Похоже, однако, что это надо будет делать очень медленно. Во всяком случае, резерв массы порядка 5·1031 г (что в 25 раз больше массы Юпитера) развивающаяся высокоразвитая цивилизация может получить именно таким способом. Энергетический эквивалент этой водородной массы будет уже 3·1050 эрг, а этого может хватить на несколько миллиардов лет. Перестройка звезды может носить и более радикальный характер. Может быть, даже время излучения звезды будет “согласовано” со “шкалой времени” цивилизации. Не излучать же ей “зря”, после того как цивилизация прекратит свое существование! Нельзя также исключить, что спектральный состав излучения звезды будет меняться в желательном направлении. Конечно, очень странно представить, что высокоорганизованные разумные существа поступают со своим светилом примерно так же, как туристы с костром...

При разумном использовании этого огромного количества энергии совершенно не будет необходимости сооружать вокруг Солнца сферу. Можно предположить, что, например, половина массы больших планет пойдет на сооружение искусственных планет (“эфирных городов”, по терминологии Циолковского), причем эти сооружения будут двигаться во всем околосолнечном пространстве. На каждом таком спутнике будут мощные термоядерные установки, в которых “горючим” будет все то же вещество больших планет... В целом эта картина развития цивилизации сходна с той, которую набросал К. Э. Циолковский в “Грезах о Земле и небе”. Однако в дополнение к “солнечным моторам” источником энергии в “эфирных городах” будут управляемые термоядерные реакции синтеза.

От области безудержной фантазии перейдем теперь к более реалистическим оценкам возможностей высокоразвитой цивилизации, вышедшей за пределы своей планеты и приступившей к освоению планетной системы. Выше мы рассказывали уже о гипотезе Дайсона — Циолковского. Приходится только удивляться тому, как развитие науки и техники в наше время делает, казалось бы, самые фантастические проекты объектом конкретного исследования.

Остановимся в качестве примера на проекте Принстонской группы физиков и инженеров, работающих под руководством О'Нейла. Эта группа детальнейшим образом, на уровне технического проектирования, разработала план сооружения огромных космических колоний. Первая очередь проекта предусматривает сооружение в области так называемой “либрационной точки” системы Земля — Луна (т. е. одной из двух точек, находящихся на лунной орбите и равноудаленных от центров Земли и Луны) космической станции с диаметром 1,5 км. Вращение этой станции обеспечит на ней искусственную силу тяжести, равную земной. Внутри ее будут выращиваться овощи и фрукты, будет даже развитое животноводство. Там же будут размещены промышленные предприятия. Когда сооружение станции будет закончено, она будет самообеспечивающейся системой. На ней можно будет разместить до 10 тысяч человек персонала, для которых будет создан уровень комфорта более высокий, чем на Земле. Выбор места сооружения (точки либрации) диктуется соображениями небесной механики: любое тело около таких точек может там находиться неопределенно долго, двигаясь вокруг Земли по лунной орбите.

Следует подчеркнуть, что этот проект является первым шагом по пути реализации “эфирных городов”, о которых когда-то мечтал К. Э. Циолковский. Однако проект, как уже подчеркивалось, доведен до строгого инженерного расчета, опирающегося только на уровень современной технологии. В частности, существенным моментом в этом проекте является широкое использование при сооружении станции так называемых “челноков”, т. е. космических кораблей многократного использования, что значительно удешевляет космическое строительство. Примечательно, что большую часть строительных материалов для сооружения этой космической колонии целесообразно получать с Луны (рис. 117) — обстоятельство, которое прозорливо предвидел К. Э. Циолковский.

Стоимость сооружения такой колонии оценивается в 100 млрд долларов, срок сооружения— 15 — 20 лет. Для сравнения укажем, что американский проект “Аполлон”, успешно решивший задачу высадки человека на Луне, обошелся почти в 30 млрд долларов. К этому добавим, что позорная вьетнамская война за 8 лет обошлась американскому народу в 130 млрд долларов, не считая 50000 убитых.

Между тем сооружение описанной выше космической колонии сулит огромные выгоды. Не говоря уже об уникальных возможностях исследований в области фундаментальных наук о природе, результаты которых просто невозможно оценить, такая станция станет существенным источником энергоснабжения Земли. Перехваченная системой зеркал, окружающих космическую станцию, солнечная энергия будет преобразована в микроволновое радиоизлучение и через посредство специальных рефлекторов передана на Землю. Оказывается, что коэффициент полезного действия такой системы чрезвычайно высок: ~70%. Мощность передаваемого по такому тракту потока энергии будет превосходить мощность от потока нефти через проектируемый гигантский нефтепровод Аляска — США.

На базе описанной выше станции, как показывают расчеты, можно будет приступить к строительству значительно более грандиозных сооружений в космосе. Речь идет об объектах, на каждом из которых можно будет разместить в весьма комфортабельных условиях 40 — 50 миллионов человек. Сооружение таких объектов потребует многих десятков лет.

Таким образом, мы являемся свидетелями возникновения новой важнейшей области техники — космической инженерии. Уже сейчас вырисовываются контуры и будущей космической архитектуры.

Пока нельзя сказать, примет ли конгресс США решение приступить к этому грандиозному строительству в ближайшие годы (разумеется, речь может идти только пока о первой очереди проекта Принстонской группы). Известно только, что НАСА внимательно изучает этот проект. Однако безотносительно к решениям о конкретных сроках начала строительства первой космической колонии этот проект имеет, как мы увидим ниже, принципиальное значение для обсуждаемой проблемы, ибо он обосновывает абсолютную реальность выхода не отдельных героев-космонавтов, а человечества за пределы Земли для активной созидательной работы, которая в перспективе позволит избежать надвигающихся кризисных ситуаций. Заметим, что уровень технической проработки этого проекта сейчас неизмеримо выше, чем, скажем, проекта многоступенчатой ракеты Циолковского в начале нашего века. Сочетание этого обстоятельства с очевидной общественной потребностью есть гарантия того, что описанный выше проект начнет реализовываться, во всяком случае, в ближайшие 2 — 3 десятилетия. Осуществление проекта О'Нейла будет, по существу, началом сооружения сферы Дайсона.

Очень важно теперь оценить временную шкалу такого развития, которое, как легко понять, обязано быть экспоненциальным. Полагая “инкремент” экспоненты (характеризуемый временем удвоения численного значения параметров) 15 лет, что равно характерному времени реализации Принстонского проекта, можно считать, что для сооружения в космосе колоний с населением 10 миллиардов человек потребуется около 250 лет. Подчеркнем еще раз, что этот срок по крайней мере в два раза превосходит время, отделяющее нас от наступления кризисной ситуации, как его определяют некоторые авторы (см. предыдущую главу).

Время освоения всех материальных ресурсов Солнечной системы при таком экспоненциальном росте около 500 лет. Даже если учесть возможные задержки в развитии, связанные с освоением новой технологии, и принять очень “медленную” характеристику роста — 1 % в год, то все равно характерное время освоения нашей цивилизацией Солнечной системы будет 2500 лет.

Сейчас, конечно, нельзя, да и не нужно, говорить об условиях жизни на такой “супербиосфере”. Представляется, однако, очевидным, что цивилизация такого рода будет качественно отличаться от нашей современной. Важно отметить, что примерно через 1000 лет развития перед такой “цивилизацией II типа” станет, в сущности говоря, та же проблема, что в наши дни стоит перед земной цивилизацией “I типа”*): ограниченность ресурсов конечной системы при экспоненциальном росте параметров ее развития. Преодоление этого противоречия с неизбежностью толкнет цивилизацию II типа с ее огромным технологическим потенциалом на освоение ресурсов сначала ближайших областей Галактики, а потом и всей нашей звездной системы. Наступит процесс “диффузии” цивилизации II типа в Галактику, сопровождаемый преобразованием на разумной основе звезд и особенно межзвездной среды. Впрочем, этот процесс было бы более правильно назвать не “диффузией”, а распространением “сильной ударной волны” разума по неживой материи. Хорошей моделью такого процесса является известное построение Гюйгенса, описывающее распространение сферической световой волны. Каждая точка пространства, до которой дошло возмущение, становится центром вторичных сферических волн. В нашем случае роль такой “точки” играет подходящая звезда, вокруг которой с помощью местных ресурсов прилетевшие колонисты построят искусственную биосферу — сферу Дайсона. Скорость распространения возмущения будет порядка v = R/t2 , где t2 1000 лет — характерное время сооружения сферы Дайсона, а R 10 световых лет — среднее расстояние до подходящих звезд (например, звезд спектрального класса G). Отсюда следует, что v 3000 км/с, т. е. 1 % от скорости света с. В таком случае, учитывая максимальные размеры Галактики (около 100 тысяч световых лет), время колонизации и преобразования всей звездной системы будет всего лишь 10 миллионов лет. Эта величина близка к длительности эволюции человека на Земле и весьма мала по сравнению с наименьшими характерными временами в Галактике. Заметим, что на этой фазе развития характеристики цивилизации будут расти со временем t уже не по экспоненциальному закону (чему мешает конечность скорости света), а по степенному закону, сперва как I*, а потом и более медленно, как t2 — обстоятельство, которое нетрудно доказать.

Со всей определенностью следует подчеркнуть, что современное развитие естественных наук, а также накопленный за 30 лет космической эры опыт исключают возможность существования естественных причин, которые сделали бы такое развитие принципиальн о невозможным. Описанная выше картина (в частности, межзвездные перелеты автоматических станций с “замороженными” естественными или специализированными искусственными разумными существами) не противоречит ни одному из известных законов природы. Напротив, она логически вытекает из них! Это, конечно, не означает, что люба я цивилизация должн а развиваться согласно описанной выше схеме. Однако для некоторой части цивилизаций, возникавших в нашей Галактике в течение миллиардов лет ее эволюции, такое развитие логически должно было происходить.

Еще К. Э. Циолковский в начале нашего века прозорливо подчеркивал неограниченные “космические” возможности разума. Реальная оценка возможностей и перспектив развития современной науки и технологии полностью обосновывает эту идею нашего выдающегося мыслителя, быть может, самую величественную из когда бы то ни было высказывавшихся человеком.

Итак, имеются основания считать, что по крайней мере некоторая часть цивилизаций в процессе их неограниченного развития должна стать фактором космического характера, охватив своей преобразующей деятельностью отдельные планетные системы, галактики и даже Метагалактику. Но в таком случае следовало бы ожидать наблюдаемы е проявлени я этой разумной космической деятельности. В свое время (1962 г.) мы такой феномен назвали “космическим чудом”. В гл. 27 мы на этом остановимся более подробно.

*) Мы следуем классификации цивилизации, предложенной в 1964 г. Н. С. Кардашевым (см. следующую главу).

27. Где вы, братья по разуму?

В предыдущей главе мы сформулировали понятие “космическое чудо” как наблюдаемое проявление деятельности высокоразвитой галактической или метагалактической цивилизации. Мы подходим к основному вопросу: наблюдаем ли мы во Вселенной такие “сверхъестественные” (т. е. не подчиняющиеся законам движения неживой материи) явления?

На этот вопрос пока однозначно ответить нельзя. Тем более важно его поставить. Если окажется, что во всей наблюдаемой нами Вселенной никаких “чудес”, могущих быть связанными с проявлениями разумной жизни в космическом масштабе, нет, это с большой вероятностью может означать, что нигде разумная жизнь не достигает достаточно высокого уровня развития. А между тем не видно причин, почему бы, неограниченно развиваясь, разумная жизнь не стала проявлять себя в общегалактическом масштабе.

Как пример такого ожидаемого “чуда”, мы рассмотрим сейчас интересную идею Н. С. Кардашева. Предположим, что высокоразвитая цивилизация, освоившая все межпланетное пространство (либо путем построения сферы Дайсона, либо путем сооружения огромного количества “эфирных городов”, снабжаемых термоядерной энергией с использованием вещества больших планет), решила посылать сигналы связи к неизвестным ей инопланетным цивилизациям. Как мы уже подчеркивали в гл. 23 наиболее эффективным для этой цели был бы изотропный сигнал. В исследовании Дайсона предполагалось, что таким сигналом может быть инфракрасное излучение сферы, окружающей центральную звезду. Однако такой способ сигнализации далеко не самый экономичный. При данной мощности передатчика для посылки сигналов наиболее целесообразно использовать радиоволны. Они существенно увеличивают дальность связи по сравнению с инфракрасным излучением сферы Дайсона. В то же время они легко поддаются модуляции, что открывает почти неограниченные возможности передачи информации.

Пусть цивилизация некоторую часть своих энергетических ресурсов решила использовать для установления контактов с инопланетными разумными существами. Предположим, что передаваемое излучение является почти изотропным. Заметим, что технически создать такой очень мощный и в то же время достаточно изотропный излучатель не просто. По-видимому, естественнее всего распределить огромное количество сравнительно небольших излучателей по всей планетной системе.

Н. С. Кардашев, исходя из огромных расстояний, разделяющих инопланетные цивилизации, считает, что радиопередачи должны быть безответны. Такое “альтруистическое” поведение “сверхцивилизации” представляется ему вполне естественным, и с этим нельзя не согласиться. Ведь очень вероятно, что каждая из этих “сверхцивилизаций” в свое время “безвозмездно” получила ценнейшую информацию от своих более развитых космических соседей и тем самым взяла на себя, так сказать, “моральные обязательства” перед своими “младшими братьями” во Вселенной...

Кардашев далее считает, что сигнал должен быть широкополосным и сразу же нести в себе огромное количество информации. Спектральная характеристика сигнала должна быть близка к спектральной характеристике космических и квантовых шумов (см. рис. 88), взятых с обратным знаком. При этом условии обеспечивается максимальная информативность сигнала. На рис. 118 приведен вероятный спектр такого искусственного источника. В соответствии с тем, что спектр естественных шумов имеет глубокий минимум в области дециметровых и сантиметровых волн, основная энергия искусственного сигнала должна быть именно в этом диапазоне.

Характерной особенностью спектра искусственного радиосигнала должно быть, согласно Кардашеву, линейное уменьшение спектральной плотности потока с ростом частоты в области высоких частот. Далее Кардашев полагает, что указанием на искусственный характер сигнала может служить его спектр. Например, около 21 см там может быть необычной (например, “прямоугольной”) формы линия поглощения.

По уровню своего технологического развития цивилизации согласно Кардашеву можно разделить на три типа.

I. Технологический уровень близок к тому, который уже сейчас достигнут на Земле. Ежесекундное потребление энергии порядка 1020 эрг.

II. Цивилизация овладела энергией, излучаемой своей звездой (скажем, построила сферу Дайсона, см. выше). Ежесекундное потребление энергии около 1033 эрг.

III. Цивилизация овладела энергией в масштабе всей своей галактики. Потребление энергии порядка 1044 эрг.

Простые расчеты, выполненные Кардашевым, показывают, что при достигнутом в наши дни уровне радиотехники изотропные сигналы от цивилизации II типа могут быть обнаружены даже тогда, когда она удалена от нас на расстояние около 10 млн световых лет. В этом случае цивилизация такого типа может находиться в любом месте местного скопления галактик (см. гл. 1). При этом, однако, ширина полосы приема не должна превышать нескольких сотен килогерц, что делает сигнал сравнительно малоинформативным (так как за секунду можно при этом передать только несколько сот тысяч двоичных единиц информации, см. гл. 23). Что касается цивилизации III типа, то даже в том случае, когда расстояние до нее около 10 млрд световых лет,— величина, превосходящая расстояния до самых удаленных из известных объектов в Метагалактике, сигнал от нее будет обнаружен и притом в достаточно широкой полосе частот (десятки тысяч мегагерц).

Выше, в порядке чистой фантазии, мы говорили о том, что некоторые радиогалактики, вообще говоря, могут иметь искусственное происхождение. Н. С. Кардашев идет дальше и считает вполне вероятным, что среди известных радиогалактик могут быть цивилизации III типа. Задача состоит в том, чтобы выработать надежные критерии, по которым можно различить искусственные радиосигналы от естественных. По мысли Кардашева, критериями искусственности могут служить:

1) специфический спектр радиоизлучения (линейное уменьшение спектральной плотности потока с ростом частоты);

2) очень маленькие угловые размеры (по крайней мере для сверхцивилизаций II типа). Можно ожидать, что эти угловые размеры должны быть порядка угловых размеров планетных систем, удаленных на сотни и тысячи световых лет, т. е. 0,01"-0,001";

3) возможная поляризация по кругу, которая воспрепятствует искажению информации благодаря вращению плоскости поляризации в межзвездной среде (эффект Фарадея, см. гл. 3);

4) переменность во времени;

5) наконец, некоторые бросающиеся в глаза особенности в спектре, например “вырез” прямоугольной полосы около длины волны 21 см, о чем уже говорилось выше.

Только систематическое исследование всех источников, заподозренных в “искусственности”, может привести к успеху.

Если сверхцивилизация II типа желает, например, отправить сигнал к туманности Андромеды, она может использовать значительно меньшую мощность. Угловые размеры этой звездной системы составляют около 2°. Поэтому целесообразно использовать систему передающих антенн с угловыми размерами “главных лепестков” около 2°. Для такой направленной антенны выигрыш в мощности (по сравнению с изотропным излучателем) будет около 10 тыс. Для более удаленных галактик можно применить еще более направленные передающие антенны.

В случае межгалактической радиосвязи имеется одна существенная особенность, резко отличающая ее от межзвездной. Ведь сигнал посылается сраз у нескольким сотням миллиардов звезд. Следовательно, если хотя бы вокруг одной из этих звезд имеется высокоразвитая цивилизация, он будет обнаружен. В действительности таких цивилизаций в “зондируемой” галактике может быть много. Поэтому, посылая направленные экстрагалактические сигналы, передающая их цивилизация действует “наверняка”. Между тем при посылке направленного сигнала в сторону какой-нибудь звезды имеется ничтожно малая вероятность, что там есть цивилизация или даже вообще жизнь.

Имеется еще один принципиально возможный метод обнаружения сверхцивилизаций II и III типа с огромных расстояний. Речь идет о получении их радиоизображений с помощью космических интерферометров. Об изготовлении таких интерферометров, как ближайшей перспективе использования космического пространства для нужд науки, уже шла речь в гл. 20. Цивилизация II типа должна иметь характерный размер порядка 1 астрономической единицы или 1013 см. Если база космического интерферометра порядка расстояния от Земли до Луны, т. е. d 4·1010 см, а длина волны, на которой ведутся наблюдения, равна ~ 1 см, то разрешающая способность интерферометра   или 5·10-6 сек. дуги. С другой стороны, угловые размеры цивилизации II типа, если она находится даже на противоположном конце Галактики, будут ~ 3·10-10 рад. Это означает, что “лунный” интерферометр позволит получить хотя и грубое, но все же достаточно надежное изображение цивилизации II типа, если, конечно, она посылает изотропные радиосигналы. При такой ситуации передатчики могут быть расположены каким-либо причудливым, явно искусственно выглядящим способом (например, в виде двух параллельных или перпендикулярных линий, системы концентрических окружностей и пр.).

Если длина базиса космического интерферометра существенно больше, например порядка одной астрономической единицы, то теоретическая разрешающая способность его будет еще выше, что-нибудь около 10-8 сек. дуги. Заметим, что, вообще говоря, из-за всевозможных эффектов рассеяния (например, в межзвездной среде) теоретическая разрешающая способность может быть не достигнута. Например, на волнах 20 — 30 см предельная разрешающая способность, определяемая рассеянием в межзвездной среде, будет около 10-4 сек. дуги. Однако на волнах более коротких, чем 1 см, влияние рассеяния в межзвездной среде будет незначительно и при базах порядка 1 астрономической единицы разрешающая способность будет близка к теоретической, т. е. при 1 см составит 10-8 сек. дуги. При такой чудовищной разрешающей способности можно будет получить изображение любой, посылающей радиосигналы, цивилизации II типа, если она находится в какой-нибудь галактике в пределах нескольких десятков мегапарсек. Например, любая такая цивилизация, находящаяся в пределах скопления галактик в Деве (в состав которого входит, в частности, наша Галактика, см. гл. 7), может быть таким образом обнаружена и исследована.

В связи с вопросом о цивилизациях II типа остановимся на следующем основном моменте: подтверждают ли современные радиоастрономические наблюдения возможность их существования? Известно, что в ближайшей к нам гигантской спиральной галактике М 31 (туманность Андромеды) число звезд даже больше, чем в нашей Галактике. Резонно предположить, что если среди сотен миллиардов звезд М 31 вокруг некоторых имеются цивилизации II типа, то они “держат в радиолепестке” нашу Галактику в надежде, что вокруг какой-нибудь из ее звезд имеются разумные существа. В таком случае мы наблюдали бы в туманности Андромеды точечный источник радиоизлучения с необычными свойствами. Однако наблюдения показывают, что в М 31 вообще нет изотропно излучающих радиоисточников, мощность которых была бы больше чем 1/10 мощности галактического источника Кассиопея А. Отсюда следует, что если там и есть сверхцивилизации II типа, то мощность их радиоизлучения в сантиметровом диапазоне, направленного на нашу Галактику, по крайней мере в 1000 раз меньше мощности Солнца, —не так уж много для цивилизации II типа...

Верхний предел для мощности радиоизлучения от таких сверхцивилизаций можно еще более уменьшить. Допустим, что в нашей Галактике есть такой объект. Тогда, вместо того чтобы согласно Н. С. Кардашеву посылать изотропный сигнал, они могут применить систему “маяка”, луч которого за короткое время совершает полный оборот в плоскости Галактики: Мы наблюдали бы этот феномен как некий пульсар с совершенно удивительными свойствами (например, закономерные огромные скачки в величине периода). Диаграмма направленности такого искусственного пульсара должна быть “ножевая”, что-нибудь 5°x0,1° , вытянутая по галактической широте. Это, как легко сообразить, нужно для того, чтобы существенная часть звезд галактики попадала бы в лепесток. Период мог бы быть, например, порядка нескольких суток. Тогда для того, чтобы на расстоянии в 10 килопарсек поток от пульсара на сантиметровом диапазоне был бы равен 10-26 Вт/(м2·Гц) (предел полноты обзора источников), нужно, чтобы его мощность была бы в миллион раз меньше мощности солнечного излучения. Развитие радиоастрономии в ближайшие годы еще снизит этот предел в десятки раз.

Много надежд энтузиасты “космических чудес” возлагали и возлагают на быстро развивающуюся в течение последних лет инфракрасную астрономию. Следует заметить, что для этого имеются некоторые логические основания. В самом деле, цивилизация II типа, построившая вокруг своей центральной звезды искусственную биосферу, неизбежно будет излучать инфракрасную радиацию, соответствующую ее температуре, которая должна быть близка к средней температуре поверхности Земли, т. е. ~ 27 °С. Поэтому такая цивилизация должна наблюдаться астрономами как точечный источник инфракрасного излучения (см. с. 288).

Хотя в настоящее время обнаружено довольно много инфракрасных источников, все они, несомненно, имеют самое что ни на есть естественное происхождение. Можно, конечно, предположить, что с увеличением чувствительности инфракрасных приемников количество наблюдаемых источников значительно возрастет и, — кто знает, — среди них могут быть искусственные. Автор этой книги, однако, полагает, что из простого факта наличия избыточного инфракрасного излучения у какой-нибудь на первый взгляд более или менее нормальной звезды решительно ничего нельзя сказать о возможном наличии “искусственного” феномена. Окончательным критерием истины в астрономии является практика астрономических наблюдений и, прежде всего, — возможность на основе правильной теории предсказать новые наблюдательные результаты, подчас совершенно неожиданные. Только такая практика гарантирует нормальное развитие нашей науки и оберегает ее от всякого рода заблуждений, в которые неизбежно впадает далеко не совершенное человеческое мышление. Именно наблюдениями, например, была доказана “естественная” природа пульсаров, оказавшихся намагниченными, быстро вращающимися нейтронными звездами. Автор этой книги не сомневается, что то же самое рано или поздно произойдет и с галактическими ядрами или какими-нибудь другими космическими “квазичудесами”. “Презумпция естественности” любого космического сигнала, предложенная автором на Бюраканском симпозиуме, должна выполняться неукоснительно.

Приходная, таким образом, констатировать, что цивилизаций II типа ни в нашей Галактике, ни в М 31, просто нет.

Что касается цивилизаций III типа, то они могли бы быть уже сейчас в принципе обнаружены существующими наземными радиоинтерферометрами с межконтинентальными базами. Кто знает, может быть какой-нибудь из внегалактических источников, занесенных в существующие каталоги, в действительности является цивилизацией III типа? Только длительные специальные интерферометрические исследования смогут решить эту проблему. Трудность проблемы в этом случае состоит в выборе для специальных исследований каких-либо “подозрительных” объектов из многих тысяч известных метагалактических источников. В свое время (1963 — 1964) такими подозрительными источниками Н. С. Кардашев считал объекты СТА 102 и СТА 21. Вскоре, однако, выяснилось, что эти объекты являются квазарами.

О Одним из важных аргументов против колонизации всего космоса является предположение о том, что цивилизации III типа должны быть очень компактными объектами. Только в этом случае может быть обеспечен быстрый обмен информацией между отдельными частями. Увеличение объема кибернетически невыгодно. Если это правильно, то, наоборот, более молодые цивилизации будут стремиться объединиться с более старыми и более развитыми и это может привести к тому, что полное количество цивилизаций очень невелико. Зато каждая из них располагает очень большой величиной массы, гигантским энергетическим потенциалом и беспрецедентным объемом информации. Конечно, не обязательно представлять себе цивилизацию типа III в виде сферы Дайсона, что характерно для II типа. Как пример возможных конструкций в космосе, можно представить огромный вращающийся диск с массой 1012 масс Солнца, толщиной

  (где толщина в центре h0 около 1 км) и внешним радиусом R = 40 световых лет; средняя плотность около плотности стали. Такой диск может вращаться как твердое тело с периодом 2600 лет. Если энерговыделение всех средств в диске 1012 светимостей Солнца, то его средняя температура будет 300 К. Тепловое излучение такой конструкции должно иметь максимум около 20 мкм и давать поток около 1 янского с расстояния в 3 миллиарда световых лет. По-видимому, все подобные объекты уже могли бы быть зарегистрированы в каталоге ИРАС (см. с. 288). На рис. 119 карикатурно изображена подобного вида цивилизация III типа (рисунок сделан И. Максимовым). В табл. 14 приведены (согласно Н. С. Кардашеву) возможные сценарии развития внеземных цивилизаций. О

Таблица 14

Эволюционный сценарий и уровень урбанизации

Субъективная вероятность реализации сценария

Объекты для исследования и метод поиска

Сценарий эволюции нашей цивилизации после контакта

I

Унификация цивилизаций в масштабах 1 — 10 млрд световых лет с концентрацией в один компактный объект

60%

Наиболее мощные квазары и галактики. Поиск новых объектов с мощностью излучения более 104 эрг/с в диапазоне 10 мкм — 1 см, а также в других диапазонах. Поиск астроинженерных соору-жений, искусственных сигналов на волнах 1,5 мм и 21 см

Быстрое развитие во всех областях деятельности. Крупные социальные и экономические изменения и подготовка к объединению со сверхцивилизацией. Организация этнографического музея на Земле

II

Унификация в масштабе больших скоплений галактик

20%

Исследование ядра ближайшего скопле-ния галактик Девы (исследование необычной радиогалактики М 87?) и дру-гих скоплений. Методы те же, что и I

То же, что I

III

Унификация в масштабе больших галактик

10%

Исследования ядра нашей Галактики и ядер ближайших больших галактик (М 31, М 33 и т. д.). Те же методы, что I

То же, что I

IV

Полная колонизация пространства

1%

“Они” должны быть на Земле, но мы не имеем никаких данных об этом

То же, что I

V

Самоуничтожение цивилизаций до контакта

8%

Остатки цивилизаций могут быть найдены в окрестностях ближайших звезд

Нет развития по определению

VI

Мы первые, и потому пока одни

1%

Успехи связаны с развитием биологии. На развитие от первых микроорганизмов до настоящего времени потребовалось более 4 миллиардов лет

Контакт возможен в будущем по любому из приведенных выше сценариев

Сооружение гигантских космических радиоинтерферометров с базисом порядка астрономической единицы открывает возможность эффективного использования нового, принципиально важного метода для обнаружения и исследования сверхцивилизаций. Речь идет о “радиоголографии” — получении трехмерных изображений радиоисточников. На эту возможность впервые указали Н. С. Кардашев, Ю. Н. Парийский. Не подлежит сомнению, что трехмерное изображение какого-либо “подозрительного” радиоисточника однозначно позволит решить вопрос об его искусственном или естественном происхождении. При всей кажущейся фантастичности этого проекта он может быть реализован в течение ближайших нескольких десятилетий.

< > Рассказывают, что вопрос “Где Они?” задал знаменитый итальянский физик Энрико Ферми во время ленча со своими коллегами в атомной лаборатории в Лос-Аламосе летом 1950 г. Вопрос относился к отсутствию конкретных свидетельств посещения Земли в течение всей ее истории (4,5 миллиарда лет). Ответ — потому, что мы одни во всей Галактике — парадоксален и нарушает общепринятый со времен Коперника принцип среднего: наше Солнце и Земля ничем не выделены среди сотен миллиардов солнечных систем нашей Галактики. Более детально этот вопрос обсуждался Хартом и Типлером с позиций отсутствия жизни во Вселенной, а сама проблема отсутствия посещений Земли получила условное название парадокса Ферми. Возможные объяснения парадокса:

1) межзвездные перелеты не проводятся, так как они очень дороги для переселения, а автоматические станции используются только для научных исследований;

2) межзвездные перелеты реализуются, но волна колонизации еще не достигла Земли (либо мала скорость распространения колонизации, либо процесс колонизации начался на поздней истории Галактики, либо он начался одновременно во всей Галактике, но мы находимся на необитаемой границе между двумя зонами влияния);

3) вся Галактика, включая Солнечную систему, была колонизована много лет назад, но Они не проявляют свое присутствие по каким-то причинам, чтобы не повлиять на нашу примитивную жизнь — галактическая этика требует предоставлять молодым цивилизациям возможность самим решать свои кризисы перенаселения, ядерной войны и т. д. — это так называемая зоогипотеза или гипотеза галактического карантина.

Кроме отсутствия данных о посещении когда-либо Земли по мере накопления наблюдений, обеспечивающихся колоссальной революцией в технике и методах современной всеволновой астрономии, возникает и новая проблема. < >

Если отвлечься от фантазии, вся совокупность фактов, известных современной астрономии, говорит о том, что никаких космических чудес мы не наблюдаем. Отсюда следует простой, но неутешительный для “безудержных оптимистов” вывод, что цивилизаций II и III типа, по крайней мере в Местной системе галактик, нет.

Так как некоторая часть более примитивных цивилизаций земного типа, преодолев многочисленные кризисные ситуации, должна стать на путь неограниченной экспансии, то мы с логической неизбежностью должны сделать вывод, что цивилизации “земного” типа в Местной системе либо чрезвычайно редки, либо, скорее всего, отсутствуют. Более определенный ответ можно было бы дать, если бы было известно, какая часть примитивных цивилизаций, преодолев трудности роста”, становится на путь неограниченной космической экспансии. Хотя пока никакой количественной оценки сделать нельзя, вряд ли эта часть должна быть очень маленькой. Противоположное утверждение означало бы либо признание фатальной неизбежности гибели почти каждой цивилизации на своей планете еще до выхода ее в космос, либо принятие всем и цивилизациями “равновесной” стратегии “золотого века” с полной потерей интереса к космосу. Но последняя возможность практически эквивалентна нашему одиночеству в космосе. Точнее, разум во Вселенной представлял бы собой как бы “многосвязное многообразие”, т. е. был бы совокупностью отдельных, совершенно изолированных очагов.

Казалось бы, серьезным возражением против развитых выше соображений о большой вероятности нашего одиночества в значительной части Вселенной является недопустимая экстраполяция наших современных представлений о цивилизации, науке, технологии, стратегии и пр. на такие неизмеримо более сложные системы, какими являются сверхцивилизации. Насколько опасны такие экстраполяции, можно проиллюстрировать на следующем любопытном примере. Один из величайших физиков XVII в., Гюйгенс, как сын (хотя и передовой) своего века, верил в астрологию. Комбинируя астрономический факт наличия у Юпитера четырех (галилеевых) спутников (лун) и астрологический предрассудок, что Луна является покровительницей моряков, великий голландский физик пришел к “выводу”, что поверхность Юпитера должна быть засеяна... коноплей, из которой делается пенька, столь необходимая для тогдашней технологии парусного флота.

Существует, однако, принципиальная разница между временами Гюйгенса и концом XX в. Тогда наука, познание окружающего мира только начинали свой триумфальный путь. Ныне фундаментальные законы природы, регулирующие поведение материи на “микроскопическом”, атомарном и в значительной степени ядерном уровнях, представляются достаточно хорошо известными. В этой связи не лишено интереса заметить, что познание фундаментальных законов природы отнюдь не следует экспоненциальному закону. Экспоненциально же растут “только” параметры практической деятельности цивилизации и сложность изучаемых и осваиваемых ею систем.

XIX век дал науке никак не меньше, чем наш XX век. И, конечно, каждый серьезный физик знает, что первая треть XX в. изобиловала значительно большим числом фундаментальных открытий, чем последующие сорок лет. Мы полагаем, что это отнюдь не случайность, а выражение познаваемости конечного числа объективно существующих фундаментальных законов природы.

Познаваемая нами картина объективно существующей, подчиняющейся своим закономерностям Вселенной исключает наличие в ней некоторой разумной деятель-ности космического масштаба. Ибо не может разум так преобразовать космические объекты, чтобы его деятельность “не была видна” нам. Существенно, что уровень техники современной наблюдательной астрономии достаточен для обнаружения проявлений космического разума.

Итак, как нам представляется, вывод о том, что мы одиноки, если не во всей Вселенной, то во всяком случае в нашей Галактике или даже в Местной системе галактик, в настоящее время обосновывается не хуже, а значительно лучше, чем традиционная концепция множественности обитаемых миров. Мы полагаем, что этот вывод (или даже возможность такого вывода!) имеет исключительно большое значение для философии. Кстати, заметим, что даже по распространенным сейчас “оптимистическим” представлениям, согласно которым ближайшие внеземные цивилизации удалены от нас на 200 — 300 пк, мы должны считать себя практически одинокими . Ибо в области Галактики с радиусом в 300 пк находится около 10 миллионов звезд, что наглядно демонстрирует редкость феномена разумной жизни во Вселенной.

Нам представляется, что вывод о нашем одиночестве во Вселенной (если не абсолютном, то практическом ) имеет большое морально-этическое значение для человечества. Неизмеримо вырастает ценность наших технологических и особенно гуманистических достижений. Знание того, что мы есть как бы “авангард” материи, если не во всей, то в огромной части Вселенной, должно быть могучим стимулом для творческой деятельности каждого индивидуума и всего человечества. В огромной степени вырастает ответственность человечества в связи с исключительностью стоящих перед ним задач. Предельно ясной становится недопустимость атавистических социальных институтов, бессмысленных и варварских войн, самоубийственного разрушения окружающей среды.

Твердое сознание того, что никто нам не будет давать “ценных указаний”, как овладевать космосом и какой стратегии должна придерживаться наша уникальная цивилизация, должно воспитывать чувство ответственности за поступки отдельных личностей и всего человечества. Выбор должны делать только мы сами.



Источник: alt-future.narod.ru.

Рейтинг публикации:

Нравится4



Комментарии (1) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.

  1. » #1 написал: VP (11 сентября 2009 16:08)
    Статус: |



    Группа: Гости
    публикаций 0
    комментариев 0
    Рейтинг поста:
    0
    Как менялся климат на Земле за последние 800 тысяч лет

    Александр Марков, Ольга Орлова

    Проблема глобального потепления является одной из самых важных в современной экологии. Однако большинство экологов понимают, что для того чтобы оценить реальные масштабы опасности, необходимо сравнить сегодняшнее изменение климата с тем, как менялся климат на нашей планете в предыдущие исторические эпохи. Один из способов узнать об этом - это изучить состав древних слоев льда.


    О ледовых исследованиях в Антарктиде рассказывает профессор кафедры общей экологии биологического факультета МГУ Алексей Гиляров


    – Как в принципе можно узнать что-то об изменениях климата, которые были давным-давно?


    – Существуют разные способы, но один из самых захватывающих способов и вместе с тем точных - это анализ ледовых керн, то есть колонок льда, образованных в Антарктиде и в Гренландии, которые поднимаются на поверхность. Во льду есть всегда пузырьки воздуха. Лед образовывался из тех атмосферных осадков, которые были во время его образования, и он захватывал воздух того времени. И у нас есть законсервированные пробы воздуха за много-много тысяч лет. В 1999 году в журнале Nature большой коллектив авторов, в том числе наши соотечественники, опубликовали работу, в которой представляли данные анализа колонки льда взятой на российской станции «Восток». Это – восточная Антарктида, очень удаленный от всех берегов район, поэтому там чрезвычайно суровая обстановка – среднегодовая температура минус 55, а зимой доходит до минус 80.


    – Расскажите о методике работы с ледовыми кернами.


    – Лед откладывается слоями. Падает снег, откладывается и формирует лед. Лед – это атмосферные осадки, замерзшие, за много-много лет, почти за миллион лет. 800 тысяч лет – сама длинная колонка в Антарктиде. И подняв колонку этого ледового керна, можно различными тонкими методами определить содержание в этих маленьких пузырьках воздуха углекислого газа, что нас больше всего интересует, метана (тоже парниковый газ, тоже нас всех интересует) и других газов, и кислорода, и разных изотопов.


    – Как определяется возраст ледового слоя?


    – Возраст определяется по скорости отложения льда. Известна скорость, с которой формируется лед, есть определенная модель. Кроме того, можно определить и температуру. Для этого берутся не пузырьки воздуха, а лед вокруг этих пузырьков, и лед этот растапливают и смотрят, каково в нем соотношение обычного водорода и дейтерия –тяжелого водорода. Дело в том, что тяжелые молекулы воды, которые конденсируются, чтобы выпасть в виде дождя или снега, требуют меньшего охлаждения для конденсации, чем более легкие. Молекулы, содержащие дейтерий, – более тяжелые, соответственно, при меньшем охлаждении они уже выпадают на землю. А содержащие обычный водород – более легкие, им требуется более сильное охлаждение. Соответственно, по изменению относительного содержания дейтерия в колонке льда мы наблюдаем за ходом изменения температуры.


    – Какие результаты были получены на станции «Восток»?


    – Во-первых, обнаружился ритм, он не очень отчетливый, но все-таки можно выделить самые крупные подъемы температуры - примерно раз в 100 тысяч лет. Это была колонка примерно 3,5 километра в длину – на «Востоке» такая толщина льда, и, соответственно, этот лед образовался за 420 тысяч лет. Примерно раз в 100 тысяч лет происходит быстрый подъем температуры – интенсивное потепления, а затем – медленное остывание и довольно длительный очень холодный период. Потом снова такой подъем – и снова длительное остывание. С чем это связано? Это связывают прежде всего с так называемыми циклами Миланковича.


    Милутин Миланкович (1879 - 1958) – это сербский ученый, который в предположил, что наступление ледниковых периодов можно связать с регулярными изменениями земной орбиты. Орбита становится то немного более вытянутой – эллипсоидной, то более круговой; то меняется угол наклона земной оси к эклиптике, это тоже происходит регулярно, но с другой периодичностью. Кроме того, как такой волчок, ось земли описывает такой маленький конус. Представьте себе юлу, волчок, который останавливается, и он начинает так вилять туда-сюда. Вот Земля тоже немного «виляет». И вот эти «виляния» то становятся больше, то меньше. И это тоже со строго определенной периодичностью. Сложение этих всех составляющих, приводит к тому, что изменяется распределение солнечного излучения попадающего на Землю, и, соответственно, меняется количество тепла.


    – Когда случилось самое раннее глобальное потепление, которое нам известно?


    – Эти потепления были не сильнее, чем нынешнее – они случаются раз в 100 тысяч лет. Если судить по керну «Востока» – потепление было примерно 400 тысяч лет назад. Но предыдущие были послабее того, что происходит сегодня.


    Сравнительно недавно в 2004 году был получен еще один очень длинный керн ледовый на другом месте, примерно в 500 километрах от станции «Восток», у станции европейского сообщества «Конкорди» (Concordia Station), в рамках европейского проекта. Мы, к сожалению, там не участвуем, там очень активны французы, итальянцы, другие. Уже учитывая наш опыт, они довольно быстро прошли толщу льда до скального основания. И пройдя примерно те же три с небольшим километра, они получили развертку во времени за почти 800 тысяч лет. Поскольку там суше, там более сухой климат, осадки выпадали меньше, соответственно, слои тоньше. Что замечательно, буквально в прошлом году были опубликованы тоже в журнале Nature эти результаты, и за первые 400 с лишним тысяч лет полностью подтвержден ход кривой, которая получена на станции «Восток».


    – За все эти 800 тысяч лет подтверждается периодичностью потепления в 100 тысяч лет?


    – Там несколько нарушаются цикличность. Она есть, но она несколько нарушается. И вот это сейчас предмет анализа и рассуждений, что могло вмешаться. Одно понятно: Земля – это же не вполне шар, там есть материки, есть океаны, и они вовсе не равномерно распределены, и это все носит какие-то свои коррективы в ее движение.


    – На графиках, которые были получены, современное потепление, выглядит просто как оно из периодических потеплений. Следует ли из этого, что роль человека здесь, может быть, не так велика?


    – Если бы никакой активности человека не было, то потепление все равно происходило бы.


    – Потепление без участия человека было бы оно таким, каким мы его сейчас наблюдаем?


    – Это большой вопрос. Потому что, на самом деле, таких высоких значений концентрации углекислого газа, которые мы наблюдаем сейчас за 700-800 тысяч лет не было. Они были в древние эпохи, , но за это время таких высоких еще не бывало. И темпы роста тоже необычайно высоки за последние 100 лет.


    – Концентрация углекислого газа в воздухе и температура меняются синхронно?


    – Да, они меняются строго синхронно. Графики концентрации углекислого газа и температуры идут просто параллельно. Вопрос в том, что является причиной, а что следствием? Дело в том, что чем теплее, тем больше начинает выделяться СО2 при гниении органических остатков и прочее. Поэтому процессы усиливают друг друга, это – положительная обратная связь.


    – Не так давно было сообщение из университетов Флориды, где международная группа экологов анализировали концентрацию СО2 в вечной мерзлоте вокруг Северного полюса. Ученые пришли к выводу, что в вечной мерзлоте СО2 содержится больше, чем в атмосфере Земли. Можно ли сказать, что это специфическая ситуация только для современного глобального потепления или это было характерно и в прежние периоды - 300 – 400 тысяч лет назад?


    – На Северном полюсе – лед морской, это совсем другая история. Нужно брать лед, который лежит на суше. Насколько я знаю по ледовым кернам, нигде никогда такой высокой концентрации СО2 не достигало. Другое дело, сейчас очень трудно сказать, насколько человек действительно влияет на увеличение СО2 и потепление. Потому что мы знаем точно и определяем только две цифры. Мы определяем концентрацию СО2, которая наблюдается в данный момент на разных широтах, в разных точках, это мы точно научились мерить. И кроме того, мы знаем, сколько выбрасывается углекислого газа в результате сжигания ископаемого топлива, это тоже достаточно точно мы знаем. Вот мы знаем точно только эти две цифры, все остальные цифры являются расчетными. Если бы весь углекислый газ, который образуется при сжигании ископаемого топлива, оставался в атмосфере, то концентрация его была бы существенно выше. Она – ниже. Он связывается. А вот определить места связывания, или как говорят геохимики, стока углерода в атмосфере чрезвычайно сложно. Потому что в любой природной экосистеме, в любом лесу, степи происходит одновременно и связывание углекислого газа в результате фотосинтеза растений, и выделение в результате дыхания прежде всего грибов и бактерий. Это происходит везде. И понять, куда эти потоки идут, очень сложная задача.


    Радио Свобода © 2009 RFE/RL, Inc. | Все права защищены.

       
     






» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Декабрь 2024    »
ПнВтСрЧтПтСбВс
 1
2345678
9101112131415
16171819202122
23242526272829
3031 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map