Труд человека и тех животных, к действиям которых приложимо понятие о труде, есть один из многочисленных видов проявления общей мировой энергии. Как ни разнообразны и сбивчивы в настоящее время понятия о труде, мы надеемся, что в таком общем виде наше определение не встретит возражений. Целью нашей будет попытка, выходя из этого общего положения, выяснить значение условий, сопровождающих происхождение труда, представить главнейшие проявления его в жизни организмов и указать на последствия потребления труда, то есть на последствия воздействия трудящихся людей и животных на окружающую природу. Настоящая статья есть не более как введение к такой работе, и потому вопросы эти затрагиваются в ней только самым общим образом.
Для более удобного понимания нам необходимо начать с краткого очерка учения об энергии, о родах ее, их взаимных превращениях и о мировом рассеянии энергии. Под словом «энергия» какой-либо системы тел нынешняя наука понимает сумму способностей тел этой системы к каким бы то ни было действиям. «Полная энергия системы тел есть величина неизменная для всех состояний, в которые эта система может быть последовательно приведена взаимными действиями различных ее точек». «Полная энергия какой-либо конечной системы есть величина конечная» 1.
Так как все действия тел обусловливаются которою-либо из физических сил, то, следовательно, энергия и представляет собой сумму всех физических сил, заключающихся в данной системе тел. Обыкновенно принимают существование семи различных физических сил: теплоты, света, электричества, магнетизма, химического сродства, частичных сил и всемирного тяготения 2. Сумма этих семи сил, заключающихся в какой-либо уединенной системе тел, то есть такой системе, которая не подвергается никаким внешним влияниям, равна энергии этой системы и представляет собой величину абсолютно не-
1 См. Verdet. Theorie mecanique de la chaleur. T. I, p. 4—16.
2 Секки. Единство сил, стр. XXX.
изменную. Примером такой уединенной системы может служить вселенная, количество энергии которой есть величина вечно неизменная. Закон сохранения энергии, в сущности, есть не более как недавнее обобщение давно известного закона механики, начало которому положено еще Гюйгенсом в его предположении, что общий центр тяжести группы тел, колеблющихся под влиянием тяготения около горизонтальной оси, может подняться до своей первоначальной высоты, но не выше ее1. Это положение, принятое в начале за аксиому, стало впоследствии зародышем той общей идеи, из которой Лейбниц развил принцип сохранения живой силы. Еще более общий вид этому закону был придан Лагранжем, выразившим его в той форме, что сумма виртуальных (возможных) действий системы, находящейся в равновесии, равняется нулю 2.
Закон этот, выведенный первоначально для механики, то есть для непосредственно ощущаемого человеком движения, был применен впоследствии ко всем родам энергии, как только с открытием механической теории тепла была доказана превратимость всех физических сил, всех форм энергии, одних в другие. Такое широкое обобщение было значительно облегчено тем обстоятельством, что в настоящее время все физические силы уже сведены или сводятся на различные формы движения, к которым вполне приложимы законы, выработанные механикой. Теплота, свет, электричество, магнетизм, химическое сродство и частичные силы представляются нам теперь уже не иначе, как под видом колебательных или иных движений мельчайших частиц веществ. Одно тяготение стоит пока в стороне, так как многие принимают его еще за коренное свойство материи, способное обнаруживать свое действие на расстоянии, непосредственно, вопреки ныне известным законам механики. Но и для тяготения теперь уже существуют теории, объясняющие более или менее удовлетворительно все явления его предположением движения мельчайших частиц и непосредственными толчками их о тяготеющие тела; такова, между прочим, известная теория Лесажа3. Рано или поздно одна из подобных теорий, вероятно, будет принята, и тогда, по справедливому замечанию Тэта4, мы должны будем признать все роды энергии в конце концов кинетическими, т. е. представляющими собой движение. В различных родах энергии эти движения отличаются между собой, вероятно, только скоростями и кривыми путей, проходимыми движущимися частицами вещества. Тем не менее с практической точки зрения теперь еще выгодно поддерживать различие, существующее между общепринятыми понятиями энергии кинетической и потенциальной. Различие это, совершенно не существенное, если действительно все проявления энергии основаны на движение мельчайших частиц вещества, — очень важно для нас, потому что в тех случаях, где мы имеем кинетическую энергию, движение непосредственно доступно нашему ощущению, например, в текущей воде, падающей лавине, работающей паровой машине, снаряде, выброшен-
1 Dühring. Kritische Geschichte der allgemeinen Principien der Mechanik, 1873, стр. 120.
2 Dühring, l. с., стр. 318.
3 Le Sage. Lucrèce Newtonien Memoires de Berlin, 1782 и Prevost. Deux traités de Physique mécanique. Geneve, 1818.
4 Тэт. О новейших успехах физических знаний. 1877, стр. 328.
ном из орудия, в движении Луны вокруг Земли и т. д. Напротив, в потенциальной энергии движение вещества, хотя также существует, но еще не приняло формы, доступной нашему ощущению, хотя и может принять ее при известных обстоятельствах. Лавина, нависшая над обрывом, паровая машина, нагретая, но еще не работающая, заряженная пушка, пища человека, еще не превращенная в мышечное сокращение при работе, — вот примеры потенциальной энергии.
Мы уже сказали, что сумма энергии всей вселенной есть величина абсолютно неизменная, но нельзя сказать то же о различных частях вселенной. Мы не будем входить уже теперь в рассмотрение атомистических теорий, но из самого того факта, что некоторые небесные тела передают различные виды энергии в большом количестве через мировое пространство другим небесным телам, мы вправе заключить, что эти небесные тела, солнца, содержат в себе сравнительно больше энергии, чем мировое пространство и те небесные тела, планеты и спутники, которые получают энергию под видом тепловых, световых, химических лучей, магнетизма и т. п. от ближайших к ним солнц. Несомненно, что такая постоянная передача энергии из мест, обладающих большим ее запасом, в другие места, где ее менее, должна через очень долгий период времени повести к повсеместному уравнению энергии.
Но этого мало. Не следует забывать, что все колебания, которыми совершается уравновешение энергии между различными небесными телами и мировым пространством, неоднократно сопровождаются превращениями энергии одного рода в энергию другого. Свет нередко превращается в химическое действие, которое в свою очередь часто дает свет и тепло. Но не все роды энергии одинаково легко превращаются в другие, и всякий раз, когда происходит такое превращение, в энергии появляется наклонность переходить, по крайней мере, частью, от легко видоизменяемой формы, например, движения, к форме, которая видоизменяется с бóлыпим трудом, например, теплоте.
Таким образом, энергия вселенной постоянно переходит от легко превратимых форм к более устойчивым, и, вследствие этого, возможность превращений в ней постоянно уменьшается. После долгого промежутка веков вся энергия примет форму, уже неспособную к превращениям, которая будет состоять в теплоте, равномерно распространенной по всей вселенной. В таком случае всякая жизнь и всякое ощутимое нами движение, по-видимому, должны прекратиться, так как известно, что для превращения теплоты в какую бы то ни было другую форму энергии совершенно необходимо иметь тела различной температуры 1. Это стремление мировой энергии к повсеместному уравновешению называется рассеянием анергии, или, по Клаузиусу, энтропией2. Под этим именем Клаузиус понимает величину уже превращенной энергии, то есть поставленной в такие условия, что она уже не совершает обратных превращений. Такова, например, теплота, рассеянная в мировом пространстве. Отсюда становятся понятными основные положения Клаузиуса: 1) энергия вселенной постоянна; 2) энтропия вселенной стремится достигнуть максимума 3.
1 W. Thomson. О всеобщем стремлении в природе к рассеянию энергии. Цитир. у Тэта, 1. с., стр. 19.
2 Clausius. Theorie mecanique de la chaleur. 1868. Т. I, стр. 411.
3 Clausius, l. с., т. I, стр. 420.
Теория рассеяния энергии, выраженная Томсоном и Клаузиусом, вызвала возражения со стороны Ранкина1, который предположил, что вселенная может со всех сторон быть окружена абсолютно пустым пространством, от вогнутой поверхности которого равномерно распространенная теплота вселенной будет сполна отражаться и затем собираться в фокусах с высшей температурой, способной произвести в успокоившейся вселенной ряд обратных превращений. На это Клаузиус возразил, доказывая, что отраженное тепло, даже собранное в фокус, никогда не может превзойти температуры своего источника2. Таким образом, пока не явится новых возражений, закон рассеяния энергии можно считать настолько же доказанным, как и закон ее сохранения.
Понятно, что если такова судьба всей энергии, обладающей высокой температурой, то легко представить себе, что совершится и с ощутимым нами движением во вселенной. Все пространство мира наполнено веществом, хотя очень редким, но достаточным для того, чтобы в конце концов уравнять всякое различие в движении, так же точно, как оно стремится уравнять и всякое различие в температуре. Таким образом, мир должен превратиться в массу, равномерно нагретую и совершенно неспособную производить какую-либо ощутимую работу, так как последнее возможно только при существовании различий в температурах.
Таким образом, только в чисто механическом смысле энергия вполне сохраняется. Но эта уравновешенная энергия уже неспособна давать начало разнообразным явлениям, в том числе неспособна поддерживать жизни организмов. Они существуют не самой энергией, а ее превращениями, а в энергии, превращенной в равномерную теплоту, нет ни малейшего повода к началу каких бы то ни было процессов, в том числе и жизненных. Превращенная энергия представляется как бы негодным остатком мировой деятельности, накопляющимся из года в год все более и более. В настоящее время накопление этого остатка еще не очень заметно, но никто не может поручиться, что со временем оно не станет очень значительным и для нашего ощущения3.
Для того, чтобы нагляднее показать, что при полном уравновешении температуры и прочих физических сил, т. е. насыщении химического сродства и пр., не может проявляться никакого движения, — приведем следующее рассуждение Пуассона, ясно показывающее, что никакая система тел, находящихся в равновесии, не может выйти из него, если всякие внешние влияния на эту систему совершенно устранены: «Животное, как бы оно ни старалось, никогда не может переместить свой центр тяжести при помощи одной своей воли, без всякой внешней точки опоры. Человек и животное могут в вертикальном направлении опускать или поднимать свой центр тяжести, опираясь на землю. Они могут также двигаться в горизонтальном направлении при помощи трения о ее поверхность, но всякое передвижение станет для них невозможным, если их поместить на плоско-
1 Rankine. Philosoph. Magaz. Serie 4. Т. IV.
2 Clausius, 1. с., т. I, стр. 346.
3 Balfour-Stuart. Conservation de 1'énergie. 1875, стр. 157.
сти чрезвычайно гладкой, где сопротивление трения стало бы совершенно неощутимым 1.
Установив эти общие положения, мы уже можем обратиться к распределению энергии на нашей планете. Уже при самом своем происхождении Земля, если применять Канто-Лапласовскую теорию образования небесных тел, получила сравнительно небольшой запас превратимой энергии. Близость Земли к Солнцу, небольшой объем ее и значительная плотность, именно 5,5, т. е. далеко превышающая плотность всех верхних планет и самого Солнца, ясно указывают на сравнительно позднее отделение Земли от Солнечной туманности. Тем не менее до настоящего времени Земля охладилась уже гораздо более верхних планет. Большая плотность Земли способствовала этому двояким способом. Во-первых, она указывает на то, что Земля в значительной мере состоит из металлов, которые, как известно, обладают малой теплоемкостью. Во-вторых, она заставляет предполагать, что Земля произошла из самых плотных, т. е. наиболее охлажденных частей Солнца. При этом мы имеем право предположить, что вещество, из которого произошли верхние планеты, находилось в большей мере в состоянии диссоциации, чем то, из которого произошла Земля. Поэтому Земля и охладилась гораздо быстрее. Из опытов Сэн-Клэр-Девилля мы знаем, например, что для того, чтобы довести один грамм воды до температуры 2500°, нужно всего 1680 единиц тепла, между тем как при образовании одного грамма водяного пара из водорода и кислорода развивается 3833 единицы тепла 2. Отсюда понятно, что один грамм диссоциированной воды заключает в себе 3833—1680 ==2153 единицы тепла более, чем один грамм водяного пара при 2500°. Если, как мы имеем из вышесказанного достаточное основание предполагать, верхние планеты во время своего отделения от Солнца получили более диссоциированного вещества, чем Земля, то легко становится понятным, почему они менее охладились, хотя отделились ранее от Солнца и получали с тех пор от него менее лучистого тепла, чем Земля. Наконец и небольшой объем Земли сам по себе очень важная причина ее быстрого охлаждения, так как понятно, что тело, имеющее сравнительно со своей массой большую поверхность, охлаждается скорее.
Тем не менее, вероятно, внутренность Земли и теперь еще состоит из расплавленного вещества. По расчету В. Томсона3, повышение температуры, равное на всей земной поверхности, средним числом, одному градусу на 100 футов углубления, дает возможность предполагать, что около десяти миллионов лет тому назад земная поверхность уже успела отвердеть или начала отвердевать, а по истечении сравнительно немногих тысяч лет после этого отвердевания кора охладилась уже настолько, что могла, по крайней мере, местами, служить обиталищем для живых существ в той форме, как мы знаем их теперь. Степень повышения температуры при опускании внутрь Земли равнялась тогда приблизительно 1° на каждые 6 или 10 дюймов, — обстоятельство, которое не могло иметь вредного влияния на жизнь растений.
1 Poisson. Traité de mécanique. T. II, стр. 451.
2 Henri Sainte-Claire-Deville. Compt. Rend. d. 1'Acad. d. Scienc. T. LVI, стр. 200.
3 Тэт, 1. с., стр. 153.
К тому же приблизительно времени нужно отнести начало преобладания на земной поверхности лучистой энергии Солнца над собственной энергией Земли. Последняя, по крайней мере, на поверхности Земли, которая нас более всего интересует, находилась уже на значительной степени энтропии, т. е. была довольно равномерно распределена или, что то же, рассеяна. Действительно, если мы представим себе, что Солнце потухло в то время, когда Земля покрылась корой твердого вещества, и посмотрим, какие из ныне действующих на Земле родов энергии продолжали бы свое действие, то увидим, что их осталось бы весьма немного. Единственным источником энергии оставалась бы расплавленная внутренность Земли, но и эта энергия рассеялась бы гораздо скорее, чем теперь. Тем не менее некоторые роды энергии могли бы еще на время продолжать свое действие, например магнетизм, если вместе с Цельнером предположить, что земной магнетизм зависит от течений расплавленного металла внутри Земли 1. Кроме того, впредь до охлаждения внутренности Земли могли бы продолжаться землетрясения, вулканические извержения и могли бы еще существовать горячие источники и небольшие атмосферные течения по соседству с вулканами и горячими источниками. Но этим бы, вероятно, ограничились, и то на время не очень длинное, все проявления неравномерного распределения энергии на земной поверхности. Ныне действующие физические силы и явления, от них происходящие, не имели бы уже места. Даже приливы моря под влиянием Луны и потухшего Солнца, по всей вероятности, прекратились бы потому, что моря превратились бы в лед на всей своей глубине. Все метеорологические явления были бы устранены отсутствием водяного пара в атмосфере, почти совершенно покойной. На поверхности Земли химические сродства всех веществ находятся, за небольшими исключениями, в состоянии насыщения, то есть их энергия уже рассеяна. Слабая внутренняя теплота Земли, лишенной световых и химических лучей, не была бы в силах вызвать тех обратных процессов, восстановлений, которые составляют сущность растительной жизни. Почва осталась бы голой и в химическом смысле бездеятельной. Оставалось бы, может быть (мы скоро увидим, что, вероятно, тогда значительная часть кислорода воздуха находилась в соединении с углеродом), в атмосфере ненасыщенное сродство кислорода, но при низкой температуре, которая бы господствовала, оно не могло бы ни подействовать на азот, как и теперь почти не действует, ни тем более на другие, уже окисленные или вообще насыщенные тела. Наконец весьма вероятно, что при отсутствии нагревания Солнца энергия газов нашей атмосферы рассеялась бы настолько в пространстве, что они могли бы стать твердыми телами. Одним словом, если бы Солнце прекратило свое щедрое лучеиспускание, то на Земле господствовали бы темнота, холод, отсутствие всякой жизни и почти полное отсутствие всякого движения.
Но Солнце продолжает снабжать нас громадным количеством непревращенной энергии, и запас его еще очень велик. Мы думаем в дальнейшем ходе нашей работы подробнее заняться теориями строения Солнца, а здесь приведем только некоторые выводы. Один квадратный метр солнечной поверхности испускает, по Секки2, 5 440 640
1 Zöllner. Ueber den Ursprung des Erdmagnetismus.
2 Secchi. Le-Soleil. Paris. 1875. T. II, стр. 258.
килограммометров, или 70642 лошадиных сил, работы. Нескольких метров солнечной поверхности достаточно, чтобы привести в движение все машины земного шара. 470 квинтиллионов лошадиных сил представляют собой общую работу Солнца. По вычислениям В. Томсона, на основании данных Кулье и Гертеля, лучистая теплота Солнца соответствует приблизительно 7000 лошадиных сил на каждый квадратный фут поверхности. Так что вся солнечная поверхность теряет ежегодно около 6×1030 тепловых единиц1. Одной химической энергии, доходящей от Солнца до Луны, было бы достаточно, чтобы произвести в одну минуту соединение 4,5 миллиона кубических километров смеси хлора с водородом. Химическая энергия, распространяющаяся от Солнца во все части вселенной, должна быть в 2200 миллионов раз больше, потому что Земля, если смотреть на нее с Солнца, представляется всего под углом в 17,5 секунд2. Приняв наиболее распространенную теперь теорию, объясняющую источник солнечно-то тепла его собственным сгущением, мы находим, что нужно 18267 лет для уменьшения видимого диаметра Солнца на одну секунду и 3830 лет для охлаждения его температуры на один градус, если, как того следует ожидать, большинство вещества находится на Солнце еще в химически индифферентном состоянии, то есть диссоциировано 3.
Мы привели эти цифры единственно с той целью, чтобы показать, что уменьшение превратимой энергии на земной поверхности идет настолько медленно, и что запас для будущего получения ее еще настолько велик, что уменьшение ее не может в сколько-нибудь близком будущем оказать неотвратимо гибельное влияние на жизнь человека. Но отсюда еще не следует, чтобы мы могли считать распределение превратимой энергии на земной поверхности и теперь уже наивыгоднейшим и вполне удовлетворительным для человеческой жизни. Напротив, мы думаем, что возможность более выгодного распределения этой энергии находится, до известной степени, в руках самого человека.
1 Тэт, 1. с., стр. 144.
2 Secchi, Le Soleil. Т. II, стр. 324.
3 Secchi, 1. с. Т. II, стр. 273—277.
Глава II
ПРЕВРАТИМАЯ ЭНЕРГИЯ НА ЗЕМЛЕ
Нам следует теперь обратиться к рассмотрению тех родов превратимой энергии, которые теперь распределены на Земле:
1. На первом месте по своей величине стоит энергия вращения Земли вокруг Солнца и вокруг своей оси. Оба эти движения представляют собой формы энергии еще очень превратимой (по Томсону — очень высокого порядка), именно механического движения. Известен расчет, по которому, если бы Земля внезапно остановилась в своем вращении вокруг Солнца, развилось бы количество тепла, равняющееся количеству тепла от сожжения угольного шара, превышающего массу Земли в 14 раз. Весьма значительна также энергия вращения Земли вокруг своей оси. Оба эти движения, однако, остаются почти без непосредственного влияния на распределение энергии на земной поверхности. Относительно энергии вращения Земли вокруг оси, это, впрочем, не вполне верно, так как известно, что энергия эта частью превращается в теплоту через трение об отстающую, под влиянием приливов, от движения Земли массу воды, температура которой от этого немного повышается, между тем как движение Земли замедляется, хотя и на ничтожную величину1. Пользуясь силой прилива для приведения в действие машин, например мельниц, мы запасаемся этой силой в период поднятия или набегания приливной волны. Мы удерживаем часть воды на известной высоте, выжидаем время отлива и затем извлекаем пользу из ее падения. Продолжая поступать таким образом в течение долгого периода и на больших протяжениях, мы нашли бы, что это может влиять на постепенное ослабление быстроты вращения Земли2. Как на один из вообще немногочисленных примеров индустриального пользования силой прилива укажем еще на предложение Маля3, основанное на том, что в реках, при устьях которых движение прилива сильно, не происходит засорения русла илом и валунами, потому что движением сильного отлива они уносятся далеко в море. Устья многих рек в Англии уже раскопаны с целью пользоваться работой прилива, и Маль предлагает применить эту систему и во Франции. Из этих примеров мы видим, что пока
1Первая мысль о подобном влиянии прилива принадлежит Канту. См. его Theorie des Himmels. Koenigsberg, 1755.
2 Тэт, 1. с., стр. 150.
3 Comptes-Rendus. LI, стр. 762.
еще вращение Земли вокруг ее оси очень мало применяется как источник двигательной силы на ее поверхности.
2. Мало чем бóльшую роль играет и внутренняя теплота Земли. В тех случаях, где она проявляется еще со значительной силой, т. е. во время землетрясений и извержений вулканов, деятельность ее имеет характер слишком случайный и неправильный, чтобы служить источником энергии, могущим входить как существенная часть в стройное целое процесса превращения энергии на земной поверхности, процесса, принявшего вообще характер большой постепенности и последовательности. Вот почему землетрясения и извержения вулканов являются на земной поверхности только как элемент пертурбационный, разрушительный, неожиданный и не подчиняющийся никаким расчетам при распределении энергии, а тем более каким-либо промышленным применениям.
Если отнести земной магнетизм к проявлениям энергии, заключающейся внутри Земли, то, конечно, он представляет собой силу, которой не следует пренебрегать, так как она играет и практическую роль в мореплавании, изготовлении научных приборов и пр. Во всяком случае, однако, величина этой силы очень незначительна в сравнении с общим количеством энергии, постоянно находящейся в обмене на земной поверхности.
Горячие источники представляют собой хотя небольшое, но довольно удобно распределенное количество превратимой энергии. Теплота их может служить для некоторых технических целей, например отопления жилищ, даже приготовления пищи, и таким образом косвенно помогать сохранению превратимой энергии на земной поверхности. В свою очередь теплота горячих источников уж слишком незначительна, чтобы быть самой в состоянии, без внешней прибавки энергии, превратиться в форму механического движения. По крайней мере нам неизвестны случаи применения горячих источников как двигательной силы, хотя в незначительной мере такое применение, конечно, возможно.
3. Ненасыщенное химическое сродство, за исключением свободного сродства кислорода атмосферы, почти не существует на земной поверхности. Внутри Земли еще есть большие массы свободных металлов, серы и других веществ, обладающих достаточной химической энергией, но ее действие или вовсе не обнаруживается на земной поверхности, или уже указано в предыдущем параграфе, например, когда говорилось об извержениях вулканов, землетрясениях и пр.
4. Одна из наименее превращенных форм энергии, то есть наиболее полезных в человеческом смысле этого слова, могущих дать значительное количество механической работы при своем превращении, есть движение воздуха, или ветер. Но нам не трудно показать, что движение воздуха есть не более как часть солнечной энергии, подвергнутой обратному превращению. Для того, чтобы произвести живую силу ветра, нужно потратить в несколько раз большее количество энергии Солнца, значительная часть которой низводится при этом на еще менее превратимую ступень, рассеивается в пространстве. Иначе и быть не может, так как низшая энергия, теплота Солнца, по закону рассеяния энергии никогда не может вся сполна перейти в высшую энергию, движение воздуха. Но часть тепла, превращенная в движение, при этом рассеивается, потому что ветер в сущности не что иное, как последствие стремления к уравнению температур.
Правда, таким образом часть солнечной энергии превращается в очень выгодную механическую работу, но зато вся она рассеивается безвозвратно. Мы не принимаем во внимание других источников движения воздуха, кроме теплоты Солнца, так как движения, производимые ими, сравнительно чересчур незначительны.
5. Сказанное относительно двигательной силы, доставляемой ветрами, приложимо и к силе водных течений, и вообще к силе падающей воды. Действительно, вода, падая, например на колесо мельницы, с высоты, доставляет такой процент полезной работы, какого не дает ни паровая, ни электромагнитная машина, ни даже более выгодно устроенный организм рабочего животного или человека. Но не следует забывать, какое громадное количество солнечной энергии было потреблено на то, чтобы путем испарения поднять воду на такую высоту, падая с которой она доставляет значительную сумму полезной работы.
6. Из всего вышесказанного мы уже начинаем замечать, что, несмотря на огромное количество получаемой от Солнца энергии, поверхность Земли далеко не богата не только очень превратимыми родами энергии, как, например, механическое движение, свободное химическое сродство, но даже и простой теплотой. Свободное химическое сродство, как мы говорили, почти не встречается на земной поверхности и даже вблизи поверхности, за исключением одного рода веществ, энергию которых, однако, нельзя также назвать энергией, принадлежащей Земле. Мы говорим о свободном химическом сродстве, заключающемся в топливе органического происхождения. Количество этого топлива сравнительно очень велико. По приблизительному расчету, британские пласты имеют около 190 000 000 000 тонн каменного угля, а североамериканские, говорят, содержат до 4 000 000 000 000 тонн 1. Но это количество, а также громадные массы другого органического топлива, например торфа, нефти и пр., образовались из растений, покрывавших в разные периоды земную поверхность, при помощи энергии, доставляемой Солнцем. Предполагают, что при помощи лучей Солнца растениям в течение долгих веков удалось насыщенное и лишенное превратимой энергии вещество, угольную кислоту, превратить в запас угля, обладающий громадным количеством такой энергии2. В то же время под влиянием той же солнечной энергии кислород атмосферы освободился от соединенного с ним угля и заключает теперь в себе также массу превратимой энергии, представляющей основу для возможности существования высших организмов, то есть животных и человека.
7. Наконец, мы должны упомянуть еще о превратимой энергии, заключающейся в живых растениях, животных и людях. Пока нам достаточно только признать, что и она есть только сбереженная энергия Солнца, и затем перейти к общим условиям сбережения энергии.
1 Edinburgh Review, 1860. Coal Fields of North America and Great-Britain, стр. 88—89.
2 На конгрессе Британского общества для развития наук, собравшемся осенью нынешнего (1880 — Ред.) года, Sterry Hunt предложил обширную и весьма интересную теорию для объяснения климатических изменений в течение геологических периодов. Теория эта, главным образом, основана на предположении, что углерод, сложенный теперь в запасах каменного угля, прежде находился в атмосфере под видом углекислоты.См.Revue Scientifique, № 22, 30 ноября 1878 г.
Глава III
СБЕРЕЖЕНИЕ ЭНЕРГИИ
Мы ознакомились теперь с теми данными, при помощи которых надеемся получить основания для определения значения труда в мировом распределении энергии. Возьмем Землю опять в тот момент, когда она охладилась уже настолько, что поверхность ее была покрыта корой, не допускавшей теплоту расплавленной внутренности обнаруживать значительное действие на поверхности. Когда охлаждение Земли достигло уже такой степени, что диссоциированная вода превратилась в пар, а затем пар большей частью осел под видом воды, которая, увлекая за собой осевшие прежде воды соли, образовала моря в углублениях земной коры, в то время большинство химических процессов уже совершилось на земной поверхности. Химическое сродство было насыщено приблизительно в такой же мере, как и в настоящее время, если не принимать во внимание растительной жизни. Благодаря ее влиянию теперь насыщение химического сродства, вероятно, даже не заходит так далеко, как тогда, так как, по высказанному уже предположению, весь уголь, находимый теперь в недрах земли, тогда был в соединении с кислородом воздуха. Мы знаем, что теперь растения черпают свой углерод из углекислоты воздуха, и не имеем основания предполагать, чтобы в каменноугольном периоде они поступали иначе. Итак, мы вправе думать, что энергия ненасыщенного сродства в начале органической жизни была очень мала на земной поверхности, а превратимая энергия, еще сохраненная внутри, с постоянным возрастанием толщины земной коры все более и более утрачивала свое действие. Земля в то время получала, может быть, немного более солнечной энергии, чем в настоящее время, но зато и рассеивала свою энергию гораздо быстрее, чем -теперь. Главная причина этого очень простая: Земля была тогда гораздо теплее и потому отдавала более тепла и притом тепла очень высокой температуры, легко превратимого в механическую работу, самым бесполезным образом, в пространство. Большое количество лучистой энергии, получаемое от Солнца, весьма мало увеличивало превратимую энергию Земли, и легко понять, почему: химические лучи Солнца, не находя на ее поверхности таких тел, на которые бы они могли действовать, как действуют теперь, при помощи растений, т. е. разлагая насыщенные соединения и обращаясь лишь частью в превратимую энергию, в то время отражались и уходили в пространство. То же делалось и со световыми лучами. Тепловые лучи поглоща-
лись настолько, насколько поверхность Земли отдавала их опять в пространство, и увеличения превратимой энергии на земной поверхности от них не происходило. За исключением движения нагретого воздуха и воды, поднятой испарением, солнечная лучевая энергия не обращалась на Земле в превратимую энергию, так же точно, как мы это теперь видим на бесплодных, лишенных всякой растительности песках Сахары или на льдах, окружающих полюсы. Если не принимать во внимание теплоты внутренности Земли, то количество превратимой энергии, почерпнутой от Солнца, было в ту эпоху гораздо менее, чем теперь. Действительно, причислив к поверхности Земли слои, заключающие каменный уголь, на что имеем право, ввиду образования этих слоев на поверхности, мы теперь имеем громадный запас легкопревратимой энергии. Запас этот состоит в ненасыщенном сродстве громадной массы углерода, с одной стороны, и в ненасыщенном сродстве кислорода всей атмосферы — с другой. В то время, когда еще не было жизни на земной поверхности, когда, по всей вероятности, углерод теперешнего каменного угля с кислородом нынешней атмосферы составляли вместе насыщенное, т. е. лишенное превратимой энергии, соединение, углекислоту, тогда, несомненно, общий бюджет превратимой энергии на земной поверхности был меньше, чем теперь. Мы взяли каменный уголь только как пример. Этому явлению в истории земного шара можно подыскать еще и другие аналоги, например торфяные залежи, асфальтовые копи, нефтяные источники и разные горные породы органического происхождения.
Разберем общий ход явлений с тех пор и до настоящего времени. Внутренняя энергия Земли, чем ближе к нам, тем меньшую роль играет в составлении энергийного бюджета земной поверхности. Солнечная энергия получается, хотя постепенно, но в количествевсеуменьшающемся. Очевидно, для того, чтобы при уменьшающихся источниках энергии на земной поверхности и в ближайших слоях под ней могло произойти накопление превратимой энергии, необходимо, чтобы происходил на земной поверхности процесс сбережения энергии, процесс, обратный рассеянию, или даже процесс превращения устойчивой энергии (теплоты) в высшую форму, более превратимую в механическое движение, потенциальное или кинетическое.
Можно сказать, не боясь сделать ошибки, что мы получаем на Земле энергию Солнца не в очень превратимом, но и не в чересчур уж устойчивом виде. Высокая температура, свет, химические лучи — все это такие роды энергии, которые, правда, с большой потерей на рассеяние, но все-таки частью переводятся на земной поверхности в более превратимые, высшие роды энергии, каковыми являются — механическая работа машин, сокращения мышц и, вероятно, психическая деятельность. В настоящее время земная поверхность, правда, с большей потерей, может быть, даже увеличивая немного ежегодные траты Солнца, возводит часть уже спустившейся по ступеням превращений солнечной энергии опять в наивысшие формы, самые превратимые, какие только способна принимать энергия.
Необходимо совершенно ясно представить себе всю трудность перехода низших форм энергии в высшие, чтобы понять, как при таком громадном получении Землей лучевой энергии от Солнца в действительности на ней господствует такая нужда в высших родах энергии. Но зато, действительно, и способы, которыми солнечная энергия может быть превращаема в механическое движение, крайне не-
многочисленны. Вот главнейшие из них: сообщение движения воздуху посредством изменения его упругости, поднятие воды путем испарения, химическая диссоциация при помощи растений, мышечная работа животных и человека, изобретение и устройство искусственных двигателей, машин при помощи психической и мышечной работы человека и высших животных.
Лучевая энергия Солнца, встречая уже отверделую, но еще не покрытую растительной жизнью поверхность Земли, отражалась от нее почти как от непроницаемой брони. Конечно, небольшая часть лучей поглощалась, но это поглощение вело за собой только временное возвышение температуры, которая падала через лучеиспускание в пространство, как только прекращалось действие Солнца. Конечно, нагревание поверхности Земли выражалось и небольшой механической работой; вследствие расширения и сжатия образовались трещины и т. п., но понятно, что эти ничтожные проявления механического движения не могут быть названы значительными превращениями теплоты в работу.
Химические лучи Солнца чересчур слабы, чтобы разложить насыщенные кремниевые, известковые, глинистые соединения, составляющие поверхность Земли. Они или частью превращались в теплоту, или непосредственно отражались в пространство. Та же участь постигала и лучи света.
Вода и воздух представляют более благодарное поле для превращения низшей энергии в высшую, чем земля, но и они почти совершенно лишены способности сберегать превращенную энергию. Механическое действие урагана может быть громадно. Если он сопровождается грозой, благодаря переходу части солнечной энергии в электричество, то механическое действие его еще усиливается ударами падающих искр молнии, но и это действие сейчас же само собой истощается и сейчас же рассеивает всю свою энергию, заставляя ее падать на еще низшую ступень, чем та, на которой она была получена от Солнца. Ветер дает громадный процент полезной механической работы, ударяясь о какое-либо сопротивление, например парус корабля или крыло мельницы, но зато запас высшей энергии, заключенной в стремящемся воздухе, большей частью тут же и истощается. Запасов превратимой энергии в воздухе не собирается, потому что в природе не существует резервуаров, которые могли бы сами собой наполняться сгущенным воздухом, энергия которого потреблялась бы по мере надобности.
Вода уже более способна к сбережению превратимой энергии, чем воздух. Правда, и вода составляет при своем падении такой выгодный процент работы лишь потому, что, упавши, она лишается для данной высоты разом всей накопленной в ней энергии, но зато вода под влиянием лучистой энергии Солнца испаряется и накопляется в резервуарах на возвышенных местах, где она вследствие своей подвижности, повинуясь тяготению, может быть рассматриваема содержащей большой запас потенциальной механической работы. Следует признать, однако, что сравнительно с количеством воды, существующей непроизводительно на поверхности Земли, и сравнительно с громадным количеством тепла, получаемого от Солнца, — несколько альпийских озер и быстрых рек представляют ничтожное накопление энергии. Этому не следует и удивляться, приняв во внимание, что сбережение в испарившейся воде происходит лишь случайно, вслед
ствие неровностей Земли, между тем как наибольшая часть воды падает непосредственно на поверхность Земли в виде дождя, снега росы, инея, в таких местах, где она почти всю механическую работу совершает тотчас же при падении, не имея возможности сберегать значительную часть ее на будущее время. Тем не менее мы остановились на механической работе, заключающейся в движущемся воздухе и в воде, потому что они дают бóльший процент полученной работы, чем машины и даже животные, что легко станет понятным если принять во внимание, чтоих движение перед работой есть уже энергия высшего порядка, чем та, которая находится в топливе или пище перед их потреблением1.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.
» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам. Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+