Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Удивительная палеонтология. История земли и жизни на ней

Удивительная палеонтология. История земли и жизни на ней


3-07-2013, 10:49 | Файловый архив / Книги | разместил: VP | комментариев: (1) | просмотров: (5 801)

ГЛАВА 13

Кайнозой: наступление криоэры. Новые типы сообществ — тропические леса и травяные биомы. Эволюция млекопитающих и появление человека

Мезозой, как мы помним из главы 9, был термоэрой и отличался «райским» климатом: теплым и выровненным по всей Земле, с ослабленным температурным градиентом между тропиками и полюсом. В рамках термоэр неоднократно происходили свои похолодания (например, в маастрихте), однако масштабы даже крупнейших из них не идут ни в какое сравнение с ледниковыми эпохами криоэр. В самом начале кайнозоя (в палеоцене и эоцене) климатическая ситуация оставалась еще прежней, мезозойской, а затем, в олигоцене, начались изменения, приведшие в конце концов к… так и тянет сказать: «к тому самому климатическому безобразию, в каковом мы теперь имеем счастье прозябать (в буквальном смысле этого слова)». Одной из главных причин этих изменений считают перестройку глобальной системы морских течений, вызванную дрейфом континентов, что затруднило теплообмен между полярными и экваториальными бассейнами.

 

Согласно моделям климатологов, наиболее интенсивный теплообмен будет достигнут при таком взаиморасположении материков и полюсов, когда планета имеет свободные от суши полюса и экватор (вдоль которого складывалась бы под действием кориолисовых сил единая экваториальная циркуляция). Меридионально развернутые материки, расположенные в средних широтах, отводят рукава экваториальной циркуляции в высокие широты, откуда вдоль противоположных их берегов возвращается в экваториальную зону холодная вода из полярных бассейнов — возвращается сразу, не застаиваясь в полярных циркуляциях. Как легко видеть (рис. 53, а), мезозойская ситуация была в этом смысле близка к идеальной.

a) б) Рис. 53. Материки и морские течения: а — мезозойское (средний мел) и б — современное расположение материков (по Ясаманову, 1984)

В кайнозое картина становится близка к обратной, и причиной тому — перемещения материков, на которые раскололся суперконтинент Гондвана (рис. 53, б). К концу эоцена движущаяся на север Индия натыкается на Азию, а кора в месте их столкновения сминается в Гималаи. Чуть позже в Евразию втыкается с юго-запада Африка (с еще не отделившейся от нее Аравией) — в результате поднимаются горные хребты Южной Европы и Иранское нагорье. Тетис, отделявший в мезозое северные (лавразийские) материки от южных (гондванских) — а именно по нему тогда шла экваториальная циркуляция — исчезает; ныне от Тетиса остались лишь изолированные морские бассейны (Средиземное и Черное моря, южная часть Каспийского моря), не имеющие постоянной связи с Мировым океаном.[71]

 

В Южном полушарии Антарктида последовательно отрывается от Австралии (эоцен) и Южной Америки (олигоцен), «наползает» на Южный полюс, а вокруг нее складывается замкнутая антарктическая циркуляция. Все это приводит к тому, что в олигоцене в Трансантарктических горах возникают первые ледники, которые в миоцене покрывают единым ледяным щитом весь материк. В плиоцене возникает Панамский перешеек (соединяющий Южную Америку с Северной, но разделяющий Атлантический и Тихий океаны) и глобальная экваториальная циркуляция оказывается полностью разрушенной (ныне мы имеем лишь один ее сегмент — в центральной части Тихого океана). Разрушение экваториальной циркуляции, возникновение «антарктического холодильника» на Южном полюсе и замыкание северного полярного бассейна — все это приводит к тому, что в четвертичном периоде (в плейстоцене) на материках Северного полушария развиваются грандиозные покровные оледенения (см. главу 14).

 

Надо заметить, что отсутствие в мезозое холодных климатических зон давно не вызывает сомнения у палеоклиматологов. Однако они зачастую не обращают внимания на то, что при более равномерном, чем ныне, распределении тепла по поверхности планеты не должно было существовать и климата типа современного тропического. Но тогда и сообщества, сложившиеся в условиях не существовавших ранее типов климата (бореального, с одной стороны, и тропического — с другой), должны быть эволюционно наиболее молоды… Если в некий момент на полюсах стало «слишком холодно», а на экваторе «слишком жарко», то реликты предыдущей эпохи имеют наилучшие шансы выжить прежде всего в субтропиках, господствовавших ранее по всей Земле. Специальный анализ, проделанный В. В. Жерихиным (1978), подтвердил это. Судя по всему, некоторые субтропические сообщества (такие, как, например, леса из южного бука в Новой Зеландии, Южной Австралии и андийской Южной Америке) сохранили не просто отдельные реликты раннего кайнофита, а самую структуру раннекайнофитных биоценозов.

 

Что же касается тропических лесов (мы будем называть их южноамериканским словом «гилея»), то укоренившиеся представления о глубокой древности их биоты являются очередным «научным предрассудком»; они связаны в основном с тем, что понятие «тропики» зачастую употребляют нечетко. В астрономических тропиках (т.е. между тропиками Рака и Козерога) действительно есть сообщества с весьма архаичными элементами (например, индонезийские «туманные леса» из древовидных папоротников), однако все они приурочены к горам и существуют на самом деле в условиях субтропического или даже умеренного климата. Если же рассмотреть лишь климатические тропики, т.е. экосистемы, реально существующие в условиях тропического климата (с температурой самого холодного месяца не менее 18°С), — гилею и саванны, то окажется, что их биота практически лишена архаичных черт. Мы уже упоминали (глава 12) об отсутствии в составе тропических лесов голосеменных, столь характерных для мезозойских сообществ; ныне те приурочены либо к субтропикам (саговники, араукарии, таксодиум), либо к умеренной зоне (секвойя, гинкго).

 

Подсчеты Жерихина показали, что практически все по-настоящему древние группы насекомых (такие, как скорпионницы или сетчатокрылые) избегают тропиков. Общее число семейств, не встречающихся в истинных, климатических, тропиках очень велико, тогда как чисто тропических (в этом смысле) семейств среди насекомых — как это ни удивительно — ничтожно мало. Разумеется, тропическая энтомофауна чрезвычайно богата, и есть множество преимущественно тропических семейств, однако почти все они эволюционно молоды и не обнаружены в ископаемых донеогеновых фаунах либо представлены в них очень скудно.

 

Еще более интересны в этом плане приводимые Жерихиным (1980) данные по экологической структуре тропических лесов:

 

«Сообщества типа современной гилеи с их сложной ярусной структурой и высокой степенью полидоминантности[72] вообще не могут существовать без участия филогенетически молодых групп. Полидоминантность в вечнозеленых лесах (в отличие от листопадных. — К. Е.) поддерживается только наличием специализированных опылителей (пчелы, антофильные птицы и рукокрылые), поскольку анемофилия эффективна лишь для самых высокоствольных деревьев…

Деструкция органического вещества как в гилейных, так и в саванновых сообществах производится прежде всего термитами… Препятствуя образованию подстилки и выраженного гумусового горизонта (и тем самым — развитого травяного яруса), они, по-видимому, обусловили превращение многих травянистых растений в эпифиты и формирование эпифитных консорций, очень типичных для гилеи. Распределяя органическое вещество в мощном слое почвенного профиля более или менее равномерно, они обеспечивают возможность развития корневых систем на самых различных уровнях, в том числе и глубоких, что позволяет существовать гигантским деревьям с глубоко погруженными корнями…

В вечнозеленых лесах, где листья, не сменяясь, существуют на дереве по нескольку лет, требуется эффективное предотвращение сильного повреждения листвы фитофагами; в противном случае деятельность листового насоса не сможет обеспечить существование дерева. Функцию подавления численности открытоживущих фитофагов выполняют чрезвычайно обильные в гилее муравьи…»

 

Все перечисленные выше группы, «определяющие лицо» тропических экоситем (и опылители, и термиты, и муравьи), эволюционно очень молоды и не характерны для раннекайнофитных сообществ. Это и привело Жерихина к заключению, что тропические сообщества — наравне с бореальными — принадлежат к числу самых молодых на Земле; судя по всему, они возникли не раньше эоцена, а окончательное их формирование произошло уже в неогене.

 

С уверенностью говорить о времени формирования гилейных экосистем трудно из-за очень слабой палеонтологической изученности современной тропической зоны. Что же касается бореальных сообществ — например, криофильных (холодолюбивых) лесов с доминированием хвойных, типа тайги, — то они, по всей видимости, сложились в палеогене как высотный пояс в горах, а при неогеновом похолодании широко распространились на равнинах Северного полушария. В палеонтологической летописи они впервые достоверно появляются в верхнем миоцене Канадского архипелага (остров Миен); их состав напоминал современные лесотундровые редколесья.

 

Еще одна характерная для кайнозоя черта — травяные биомы (типа степей и саванн), существование которых основано на коэволюции злаков и крупных травоядных млекопитающих: при ряде условий (в засушливых и малоплодородных районах) животные способны воспрепятствовать восстановлению лесной растительности. В доэоценовые времена, судя по пыльцевым спектрам, сообществ такого типа на Земле не было. По мнению Жерихина (1993), эти биомы первоначально представляли собой сериальные сообщества, ведущие к соответствующим древесным климаксам (стадии с господством трав — например, луга — имеются во всех современных сукцессионных системах), однако затем возникла уникальная ситуация: фитофаги, изымая прирост биомассы (в современных степях это изъятие доходит до 60% растительной продукции — абсолютный рекорд), оказались способны остановить экогенетическую сукцессию на безлесой стадии. Дальнейшая коэволюция млекопитающих и трав привела к стабилизации этих своеобразных «зоогенных климаксов»: необходимый для климаксного сообщества нулевой баланс по органике обеспечивается в них именно деятельностью животных-фитофагов. К основным чертам, отличающим эти травяные климаксы и от сериальных травяных сообществ, и от лесов, относятся: исключительно высокая продуктивность, очень быстрый оборот органического вещества и наличие легко мобилизуемого запаса этой органики в необычайно плодородных почвах (типа черноземов).

 

Известно, что основой существования этих сообществ является замечательная коадаптация доминирующих в растительном покрове злаков и фитофагов: злаки не имеют эффективной защиты от поедания (вроде колючек, ядовитости и т.п.), зато способны компенсировать обгрызание надземных частей резким ускорением их регенерации. Поэтому регуляция в таком сообществе достигается предельно просто: при снижении пресса фитофагов первичная продукция тоже автоматически снижается, и наоборот. Основную роль в пастбищных цепях этих экосистем играют млекопитающие, прежде всего различные копытные (потомки кондиляртр — рис. 55, а) и хищные (потомки креодонтов — рис. 56, а); об эволюции сообщества позвоночных — чуть далее.

 

Иное дело детритные цепи. Возникновение стабильных травяных сообществ было бы просто невозможно без появления целого комплекса насекомых-копрофагов, перерабатывающих огромную массу экскрементов травоядных.[73] В более древних (палеогеновых) лесных сообществах, где млекопитающие не достигали такой биомассы, как пастбищные копытные, с этой работой справлялись низшие навозники. Важнейшие же современные группы копрофагов (высшие навозники и навозные мухи) в заметных количествах появляются в захоронениях с конца олигоцена. В это же время складывается и не менее важный комплекс насекомых-некрофагов (мясные мухи и жуки-мертвоеды), ответственный за эффективную переработку трупов травоядных млекопитающих.

 

Сообщество наземных позвоночных в кайнозое развивалось независимо на трех разобщенных территориях, фаунистические контакты между которыми практически отсутствовали. Австралия (с ее сумчатыми и однопроходными) изолирована и поныне, а Южная Америка сохраняла свою обособленность от остальной суши вплоть до плиоцена, когда возник Панамский перешеек. Отсюда и проистекает современное разделение мира на три зоогеографические области: Нотогея (Австралия), Неогея (Южная Америка) и Арктогея (Евразия, Африка и Северная Америка). Так вот, по мнению Жерихина (1993), во всех этих трех областях травяные биомы возникали независимо, на базе совершенно различных комплексов крупных млекопитающих; собственно говоря, есть серьезные основания полагать, что млекопитающие по-настоящему вышли в крупный размерный класс лишь в травяных биомах.

 

Раньше всего (в среднем эоцене) этот процесс начался в Южной Америке. Там среди исходно листоядных «южноамериканских копытных»[74] возникают первые травоядные формы, а также появляются гигантские травоядные броненосцы-глиптодонты, смахивающие на небольшой танк (рис. 54, а). В среднем же эоцене в Южной Америке впервые обнаруживаются и пыльцевые спектры с высоким содержанием пыльцы злаков, палеопочвы степного типа, а также фоссилизированные навозные шары, принадлежащие жукам-навозникам. Позднее, в олигоцене и особенно в миоцене, здесь возникает в высшей степени своеобразный комплекс пастбищных травоядных. Он включал неполнозубых (глиптодонтов и наземных ленивцев), «южноамериканских копытных» (различные литоптерны демонстрирует сильное конвергентное сходство частью с лошадьми, частью с верблюдами, у пиротериев много общего со слонами, а среди нотоунгулят были формы, схожие и с носорогами, и с бегемотами, и с кроликами — рис. 54, б–г), а также гиганских кавиморфных грызунов (некоторые из этих родственников морской свинки достигали размеров носорога) и просуществовал вплоть до установления в плиоцене сухопутной связи с Северной Америкой.

 

Что же касается хищников, то они в древней южноамериканской фауне всегда были в дефиците. Ни один из здешних отрядов плацентарных по не вполне понятным причинам так и не дал плотоядных форм — эту роль исполняли исключительно сумчатые. Довольно разнообразные боргиениды несколько напоминали собак (а еще больше — тилацина, тасманийского «сумчатого волка»), а тилакосмилюс вполне заслуживает названия «сумчатый саблезубый тигр» и являет собой поразительный пример конвергенции с саблезубыми кошками Северного полушария (рис. 54, д–е). Дефицит маммальных хищников (на «несбалансированность» здешних фаун обратили внимание А. С. Раутиан и Н. Н. Каландадзе, 1987) привел к тому, что эту нишу заполняли самые неожиданные персонажи. Так, с палеоцена по миоцен здесь существовали себекозухии — сухопутные крокодилы с высокой и узкой мордой (предполагают, что их образ жизни напоминал современных комодских варанов), а в эоцене появились дожившие до плейстоцена фороракосы — гигантские (ростом до 3 м) нелетающие хищные птицы, принадлежащие к журавлеобразным.

Рис. 54. Третичные млекопитающие Южной Америки: а — неполнозубые; б, в, г — «южноамериканские копытные»; д, е — хищные сумчатые (по Фентон, 1997) а — глиптодонт; б — литоптерна Thoatherium; в — литоптерна Toxodon; г — нотоунгулят Macrauchenia; д — сумчатый волк Prothylacynus, е — сумчатый саблезубый тигр Thylacosmilus; ж — череп Thylacosmilus; з — череп «северной» саблезубой кошки Smilodon (в одном масштабе)

В Австралии (Нотогее) формирование травяного биома началось много позже, в неогене; здесь явно сыграл роль дрейф этого континента по направлению от полюса к экватору — в результате значительная часть его территории попала в условия засушливого климата. Основу здешнего сообщества пастбищных млекопитающих составили крупные травоядные сумчатые — кенгуру и вымершие на памяти человека дипротодонты (их иногда, из-за двух крупных резцов, не слишком удачно называют «кроликами ростом с носорога»). Как и в древней южноамериканской фауне, здесь отчетливо прослеживается дефицит хищников: известны лишь два крупноразмерных хищных млекопитающих — тилацин (тасманийский «сумчатый волк») и древесный тилаколео (которого по аналогии можно назвать «сумчатым леопардом»). Недостаток маммальных хищников возмещался (опять-таки как в Южной Америке) за счет рептилий: исполинских варанов-мегаланий длиной до 7 м и сухопутных крокодилов, сходных по образу жизни с себекозухиями; хищные нелетающие птицы здесь не появились, однако некоторые из австралийских страусов, вероятно, выполняли роль падальщиков.

 

Третий случай формирования травяного биома — Арктогея. Здесь ситуация осложняется тем, что он формируется на единой таксономической основе (кондиляртровой), но, судя по всему, независимо в Евразии и в Северной Америке. Сообщество пастбищных млекопитающих первоначально составляют непарнокопытные (тапиры, носороги в широком смысле и халикотерии[75]) и нежвачные парнокопытные (свинообразные и верблюды); чуть позже к ним добавляются примитивные трехпалые лошади и жвачные парнокопытные (олени) (рис. 55).

Рис. 55. Раннетретичные растительноядные млекопитающие Арктогеи: а — кондиляртра (группа, исходная и для «северных», и для «южноамериканских» копытных) Phenacodus; б — диноцерат Uintotherium; в, г — парнокопытные; д, е — непарнокопытные (по Фентон, 1997, и Norman, 1994); в — «жирафовый верблюд» Aepicamelus; г — гигантская (высота в холке 2,1 м) свинья Dinochyus; д — халикотерий Moropus; е — гигантский безрогий носорог индрикотерий

Помимо потомков кондиляртр нишу крупных растительноядных пытались освоить лишь диноцераты — специализированые потомки каких-то крайне примитивных териевых млекопитающих (рис. 55, б), однако уже в эоцене эта группа полностью вымерла. Единство комплекса «северных» копытных достаточно высоко; самое же интересное состоит в том, что хотя практически все эти группы имеют американское происхождение (они проникали в Евразию через Берингию — область вокруг современного Берингова пролива, где тогда обсыхали обширные участки шельфа), травяные биомы с их участием в Азии начинают складываться заметно раньше, чем в Америке. В Центральной Азии саванны возникают уже в конце эоцена (появившиеся в это время гигантские безрогие носороги вроде индрикотерия — «гибрид слона и жирафа», самое крупное наземное млекопитающее, 6 м в холке — явно обитали в открытом ландшафте, а не в лесу), тогда как в Америке это происходит в олигоцене. В Африке травяных биомов, судя по всему, не существовало до миоцена; парнокопытные и непарнокопытные проникли сюда из Евразии сравнительно поздно, а эндемичные для этого континента хоботные (слоны и мастодонты) были в это время мелкими и чисто листоядными; видимо, они не могли удерживать сукцессию на безлесой стадии.

 

Что касается хищных млекопитающих, то на севере они, в отличие от южных континентов, были только плацентарными: сумчатые вообще существовали здесь очень недолго и так и не сумели выйти из ниши мелких насекомоядных. До того, как на севере появились специализированные плотоядные формы из креодонтов (рис. 56, а) и современных хищных (Carnivora), в этой роли подвизались своеобразные копытные — мезонихиды (рис. 56, б–в). Мезонихиды были всеядными существами (как полагают, «более плотоядными, чем кабан, но менее плотоядными, чем медведь»); они часто достигали размеров гиены, а эндрюсарх из палеоцена Монголии был крупнейшим наземным хищным млекопитающим[76] — его череп достигает в длину 85 см. Как это ни удивительно, именно от мезонихид ведут свое происхождение китообразные.

Рис. 56. Раннетретичные хищники Арктогеи: а — креодонт Patriofelis (длина около 1,5 м); б — собакоподобная мезонихида Synoplotherium; в — голова гигантской мезонихиды Andrewsarchus (рядом, в том же масштабе, изображена голова бурого медведя); г — диатрима (по Фентон, 1997, и Norman, 1994)

До олигоцена ситуация в травяных биомах Арктогеи и Южной Америки развивалась параллельно. И там, и там основными травоядными являлись копытные — потомки различных кондиляртр (на севере — непарно– и парнокопытные, на юге — «южноамериканские копытные»). И там, и там хищники были явно примитивнее своих жертв (на юге — сумчатые, на севере — архаичные всеядные копытные, мезонихиды) — расклад, разительно отличающий палеоген от мезозоя. И там, и там дефицит маммальных хищников возмещался за счет рептилий и птиц: сухопутных крокодилов (на юге — себекозухии, на севере — баурузухии) и гигантских нелетающих журавлеобразных (на юге — фороракосы, на севере — диатримы). Ситуация эта радикально изменилась, когда на эволюционную сцену вышли современные хищные (отряд Carnivora). Лучше всего это видно как раз по немедленному исчезновению в олигоцене всех этих «эрзац-хищников» — всеядных мезонихид, сухопутных крокодилов и диатрим, а также креодонтов (предков карнивор). Интересно, что в то же самое время исчезают и архаичные некопытные растительноядные — диноцераты.

 

В миоцене единство территорий Северного полушария возрастает: возникает прямой транссредиземноморский контакт между Европой и Африкой, исчезновение Тургайского моря на месте Западно-Сибирской низменности облегчает миграции между Европой и Центральной Азией, а главное — возникают открытые ландшафты в чисто лесной доселе Берингии, и эта территория превращается для степных фаун Азии и Америки из «фильтра» в «коридор». С этого времени травяной биом становится фактически единым по всей Арктогее, при этом каждая из территорий вносит свой вклад в становление его фауны, обретающей уже вполне современные черты.

 

Из Америки приходят травоядные (в смысле не листоядные) лошади, из Азии — полорогие (быки и антилопы),[77] из Африки — хоботные (слоны и мастодонты); вместе с еще некоторыми группами копытных, как «новыми» (жирафы и бегемоты), так и «старыми» (носороги), они формируют так называемую гиппарионовую фауну (гиппарион — одна из трехпалых лошадей). Та же картина и с входящими в гиппарионовую фауну хищными: кошки произошли в Америке, псовые — исходно — тоже, однако стайную социальную организацию (ставшую для этой группы ключевым фактором успеха) приобрели уже в Азии, гиеновые (тогда среди них были не только падалеяды, но и активные хищники типа гепарда) — в Африке. Интересно, что кошки исходно были саблезубыми. Позже, в миоцене, возникли кошки современного типа, однако возврат к саблезубости (что, очевидно, дает преимущества при охоте на крупную добычу с особо прочной шкурой) происходил у кошачьих многократно и независимо.

 

В начале плиоцена (3–4 млн лет назад) самой природой был поставлен грандиозный эволюционный эксперимент: установилась сухопутная связь между Северной и Южной Америкой через Панамский перешеек, и их фауны — североамериканская (являющаяся частью Арктогеи) и южноамериканская (пребывавшая весь кайнозой в условиях островной изоляции) — вступили в прямой контакт между собой. Произошло перемешивание фаун: на севере появились сумчатые, неполнозубые (броненосцы, глиптодонты и наземные ленивцы), кавиморфные грызуны и фороракосы, а на юге — высшие грызуны (хомякообразные), непарнокопытные (лошади и тапиры), парнокопытные (свинообразные, верблюды и олени), хоботные (мастодонты) и хищные (енотовые, куньи, псовые, медведи и кошки).

 

Окончательные результаты Великого американского обмена (как назвал эти события Дж. Симпсон, 1983) оказались для севера и юга весьма различными. Североамериканская фауна просто-напросто обогатилась тремя экзотическими «иммигрантами» — опоссумом, девятипоясным броненосцем и древесным дикобразом, тогда как на юге произошла настоящая катастрофа, почище любых астероидных импактов: здесь полностью вымер весь пастбищный комплекс из «южноамериканских копытных», гигантских кавиморфных грызунов, хищных сумчатых и фороракосов, не выдержавших конкуренции с высшими копытными и карниворными хищниками (рис 57). Надо полагать, что судьба австралийских сумчатых и однопроходных — возникни у этого континента прямой сухопутный контакт с Азией — была бы столь же незавидной… Вообще в истории Великого американского обмена легко усмотреть прямые (и печальные) аналогии с человеческой историей: вспомним, чем обернулся «контакт» с европейской цивилизацией для древних самобытных культур доколумбовой Америки и черной Африки.

Рис. 57. Великий американский обмен (по Кэрроллу, 1993, и Norman, 1994). Диаграмма замещения «южных» копытных на территории Южной Америки: в прямоугольниках — число родов, на шкале слева — ярусы южноамериканской региональной шкалы

Кстати, раз уж речь зашла о человечестве… Согласно современным взглядам, человек (как биологический вид) возник именно в травяном биоме: наши обезьяньи предки[78] входили в состав гиппарионовой фауны. Первые гоминиды появились в конце миоцена (5–6 млн лет назад) на территории Восточной Африки. В прежние годы полагали, что гоминиды обособились среди прочих человекообразных обезьян много раньше, в среднем миоцене (12–15 млн лет назад), и не в Африке, а в Азии (тогда среди прямых предков человека числили индийского рамапитека). Однако сейчас полагают, что многие крупные миоценовые приматы (азиатские рамапитек и сивапитек, африканский кениапитек, южноевропейский оранопитек) приобрели «человеческие черты» строения параллельно с гоминидами. Палеоантрополог Р. Фоули (1990) пишет: «Рамапитек, после того как ему было отказано в принадлежности к гоминидам, пополнил ряды избранного общества несостоявшихся предков человека, каждый из членов которого обладал, как поначалу полагали, какой-нибудь уникальной чертой гоминид». Очевидно, мы в очередной раз имеем дело с процессом, который (по аналогии) можно назвать гоминизацией приматов.

 

Первые гоминиды — австралопитеки — были небольшими прямоходящими существами (весом 25–50 кг); самцы их были почти вдвое крупнее самок — этот резкий половой диморфизм наводит на мысль о том, что они, подобно многим современным приматам, передвигались стаями, не образуя постоянных семей. Около 2,5–3,0 млн лет назад среди австралопитеков обособились две ветви — робустная (с массивным скелетом, крупными зубами и сильно выступающей челюстью) и грацильная (с легким сложением и относительно большим объемом черепной коробки). Робустные виды (Australopithecus robustus, A. boiseni, A. crassidens) были почти чисто растительноядными, тогда как грацильные (A. afarensis, A. africanus) стали широко использовать животную пищу. Именно среди грацильных австралопитеков обособился 2,5 млн лет назад первый представитель рода Homo — Homo habilis, «человек умелый», названный так за способность к изготовлению каменных орудий (первые гальки со следами обработки датируются 2,5–2,7 млн лет). Он отличался от австралопитеков возросшим объемом черепной коробки и строением таза, обеспечивавшим более совершенную бипедальность и рождение более «головастых» детенышей.

 

Итак, человек появился в плиоценовой африканской саванне с ее сухим жарким климатом и с изобилием как копытных и хоботных, так и питающихся ими крупных хищников. От обезьян (и от прочих животных) человека отличает кожа, практически лишенная волосяного покрова, но снабженная огромным количеством потовых желез. Уровень потоотделения у человека во много раз превосходит все, что известно в животном мире, и служит чрезвычайно эффективным механизмом теплосброса (за что, правда, приходится платить жесткой связью с источниками воды). По мнению Р. Фоули (1990), именно этот терморегуляторный механизм плюс прямохождение (вертикально стоящий человек получает на треть меньше энергии от солнечных лучей, чем четвероногое животное) позволили первым людям занять в сообществе саванны совершенно уникальную экологическую нишу «полуденного хищника», выйдя из-под безнадежной конкуренции с крупными кошками, которые активны в сумерках, а днем спят.

 

Первые люди были, судя по всему, не столько охотниками, сколько падалеядами, вроде гиен. Впервые появившиеся каменные орудия были наиболее полезны именно для разделки туш очень крупных толстокожих млекопитающих. «Такие звери, обычно неуязвимые для хищников, часто лежат нетронутыми некоторое время после смерти, т. к. другие животные не могут разорвать их кожу и добраться до мяса. Вполне вероятно, что при помощи каменных орудий гоминиды могли первыми начать разделку таких туш и, таким образом, […] одерживали верх в конкуренции с другими животными, питавшимися падалью» (Р. Фоули, 1990). Каменные орудия, возможно, выполняли ту же функциональную роль, что и огромные клыки саблезубых кошек, которых многие палеонтологи считают трупоедами.

 

Важной формой внутривидовой кооперации, отличающей человека от прочих животных (включая приматов), является способность делиться пищей. Это одна из фундаментальных черт человеческого общества, возникшая (по археологическим данным) уже у плиоценовых гоминид, видимо, как результат разделения труда: вследствие полового диморфизма самцы и самки порознь занимаются поисками пищи (первые — животной, вторые — растительной), после чего следует неким образом поделить собранную добычу. В дальнейшем возникает необходимость в специальном месте, где этот дележ и происходит — иными словами, в жилище. Судя по всему, жилище, разделение труда и дележ пищи возникают уже на самых начальных этапах эволюции человека. Другой комплекс характерных для людей поведенческих реакций связан с заботой о потомстве. Потомство человека зависит от других людей (в первую очередь от родителей) много дольше, чем у любого другого примата. Одно из следствий этого — высокая степень взаимозависимости человеческих индивидуумов; это касается не только детей, но и самих взрослых, которых объединяет присутствие малышей, нуждающихся в заботе. Доказательством замедленного созревания детенышей мог бы служить характер прорезывания зубов (ранние гоминиды действительно демонстрируют это свойство). Все это приводит к тому, что основой человеческого поведения становится кооперация между индивидуумами.

 

Другая (в некотором смысле зеркальная) черта, отличающая гоминид, — категорическая неспособность ужиться со своей «дальней родней»: виды рода Homo сугубо аллопатричны, т.е. не сосуществуют сколь-нибудь продолжительное время. В раннем плейстоцене (1,6 млн лет назад) на смену «человеку умелому» пришел «человек прямоходящий» — Homo erectus, которого прежде называли питекантропом; именно в это время полностью вымирают австралопитеки. Примерно 1,2–1,0 млн лет назад «человек прямоходящий» вышел за пределы Африки и заселил Южную Азию и Европу, а 400 тыс. лет назад исчез, освободив место для «человека разумного» — Homo sapiens. Термином «архаичные» Homo sapiens обозначают людей, живших в интервале 300–40 тыс. лет назад. Наиболее известны из них европейские неандертальцы (возраст 70–30 тыс. лет) — низкорослые, массивного сложения, с выступающей челюстью, но с мозгом даже более объемистым, чем у современного человека. Homo sapiens современного типа (кроманьонец) появился около 100 тыс. лет назад — и тоже в Восточной Африке. Он заселил Европу 30–40 тыс. лет назад и вытеснил неандертальца (злые языки бестактно уточняют: «съел»), практически не смешиваясь с ним.

 

Вопрос о разумности видов Homo, предшествующих нашему, сводится лишь к спору о терминах («А что есть разум?..»). Во всяком случае, хабилисы уже изготавливали каменные орудия (2,5 млн лет назад), поздние питекантропы пользовались огнем (500 тыс. лет назад), а неандертальцы хоронили своих умерших, совершая сложные погребальные обряды, и создавали произведения изобразительного искусства.

 

Вот замечательный сюжет для любителей так называемой альтернативной истории: 100 тыс. лет назад Африка оказалась начисто изолированной от остального мира (это действительно произойдет в будущем, через пару миллионов лет, когда до конца раскроется Красноморский рифт) и на планете возникли две цивилизации — кроманьонская в Африке и неандертальская в Евразии. Случись такое, флегматичные неандертальцы, может быть, создали бы что-нибудь более пристойное, чем то, что мы видим вокруг себя… Впрочем, вряд ли. Скорее всего, дело и в этом случае закончилось бы кроманьонской конкистой с «окончательным решением неандертальского вопроса».

 


Примечания:



7

 

Такыры — возникающие в зоне пустынь гладкие и ровные глинистые поверхности, похожие на мостовые: они разбиты трещинами на отдельные плитки (часто правильные шестиугольники) площадью около 1 м2.



71

 

В миоцене был момент (мессинский кризис), когда Средиземное море почти полностью высохло, а дно его заросло саваннами африканского типа.



72

 

Полидоминантный лес — лес, слагающийся большим числом лесообразующих пород. Широко известно такое сопоставление: на одном-единственном гектаре амазонской гилеи можно насчитать больше видов деревьев, чем во всей Англии.



73

 

Когда в Австралию завезли домашних копытных, оказалось, что местные навозники не справляются с утилизацией их помета и накопление неразложенных экскрементов на пастбищах останавливает возобновление трав. Пришлось завозить туда европейских навозников — тогда все пришло в норму.



74

 

«Южноамериканские копытные» — шесть вымерших отрядов, эндемичных для этого материка. Все они, как и наши парнокопытные и непарнокопытные, ведут происхождение от кондиляртр, однако с позднего мела развивались в изоляции и сходство с различными «северными» группами приобрели независимо, т.е. чисто конвергентно.



75

 

Это были одни из самых своеобразных копытных: пропорции конечностей у них таковы, что локомоция их была «полудвуногой», как у гориллы, а на ногах у них вторично возникли крупные невтяжные когти. Считают, что они обгладывали листву деревьев, пригибая к себе ветви при помощи «рук».



76

 

Именно это существо было описано И. А. Ефремовым в романе «Великая дуга» под названием «гишу — ужас ночей, пожиратель слонов».



77

 

Лошади (из непарнокопытных) и полорогие (из парнокопытных) являют собою две вершины в эволюции травоядности. У обоих имеется в пищеварительном тракте «бродильная камера», где симбиотические микроорганизмы дополнительно ферментируют пережеванную траву, однако у полорогих это рубец в передней части желудка, а у лошадей — слепая кишка позади него. Полорогие переваривают пищу медленно и неторопливо, извлекая из нее максимум того, что возможно, а лошади, напротив, прогоняют травяную массу через желудок с предельной быстротой. Наблюдения в африканских саваннах показали, что лошади (зебры), избирательно питаясь наиболее грубоволокнистыми травами, делают остальные типы корма более доступными для полорогих (антилоп).



78

 

Мне не хотелось бы вступать здесь в полемику с авторами наводнивших Россию «религиозно-просветительских» брошюр. Замечу лишь, что папская энциклика, написанная в 1967 году после Второго Ватиканского Собора, признала: теория Дарвина «верно трактует вопросы происхождения человеческого тела».

ГЛАВА 14

Четвертичный период (антропоген): Великое оледенение. Ледниковая теория. Перигляциальные сообщества и мамонтовая фауна

Четвертичный период, или антропоген, — самый последний отрезок кайнозоя, начавшийся около 2 млн лет назад. Наиболее существенная черта этого времени — существование в высоких широтах нашей планеты покровных оледенений; во время ледниковых эпох они распространялись на юг до 40-х широт (рис. 58), а во время межледниковий — «съеживались» до примерно нынешнего состояния (когда ими покрыта лишь Антарктида в Южном полушарии и Гренландия — в Северном). Разделение четвертичного периода на плейстоцен (Великое оледенение) и начавшийся 10–12 тыс. лет назад голоцен (время, в которое мы живем) в значительной степени условно: часто говорят, что на самом деле голоцен — это просто-напросто одно из плейстоценовых межледниковий, причем даже не самое крупное.

 

Вероятно, вам доводилось встречать где-нибудь на краях полей и на лесных опушках окатанные гранитные валуны, иногда с характерной «штриховкой», хотя никаких скальных выходов в окрестностях нет и в помине. По нынешнему времени любой школьник знает, что эти эрратические (т.е. блуждающие) валуны, часто достигающие размеров танка, были перенесены от мест выхода соответствующих скальных пород движением древнего ледника, покрывавшего некогда обширные территории Европы и Северной Америки. Однако в 1837 году, когда швейцарский геолог Л. Агассис выдвинул свою теорию существования в истории Земли ледникового периода, основываясь именно на сходстве между эрратическими валунами равнинной Европы и теми окатанными штрихованными булыжниками, которые на наших глазах вытаивают из-под краев альпийских ледников, его разве что не подняли на смех. Тогда не только широкая публика, но и геологи не сомневались, что все эти валуны разносились чудовищными потоками воды и грязи во время библейского Всемирного потопа.

Рис. 58. Оледенение Северного полушария: а — в наши дни; б — в последнюю ледниковую эпоху (по Имбри, 1988)

Здесь необходимо сделать одно замечание. Читатель современных учебников и популярных книжек зачастую выносит из них впечатление, будто все геологи-дилювиалисты, считавшие эрратические валуны и другие ледниковые (как это теперь нам известно) отложения «наносами» (дилювием) Всемирнного потопа, были либо недоумками, либо религиозными мракобесами. Вот уж неправда! Да, конечно, Церковь освящала своим авторитетом теорию потопа. Да, конечно, выдающийся английский геолог У. Бакленд в торжественной лекции, открывавшей его курс в Оксфорде и названной «Объяснение связи между геологией и религией», выражал убежденность в том, что главная цель геологической науки — «подтвердить данные религии и показать, что известные ей факты согласуются с описанием Сотворения мира и Потопа, которые мы находим в заповедях Моисея». Однако в том-то и дело, что аргументация дилювиалистов была при этом именно научной, а не теологической (основанной на комментировании священных текстов).

 

Так, в 1821 году Бакленд исследовал найденные в одной из йоркширских пещер скелеты гигантских гиен и разрозненные кости 23 вымерших видов млекопитающих (львов, слонов, бегемотов и пр.). Он пришел к выводу, что пещера была гиеновым логовом, затопленным при Всемирном потопе. О том, что допотопные звери действительно утонули, свидетельствовало, по его мнению, положение костей, а также соотношение костей с перекрывающим их неслоистым суглинком. Изучив сталагмиты, выросшие поверх осадка, он установил, что возраст потопа — 5–6 тыс. лет, что замечательно совпадает с библейскими «датировками». Заключения Бакленда относительно конкретного седиментогенеза[79] впоследствии оказались ошибочными, однако методологически эти его построения совершенно корректны. Или другой пример. Предполагалось, что транспортировку эрратических валунов на сотни километров обеспечивали гигантские волны; они возникали лишь при Всемирном потопе, и в настоящее время ничего похожего в природе не наблюдается. Возможная динамика этих волн — их называли «волнами трансляции» — стала предметом тщательного анализа. Гидродинамические расчеты, выполненные математиками Кембриджского университета, дали точные характеристики глубин и скоростей течения водных масс потопа.[80] Кроме того, в 1833 году Ч. Лайель модифицировал классическую теорию: в рамках его дрифтовой гипотезы эрратические валуны транспортировались не текущей водой, а дрейфующими льдами и отлагались по мере их таяния; к тому времени полярным исследователям уже было известно, что айсберги иногда содержат вмерзшие в лед валуны.

 

Однако ни лайелева гипотеза, ни классическая концепция неспособны были объяснить целый ряд фактов. Так, из гипсометрического (высотного) распределения «дрифтовых» наносов следовало, что уровень Океана некогда повышался на 1,5 км. Но откуда же бралась вся эта вода и куда она подевалась потом? Тут уж дилювиалис-там приходилось прибегать к совершенно фантастическим допущениям: массы воды изливались у них из колоссальных подземных резервуаров, а потом столь же внезапно уходили в неведомые пустоты; гигантская комета задевала земную поверхность, порождая приливные волны, перехлестывавшие через высочайшие горы, и т.п. Неудивительно, что гляциальная теория Агассиса, наглядно демонстрировавшая, каким именно образом эрратические валуны, морены (несортированные массы гравия, камней и глины) и прочие «следы потопа» на наших глазах отлагаются горными ледниками, через некоторе время одержала решительную победу; ее приняли даже такие оппоненты Агассиса, как упомянутые выше Лайель и Бакленд (что в науке случается не так уж часто). Более того, иногда шутят, что перешедший на гляциалистские позиции Бакленд с его гигантским научным авторитетом сыграл для распространения ледниковой теории примерно такую же роль, как император Константин — для христианства.

 

Путем наблюдения за современными гляциальными процессами установлено, что ледники образуются из снега в местах, где он скапливается в количествах, превышающих летнее таяние. Снег слеживается в плотный фирн, а когда толщина снежного пласта достигает 30 м, нижние его слои под собственным весом начинают обращаться в чистый лед. Лед обладает замечательным свойством: под давлением он «течет», создавая водяную «смазку», понижающую трение (благодаря чему мы можем кататься на коньках). Дальнейшее увеличение толщины снежно-ледяных масс ведет к тому, что они начинают медленное движение, которое будет тем быстрее, чем толще ледник (и, соответственно, чем выше создаваемое им давление). Движущийся лед способен не только захватывать свободно лежащие обломки и мелкозем, но и отрывать целые глыбы коренных пород. Валуны, щебень и песок, вмороженные в придонные слои движущегося ледника, выполняют роль гигантского напильника, который сглаживает и шлифует (а местами, наоборот, царапает) каменные поверхности, служащие ледниковым ложем. При этом подо льдом формируются своеобразные толщи валунных суглинков и песков, отличающиеся высокой плотностью, связанной с воздействием ледниковой нагрузки, — основная, или донная, морена.

 

Размеры ледника определяются равновесием между количеством ежегодно выпадающего на него снега и той его долей, что успевает растаять и испариться за теплые сезоны. При потеплении климата края ледников отступают на новые (равновесные) рубежи. Концевые части ледниковых языков «мертвеют», их лед перестает двигаться и постепенно стаивает. Включенные ранее в «мертвый» лед валуны, песок и суглинок высвобождаются, образуя вал, повторяющий очертания ледника, — конечную морену; другая часть обломочного материала (в основном песок) выносится потоками талой воды и отлагается вокруг в виде флювиогляциальных равнин (зандров). Со временем геологи выяснили, что подобные потоки практически так же действуют и в глубине ледников, заполняя флювиогляциальным материалом трещины и внутриледниковые каверны. После стаивания ледниковых языков с такими заполненными пустотами на земной поверхности остаются — поверх вытаявшей донной морены — хаотические нагромождения холмов различной формы и состава: яйцевидные (при виде сверху) друмлины, вытянутые на манер железнодорожных насыпей вдоль оси ледника (и перпендикулярно конечным моренам) озы и неправильной формы камы. Замечательно четко все эти формы ледникового ландшафта представлены в Северной Америке: граница древнего оледенения маркирована здесь конечно-моренным валом с высотами до 50 м, протянувшимся поперек всего континента от восточного его побережья до западного. К северу от этой «Великой китайской стены» ледниковые отложения представлены в основном мореной, а к югу от нее — плащом флювиогляциальных песков и галечников.

 

Поначалу геологи полагали, что покровное оледенение возникло на Земле лишь однажды (как и Потоп): ледник надвинулся, а затем отступил в свое нынешнее положение, оставив на память о себе все эти моренные гряды, камовые холмы и зандровые поля. Впоследствии, однако, обнаружили свидетельства многократности оледенений: заключенные между разновозрастными слоями морены слои торфа и даже гумусированные почвенные горизонты. Для образования почвы подобного рода необходимы достаточно теплый климат и обильная растительность — значит, холодные ледниковые эпохи (когда отлагались морены) перемежались с теплыми межледниковьями. В 1909 году А. Пенк и А. Брюкнер установили, что изученные ими древние галечные террасы с бортов альпийских речных долин аккумулировались в ледниковые эпохи (когда интенсивное морозное выветривание и отсутствие растительности ускоряли эрозию), а в теплые межледниковья начинался их размыв. Они выделили для Центральной Европы четыре ледниковые эпохи, названные по соответствующим альпийским речкам — гюнц, миндель, рисс и вюрм. Впоследствии сходная последовательность плейстоценовых событий была установлена и для остальных территорий Северного полушария: в Восточной Европе различают окское (лихвинское), днепровское, московское и валдайское оледенения, в Северной Америке — небраскское, канзасское, иллинойсское и висконсинское.

 

Итак, подтвердив и развив теорию Агассиса, геологи оказались перед лицом проблемы: в чем же причина оледенений? Что вызывало рост ледниковых покровов прошлого и почему, распространившись почти на треть суши, они вдруг начинали отступать? «Астрономические» гипотезы усматривали причину этих изменений в периодическом сокращении количества тепла, поступающего на Землю от Солнца. Другая группа гипотез акцентировала внимание на том, что оледенение — лишь одно из звеньев глобальной климатической системы и что система «ледниковый щит — океан — атмосфера» работает как единая гигантская машина; суть дела, заключали они, не в количестве тепла, поступающего на Землю, а в том, насколько равномерно это тепло распределено по поверхности планеты.

 

Солярная гипотеза, предполагающая периодические падения светимости Солнца, не имеет ныне сторонников: по мнению астрофизиков, звезды спектрального класса G-2, к которому относится наше Солнце, к подобным глупым шуткам совершенно не склонны. Зато весьма популярна теория астронома М. Миланковича (1924), связывающая оледенения с изменениями летней инсоляции (поступления солнечной радиации) в высоких широтах обоих полушарий, что, в свою очередь, обусловлено циклическими изменениями трех параметров орбитального движения Земли вокруг Солнца (вариациями наклона земной оси и пр.). Сделав поправки на эффекты менявшегося альбедо (отражательной способности земной поверхности), он рассчитал сдвиги в географическом положении границ ледниковых покровов за последний миллион лет, которые неплохо совпали с периодизацией европейских оледенений. Как на инсоляционных кривых Миланковича, так и на палеоклиматическом графике Пенка и Брюкнера ледниковые эпохи запечатлелись в виде коротких резких пульсаций, отделенных друг от друга длинными интервалами, и при этом «Великое межледниковье» (между минделем и риссом) занимает на графике то же место, что и предсказанный Миланковичем длительный теплый интервал (рис. 59). Впоследствии картина оказалась гораздо более сложной, чем это представлялось в 30–40-е годы, однако ныне существование 100 000-летних климатических циклов, порождаемых орбитальными возмущениями, имеет вполне солидное обоснование.

Рис. 59. Проверка теории Миланковича: сопоставление климатической истории Европы (вверху) с инсоляционными кривыми Миланковича, рассчитанными для 55-й, 60-й и 65-й широт (внизу) (по Имбри, 1988)

Теория Миланковича (в ее современных вариантах) удовлетворительно описывает динамику похолоданий и потеплений внутри ледникового периода, однако, к сожалению, не отвечает на вопрос о наступлении самого этого периода: вполне очевидно, что вся эта астрономическая циклика была точно такой же и в предшествующие плейстоцену эпохи, но никаких оледенений при этом не порождала. Поэтому с середины 50-х годов стал расти интерес к «земным» гипотезам оледенений, переносящим акцент на динамические взаимодействия в системе «оледенение — океан — атмосфера»; мы уже упоминали об обратных парниковых эффектах, порождаемых изменениями атмосферного соотношения CO2/O2, и о работе морских течений при различном расположении материков.

 

Одной из самых интересных представляется гипотеза климатологов М. Юинга и У. Донна (1956). Задавшись вопросом «почему оледенение не возникает сейчас, когда температурные условия Арктики вроде бы вполне тому благоприятствуют?» — они сочли это следствием дефицита осадков.[81] Главный тезис их гипотезы: решающее условие возникновения оледенения в Арктике — усиление притока несущих влагу воздушных масс и усиление снегопадов; от этого ледник начинает нарастать, альбедо увеличивается, температура падает… ну, дальше — ясно. Вопрос: что же за фактор повышал влажность в арктических широтах? Ответ: освобождение Ледовитого океана от его ледового панциря в результате усиления притока теплой воды из Северной Атлантики. При отсутствии покрова морских льдов этот океан должен становиться мощнейшим испарителем, воздух над ним — «заряжаться» водяным паром, а интенсивность снегопадов над окружающей сушей — резко возрастать; рост альбедо доводит падение температуры до ледниковой эпохи. А вот дальше самое интересное! В некоторый момент похолодание достигает той точки, когда Ледовитый океан вновь замерзает, и тогда начинается дегляциация: потеряв главный источник атмосферного питания, ледниковые покровы начинают «съеживаться». Ледник тает, при этом уровень океана повышается, ветви теплого Северо-Атлантического течения вновь прорываются в Арктику, растапливают ее морские льды — и цикл начинается по новой.

 

Существование этой парадоксальной автоколебательной системы, в которой оледенение порождается потеплением, а дегляциация — похолоданием, нашло недавно косвенное подтверждение при изучении донных отложений Атлантики: оказалось, что в плейстоцене Гольфстрим периодически исчезал; при этом выяснилось, что усиление Гольфстрима действительно совпадает с периодами похолоданий, и наоборот. Вообще один из главных вопросов, на которые приходится отвечать «земным» гипотезам (подразумевающим примерное постоянство инсоляционного баланса планеты), сводится к тому, каким образом прекращается разрастание ледника; по идее этот процесс должен идти с положительной обратной связью. Ведь рост ледника приводит (через увеличение альбедо) к падению температуры, что еще увеличивает ледник — и так до тех пор, пока льдом не покроется вся планета… Один из наиболее убедительных ответов состоит в том, что по достижении ледником некоего порогового размера над ним (именно из-за высокого альбедо) возникает постоянно действующий антициклон (область высокого атмосферного давления), который усиливается по мере роста ледника и в конце концов лишает его «питания» — осадков. Таким образом, климат перигляциальных (окружающих ледник) территорий должен быть холодным и сухим, что полностью подтверждается палеонтологическими данными. В этих ландшафтах складывается весьма специфическая фаунистическая группировка с сочетанием криофильных (холодо-любивых) и ксерофильных (сухолюбивых) элементов, которую А. Я. Тугаринов (1929) назвал тундростепной; типично тундровые (влаголюбивые) элементы встречаются здесь лишь близ водотоков. Сейчас группировки, сходные с перигляциальными, сохранились в виде так называемых реликтовых степей — островков среди таежного и лесотундрового ландшафта, приуроченных к южным склонам гор Северо-Восточной Сибири и Аляски, а также в холодных засушливых высокогорьях Центральной Азии (здесь их называют «пастбищем яков»). Реликтовые степи, как и тундра, представляют собой безлесые сериальные стадии к хвойным таежным климаксам — соответственно, ксеро– и гидросерию; соотношение площадей, занимаемых в ареале сукцессионной системы сообществами ксеро– и гидросериального ряда, определяется климатической ситуацией. В перигляциальном ландшафте, где вся вода вымерзает на массе ледника (как в морозилке холодильника) и ситуация складывается фактически аридная, доминируют криоксерофильные тундростепи, а настоящие тундры существуют лишь в виде приводных сообществ. Когда же ледниковая эпоха заканчивается и наступает межледниковье, ситуация меняется на обратную. Ледник тает, высвобождая массы воды, и доминировать на осовобождающейся ото льда территории начинают сообщества гидроряда (тундра — это в некотором смысле чудовищно разросшееся таежное моховое болото), тундростепи же съеживаются до крохотных островков «реликтовых степей» на сухих прогреваемых южных склонах.

 

Тундростепь отличалась тем, что травяной ярус ее формировали в основном не мхи (как в тундре), а злаки; здесь складывался крайне криофильный вариант уже знакомого нам (по главе 13) травяного биома с его высокой биомассой пастбищных копытных и хищников — мамонтовой фауной. В ее составе были причудливо смешаны виды, приуроченные ныне к тундре (северный олень, овцебык, лемминги), к степям (сайгак, лошадь, верблюд, бизон, суслики), а также виды, характерные лишь для этого сообщества и исчезнувшие вместе с ним: мамонт, шерстистый носорог, саблезубый тигр (смилодон), гигантская гиена (рис. 60).

Рис. 60. Вымершие представители мамонтовой фауны: а — шерстистый носорог; б — смилодон (по Трофимову, 1965)

Исчезновение мамонтовой фауны, произошедшее в начале голоцена, одни исследователи связывают с климатическими изменениями, другие же считают этих животных жертвами человека («охотников на мамонтов»). Сторонники гипотезы «антропогенного вымирания» резонно указывают, что все предыдущие межледниковья, когда еще не было человека, криофильная мамонтовая фауна пережила вполне спокойно. Сторонники гипотезы «климатических воздействий» (опять-таки резонно) возражают, что голоценовое вымирание было наиболее масштабным не в относительно густо заселенной Евразии, а в практически безлюдной в те времена Северной Америке (человек проник сюда лишь около 10–12 тыс. лет назад из Азии через Берингов пролив); на прародине же человечества — в африканских саваннах — никаких вымираний вообще не было. Кроме того, вымирание захватило не только крупных травоядных и хищников, но и целую кучу маммальной мелочи, которая никак не могла быть для кроманьонцев ни добычей, ни врагами, подлежащими целенаправленному уничтожению.

 

Представляется, что наиболее близок к истине В. В. Жерихин (1993): «Каждый тип травяного биома производен от вполне определенной сукцессионной системы с лесным климаксом (в случае тундростепи от тайги. — К. Е.). При вторичном сильном сокращении площади травяных сообществ они могут полностью утратить комплекс (поддерживающих их. — К. Е.) крупных травоядных, а тем самым и эндогенную стабильность. В этом случае они могут вновь приобрести статус сериальных. Ярким примером могут служить современные реликтовые тундростепи, сохранившиеся в таежных сукцессионных системах после полного исчезновения тундростепного биома». В момент таяния ледника и резкого увлажнения климата расширяются моховые тундры и сокращаются злаковые тундростепи, служащие пастбищем для мамонтовой фауны. Дополнительные неприятности для популяций этих животных создает то, что тундро-степной ландшафт оказывается «нарезанным» на «острова»: и из теоретической экологии, и из современной практики заповедного дела известно, что для крупных животных несколько мелких резерватов хуже одного крупного (равного им по площади). Вот в этих-то, кризисных, условиях человек мог нанести мамонтовой фауне последний удар: выборочно уничтожая крупных копытных, он значительно ускорил превращение тундростепей в лесные сообщества. А дальше процесс пошел неостановимо, с положительной обратной связью, пока не исчез весь этот фаунистический комплекс (хотя часть его сохраняется ныне в фауне тундр и степей). Отметим, что дольше всего мамонт выжил на острове Врангеля (открытый недавно карликовый подвид, около 1,5 м в холке, вымер 5 тыс. лет назад — против 10–12 тыс. лет на континенте), где и поныне широко распространены реликтовые степи.

 

Самое же интересное то, что итоговое воздействие катастрофических (по любым меркам) плейстоценовых оледенений на биоту Северного полушария оказалось совершенно ничтожным. Да, вымерло некоторое количество млекопитающих из мамонтовой фауны, но, во-первых, темпы этого вымирания не превышают средних по кайнозою, а во-вторых, как мы теперь знаем, мамонтовая фауна вымерла скорее в результате прекращения оледенения. Известен лишь один вымерший вид четвертичных насекомых (если не считать гигантского кожного овода, паразитировавшего на мамонте, и нескольких видов североамериканских жуков-навозников — те исчезли вместе со своими хозяевами и прокормителями); что же касается растений, то они, похоже, не пострадали вовсе. Создается отчетливое впечатление, что в плейстоцене менялось лишь географическое распространение экосистем (широколиственные леса временно отступали к югу, а на севере изменялось соотношение площадей, занятых сообществами гидро– и ксеросериального ряда) и отдельных видов (в перигляциальных сообществах Европы появлялись жуки, ограниченные ныне степями Якутии и Тибетом).[82] Все это лишний раз свидетельствует о том, что экосистемы в норме обладают колоссальной устойчивостью, и разрушить их внешними воздействиями — даже катастрофическими — практически невозможно. Особенно замечательно плейстоценовая ситуация смотрится на фоне «тихих» внутрисистемных кризисов вроде среднемеловой ангиоспермизации — заведомо не связанной ни с какими импактами и драматическими перестройками климата, но вызвавшей обвальные вымирания в наземных и пресноводных сообществах.

 

С другой стороны, влияние плейстоценовых оледенений на климат планеты отнюдь не ограничивалось высокими ее широтами. Разрастание ледниковых щитов близ полюса тут же аукалось на экваторе невиданным иссушением тропического пояса: установлено, что дождевые тропические леса Южной Америки периодически съеживались до нескольких десятков крохотных пятачков-«резерватов» в среднем течении Амазонки, а всю эту территорию занимали сухие саванны. Более того, есть серьезные основания полагать, что пустыни наиболее распространенного ныне на Земле средиземноморского типа[83] возникли лишь в плейстоцене. Если пустыни берегового и центральноазиатского типа, грубо говоря, являются пустынями всегда, то средиземноморские пустыни становятся таковыми временно, в зависимости от глобальной климатической обстановки, т.е. от взаимодействий в системе «оледенение — атмосфера — океан». Например, иссушение Сахары (наступление песков на саванну) идет буквально на наших глазах: первые европейские путешественники застали озеро Чад настоящим внутренним морем, а в реках нагорья Тибести, что в самом центре Сахары, еще в 20-е годы прошлого века жили крокодилы.

 

Многие из этих климатических изменений повторялись «в миниатюре» на памяти человечества. На рис. 61 представлена кривая зимних температур в Европе за последнее тысячелетие. Во время так называемого Малого ледникового периода (1450–1850 гг.) ледники повсеместно наступали и их размеры превосходили современные (снежный покров появлялся, например, в горах Эфиопии, где его ныне не бывает). Во время же предшествовавшего тому Атлантического оптимума (900–1300 гг.) ледники сократились и климат был заметно мягче нынешнего (вспомните: именно в эти времена викинги назвали Гренландию «Зеленой страной»); следствием потепления в высоких широтах стало увеличение количества осадков, выпадающих в аридном поясе.

Рис. 61. Климат последнего тысячелетия (по Имбри, 1988)

Итак, на севере стало тепло и, как писано в одном хорошем романе о викингах, «наступили времена изобилия и достатка, когда собирался такой прекрасный урожай ржи, а улов сельди был настолько велик, что большинство людей легко могли прокормить себя (что в Средневековье случалось нечасто. — К. Е.)». Итог этого «изобилия и достатка» — норманская экспансия в Европе: «датская дань»[84] в Англии, варяжские дружины при всех состоятельных государях, колонизация Исландии и Гренландии, плавания в Америку. То же самое — на юге, где стало влажно, пустыня обратилась в степь; такое же «изобилие и достаток» посетило кочевые скотоводческие народы Центральной Азии; итог — «Монгольское нашествие» от Китая до Адриатики. На это же время приходится и расцвет городских цивилизаций в африканских саваннах — Канем, Гао, Гана, Мали, Ифе… О климатических воздействиях на судьбы человеческих цивилизаций можно говорить много, однако тут я уже явно начинаю отбивать хлеб у историков; как раз в такие моменты Шахерезада «прекращала дозволенные ей речи» — и была совершенно права.

 


Примечания:



7

 

Такыры — возникающие в зоне пустынь гладкие и ровные глинистые поверхности, похожие на мостовые: они разбиты трещинами на отдельные плитки (часто правильные шестиугольники) площадью около 1 м2.



8

 

Желающие могут ознакомиться в дополнении к главе 4 с весьма популярным в наши дни термодинамическим подходом к проблеме жизни.



79

 

Седиментогенез — процесс накопления и окончательного осаждения осадков в водной среде.



80

 

История эта весьма назидательна в том смысле, что факт наличия у некоторой естественно-научной гипотезы математической модели (например, как в знакомых нам «импактных» гипотезах мелового вымирания) не должен гипнотизировать естествоиспытателя; математика — всего лишь инструмент (как та астролябия Остапа Бендера, которая «сама меряет… Было б только чего мерить»), который сам по себе истинности не гарантирует.



81

 

То, что ледник возникает не столько «от холода», сколько «от сырости», известно достаточно давно. Покровное оледенение достигало максимума в теплых и влажных приатлантических областях, тогда как в сухой и холодной Восточной Сибири и на Аляске существовали лишь локальные горные ледники (см. рис. 58).



82

 

Необходимо помнить, что появление на территории лесной зоны этих степных (т.е. вроде бы южных) видов маркирует не потепления, как иногда ошибочно полагают зоогеографы, а именно ледниковые эпохи.



83

 

Существующие на Земле пустыни делят по динамике выпадения осадков на три типа. Береговые пустыни развиваются там, где к жарким побережьям подходят холодные морские течения (Намиб, Атакама): здесь осадков, считай, вовсе нет; жизни, соответственно, тоже. Пустыни центральноазиатского типа (Гоби, Бетпак-Дала): в них осадки «равномерно размазаны» по всему году — и потому жизнь тут есть весь год, но едва теплится. Пустыни средиземноморского типа (Сахара, Каракумы, Большая Песчаная пустыня в Австралии): здесь осадков столько же, что и в предыдущем типе, но только все они выливаются разом, за две-три недели; тут происходит краткий и бурный расцвет жизни (разнообразные эфемеры), которая затем переходит в латентное состояние — до следующего года.



84

 

Дань, которую английские короли в X–XI веках были вынуждены выплачивать викингам, регулярно вторгавшимся на Британские острова.



Источник: libma.ru.

Рейтинг публикации:

Нравится0



Комментарии (1) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.

  1. » #1 написал: gorn_ia (3 июля 2013 10:57)
    Статус: Пользователь offline |



    Группа: Посетители
    публикаций 0
    комментариев 40
    Рейтинг поста:
    0
    "Удивительная палеонтология. История земли и жизни на ней" автор К.Ю.Еськов. Рекомендую. Книга написана доходчиво и очень хорошим языком. Читать – одно удовольствие.

       
     






» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Декабрь 2024    »
ПнВтСрЧтПтСбВс
 1
2345678
9101112131415
16171819202122
23242526272829
3031 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map