Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Российским ученым удалось нагреть металл до трех миллионов градусов

Российским ученым удалось нагреть металл до трех миллионов градусов


14-10-2017, 07:53 | Наука и техника / Новости науки и техники | разместил: Редакция ОКО ПЛАНЕТЫ | комментариев: (0) | просмотров: (2 103)

Российским ученым удалось нагреть металл до трех миллионов градусов

лазер

Российским ученым удалось нагреть поверхность металла до трех миллионов градусов и при этом сохранить его плотность при прямом облучении мощным лазером. Это открывает новые возможности по исследованию материалов в экзотическом состоянии теплого плотного вещества, которое в естественных условиях встречается только в недрах планет. Работа опубликована в журнале Scientific Reports.

Последние годы наблюдается повышенный интерес ученых к изучению так называемого теплого плотного вещества (Warm Dense Matter) — экзотического состояния вещества, которое с одной стороны проявляет свойства плазмы, но с другой стороны находится при столь высоком давлении, что электроны в нем являются квантово вырожденными, то есть близки по своим свойствам к электронам в твердых телах.

В нашем ближайшем окружении теплое плотное вещество не встречается, однако именно в этом состоянии находится вещество в недрах планет. По этой причине знание законов, которые описывают его поведение, в частности, важно для планетологии, поскольку позволяет строить корректные модели возникновения и развития планет.

Обычно в эксперименте состояние теплого плотного вещества достигается за счет относительно невысокого — до нескольких десятков и сотен тысяч градусов Цельсия — нагрева твердотельных образцов. Однако осуществить такой нагрев сложно, поскольку при нагреве вещество стремится расшириться, и его плотность быстро падает. Поэтому нагрев осуществляют или под дополнительным давлением — например, в алмазных наковальнях, — или достаточно быстро, чтобы вещество просто не успело разлететься.

Для быстрого нагрева вещества идеальным источником выглядят «сверхбыстрые» лазеры, излучающие импульсы длительностью всего в несколько десятков фемтосекунд. Такие импульсы, кроме того, могут быть достаточно мощными. Например, недавно китайским ученым удалось получить импульсы с рекордной мощностью в почти пять петаватт. Поскольку генерируемые такими машинами импульсы одновременно короткие и мощные, они могут быстро нагреть вещество до требуемых температур.

До сих пор, однако, осуществить прямой нагрев вещества подобными лазерными импульсами не удавалось, поскольку у любого лазерного импульса есть предвестник или так называемый предымпульс. И, хотя обычно его мощность в миллионы раз ниже, чем мощность самого импульса, но из-за значительно большей длительности он несет в себе достаточное количество энергии, чтобы разрушить поверхность мишени задолго до его прихода. Проблема особенно усугубляется в случае сверхмощных импульсов, для которых предвестник может иметь мощность, сравнимую с мощностью промышленных лазеров, применяемых для резки металла.

Решить эту проблему смогли в нижегородском Институте прикладной физики РАН, где был создан лазерный комплекс PEARL, принципы генерации излучения в котором отличны от традиционных. Обычно лазерное излучение создаётся в специальных лазерных средах. Их сначала «накачивают» энергией, возбуждая атомы, а затем пропускают через них импульс небольшой мощности. Проходя сквозь среду, импульс индуцирует излучение возбуждённых атомов, которое складывается с первоначальным импульсом и многократно усиливает его. Принципиальной проблемой борьбы с предвестником в таких системах является явление спонтанной люминесценции — возбужденные атомы излучают даже в отсутствии внешнего импульса, и поэтому лазерная среда начинает «светить» еще до его прихода, создавая предымпульс.

В дальнейшем ученые рассчитывают, во-первых, провести аналогичные исследования для более высоких интенсивностей лазерного излучения, а во-вторых, измерить в повторных экспериментах другие свойства получающейся плазмы, которые позволили бы проверить некоторые теоретические модели, придуманные для описания тёплого плотного вещества.


 


Рейтинг публикации:

Нравится11



Комментарии (0) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.





» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Май 2024    »
ПнВтСрЧтПтСбВс
 12345
6789101112
13141516171819
20212223242526
2728293031 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map