Создан новый сверхпроводник в семействе селенидов железа
Роман Иванов
Физики из Университета Аугсбурга (Германия) описали в European Physical Journal B (находится в открытом доступе) синтез нового материала LixFe2Se2(NH3)y, относящегося к классу сверхпроводящих селенидов железа. Новинка обладает довольно высокой температурой перехода в сверхпроводящее состояние (44 К) при нормальном давлении, что превосходит достижение ставших своего рода классикой купратных сверхпроводников (но всё же значительно уступает ртутьсодержащим ВТСП).
Одна из первичных задач физиков и материаловедов, работающих над созданием новых высокотемпературных сверхпроводников (ВТСП), — получение материалов, способных переходить в сверхпроводящее состояние при температурах выше точки сжижения азота (77 К). Такую температуру легко создать и недорого поддерживать (в сравнении с очень и очень быстро испаряющимся жидким гелием жидкий азот кажется райскими кущами).
Левитирующий сверхпроводник (фото Lyndsey Wylie).
В 2008 году впервые были открыты сверхпроводники на основе арсенида железа с температурой перехода 56 К. Затем, в течение нескольких лет, предпринимались попытки заменить мышьяк на селен, в 2010 году увенчавшиеся успехом: были созданы материалы на основе селенида железа с интеркалированными ионами калия, рубидия, цезия или таллия (все одновалентные, а таллий ещё и жутко токсичный). К сожалению, ни один представитель этого семейства железных халькогенидных материалов (A1-xFe2-ySe2, где А = K, Rb, Cs или Tl) так и не смог даже близко подобраться к арсенидным аналогам, остановившись на максимуме в 32 К.
Авторы нынешнего исследования, отойдя от использования физических методов, прибегли к химическому синтезу в растворе жидкого аммиака, чтобы интеркалировать атомы лития между слоями железа и селена. Подобно тому как смешение компонентов коктейля способно привести к получению совершенно нового вкуса, перемешивание всех реагентов в течение нескольких часов в жидком аммиаке позволило создать продукт с абсолютно новыми сверхпроводящими свойствами, которые контролируются электронным допингом и растяжением кристаллической структуры селенида железа (и то и другое достигается включением донорных Lix(NH3)y-фрагментов).
В отличие от всех предыдущих попыток, учёным удалось синтезировать материал с очень высоким уровнем чистоты. Кроме того, фракция, обладающая сверхпроводящими свойствами, составила почти 80% от объёма материала, что значительно выше, чем в случае любых иных представителей халькогенидного семейства, что, кстати, позволило сделать вывод о том, что сверхпроводящие свойства материала обуславливаются не электрон-нейтральными фрагментами Li(NH2), которые составляют примерно 20% интеркалята, а электрон-донорными — Lix(NH3)y .
Замена лития на следующий за ним натрий уже обеспечила повышение температуры до 45,5 К. На очереди калий, рубидий и цезий.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.
» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам. Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+