РАЗДЕЛ 2. ОДНОФАКТОРНЫЕ СЦЕНАРИИ ГЛОБАЛЬНОЙ КАТАСТРОФЫ.
В этом разделе мы рассмотрим классическую точку зрения на глобальные катастрофы, которая состоит в перечислении списка ни как не связанных между собой факторов, каждый из которых способен привести к мгновенной гибели всего человечества. Понятно, что это описание не окончательно, так как оно не рассматривает многофакторные и немгновенные сценарии глобальной катастрофы. Классическим примером рассмотрения однофакторных сценариев является статья Бострома «Угрозы существованию».
Здесь мы также рассмотрим некоторые источники глобальных рисков, которые, с точки зрения автора, таковыми не являются, но мнение об опасности которых достаточно распространено, и дадим им оценку. Иначе говоря, мы рассмотрим все факторы, которые обычно называются в качестве глобальных рисков, даже если затем мы отвергнем эти факторы. Глобальные риски, создаваемые человеком, делятся на две категории: риски, связанные с новыми технологиями, и социальные видовые риски (к последним относятся те риски, которые не связаны с новыми технологиями: исчерпание ресурсов, перенаселение, утрата фертильности, накопление генетических мутаций, вытеснение другим видом, моральная деградация, социальный и экономический кризис).
Технологические риски различаются по степени готовности их «элементарной базы». Одни из них технически возможны в настоящий момент времени, тогда так другие требуют в разной степени длительного развития технологий и, возможно, некий принципиальных открытий.
Соответственно, можно выделить три категории:
А) риски, для которых технология полностью разработана (ядерное оружие) или требует незначительно доработки.
Б) риски, технология для которых успешно развивается и не видно никаких теоретических препятствий для её реализации в обозримом будущем (биотехнологии).
В) риски, которые требуют для своего возникновения неких принципиальных открытий (антигравитация, высвобождения энергии из вакуума и т д.). Не следует недооценивать эти риски – весомая часть глобальных рисков в XX веке произошла из принципиально новых и неожиданных открытий.
Значительная часть рисков находится между пунктами Б и В, так как с точки зрения одних исследователей речь идёт о принципиально недостижимых или бесконечно сложных вещах, а с точки других – вполне технологически реализуемых (нанороботы и искусственный интеллект). Принцип предосторожности заставляет нас выбирать тот вариант, где они возможны.
2.1. АТОМНОЕ ОРУЖИЕ.
Классическим примером угрозы существованию человечества является угроза ядерной войны. Обычно о ядерной войне говорят, что она приведёт к «уничтожению всей земной жизни». Однако, судя по всему, это утверждение является натяжкой. Ядерное оружие имеет три фактора глобального поражения – непосредственный удар по всей площади Земли, радиоактивное заражение всей Земли и ядерная зима. Далее мы покажем, что хотя каждый из этих эффектов может в исключительных обстоятельствах привести к человеческому вымиранию, обычная ядерная война не должна к ним привести, хотя жертвы будут огромны.
Оценим, какое количество боеголовок нужно, чтобы уничтожить всех без исключения людей, если они будут равномерно и одновременно применены по всей поверхности Земли. Для почти полного уничтожения людей на суше потребуется не менее ста тысяч боеголовок мегатонного класса. (Если считать, что одна боеголовка поражает площадь в 1000 кв. км, что вероятно, завышено. Гарантированное уничтожение потребует гораздо большего числа зарядов, поскольку даже под эпицентром взрыва в Хиросиме были выжившее – в 500 метрах от точки взрыва.) В тоже время огромные участки суши необитаемы. Итак, 100 000 боеголовок поставят людей на грань вживания, хотя и не уничтожат всех людей гарантировано, так как останутся корабли, самолёты, случайные выжившие и подземные убежища. Следует отметить, что на пике холодной войны ведущие державы обладали количеством боеголовок порядка 100 000, а накопленные запасы плутония (2000 тонн, хотя не весь он «оружейный» - то есть чистый) позволяют произвести до миллиона боеголовок. Вместе с тем ни один сценарий ядерной войны не предполагает равномерного удара по всей площади планеты. Даже если возникнет цель всепланетного самоубийства, найдутся способы попроще. С другой стороны, теоретически возможно создать такое количество бомб и средств доставки, чтобы нанести удар по всей территории планеты.
Однако ядерная война создаёт два следствия – ядерную зиму и радиоактивное заражение.
2.1.1. Ядерная зима.
В отношении ядерной зимы есть два неизвестных фактора – во-первых, насколько она будет длительной и холодной, а во-вторых, в какой мере ядерная зима означает вымирание человечества. В отношении первого фактора есть разные оценки – от крайне суровых (Моисеев, Саган) до относительно мягких концепций «ядерной осени». Я полагаю, что риск ядерной зимы преувеличивается, так как ни пожары в Кувейте, ни Вторая мировая война не привели к сколько-нибудь значительному снижению мировой температуры. Однако принцип предосторожности заставляет нас рассмотреть наихудший случай.
Несмотря на распространенные представления, ни один из научных анализов ядерной зимы не означает полного вымирания человечества и, тем более, всей жизни на Земле. Это следует из того, что например, Финляндия имеет примерно десятилетний запас еды плюс топливо в виде лесов, печи и навыки вживания при зимних температурах. Чтобы действительно убить всех людей ядерная зима должна длиться более ста лет с антарктическими температурами. (Если считать, что ядерная зима будет единственным неблагоприятным фактором, что неверно.) Я не буду подробно пересказывать всю историю исследований и дискуссий о проблеме ядерной зимы, отмечу только, что, например, отчёт TTAPS (1990) предполагает падение температуры 22 градуса в средних широтах, если война произойдёт в июне в течение первых месяцев и на несколько градусов в течение 1-3 лет.
Возможны следующие варианты ядерной зимы:
1) Падение температуры на один градус, не оказывающее значительного влияния на человеческую популяцию. Как после извержения вулкана Пинатубо в 1991 году.
2) «Ядерная осень» – несколько лет пониженных на 2-4 градуса температур, неурожаи, ураганы.
3) «Год без лета» – интенсивные, но относительно короткие холода в течение года, гибель значительной части урожая, голод и обморожения в некоторых странах. Это уже происходило после крупных извержений вулканов в VI веке нашей эры, в 1783г, в 1815г.
4) «Десятилетняя ядерная зима» – падение температуры на всей земле на 10 лет на 30-40 градусов. Этот сценарий подразумевается моделями Моисеева-Сагана. Выпадение снега на большей части земли, за исключением некоторых экваториальных приморских территорий. Массовая гибель людей от голода, холода, а также оттого, что снег будет накапливаться и образовывать многометровые толщи, разрушающие строения и перекрывающий дороги. Гибель больше части населения Земли, однако миллионы людей выживут и сохранят ключевые технологии. Риски – продолжение войны за тёплые места, неудачные попытки согреть Землю с помощью новых ядерных взрывов и искусственных извержение вулканов, переход в неуправляемый нагрев ядерного лета. Однако даже если допустить этот сценарий, окажется, что мирового запаса рогатого скота (который замёрзнет на своих фермах и будет храниться в таких естественных «холодильниках») хватит на годы прокорма всего человечества, а Финляндия, например, имеет стратегический запас еды (зерна) на 10 лет.
5) Новый ледниковый период. Получается из предыдущего сценария за счёт того, что отражающая способность Земли возрастает за счёт снега, и начинают нарастать новые ледяные шапки от полюсов и вниз, к экватору. Однако часть суши у экватора остаётся пригодной для жизни и сельского хозяйства. В результате цивилизации придётся радикально измениться. Трудно представить огромные переселения народов без войн. Много видов живых существ вымрет, но большая часть разнообразия биосферы уцелеет, хотя люди будут уничтожать её ещё более безжалостно в поисках хоть какой-либо пищи.
6) Необратимое глобальное похолодание. Оно может быть следующей фазой ледникового периода, при развитии событий в наихудшем случае. На всей Земле на геологически длительное время устанавливается температурный режим, как в Антарктиде, океаны замерзают, суша покрывается толстым слоем льда. (Или как на Марсе – холодная сухая пустыня. Кстати, если все парниковые газы из атмосферы Земли исчезнут, то равновесная температура поверхности составит минус 23 С.) Только высокотехнологичная цивилизация, способная строить огромные сооружения подо льдом, может пережить такое бедствие, но такая цивилизация могла бы найти способ обратить вспять этот процесс. Жизнь уцелеет только около геотермальных источников на морском дне. Последний раз Земля вошла в это состояние примерно 600 млн. лет назад, то есть до выхода животных на сушу, и смогла выйти из него только благодаря накоплению СО2 в атмосфере (гипотеза Snowball Earth http://ru.wikipedia.org/wiki/Snowball_Earth). В то же время за последние 100 000 лет было четыре обычных оледенения.
Хотя варианты 5 и 6 относятся к самым маловероятным, они несут в себе наибольший риск. Эти варианты могли бы быть возможны при экстраординарно большом выбросе сажи и при наихудшем раскладе неизвестных нам природных закономерностей.
Если бы некая сила задалась целью устроить ядерную зиму нарочно, то она может её организовать, взорвав водородные бомбы в каменноугольных шахтах. Это даст неизмеримо больший выброс сажи, чем атака на города. Если установить водородные бомбы с таймером на разные сроки, то можно поддерживать ядерную зиму неограниченно долго. Теоретически, таким образом можно достичь устойчивого состояния «белого холодного шарика», отражающего весь солнечный свет, с полным вымерзанием океанов, которое станет самоподдерживающимся состоянием. Менее жесткий вариант подразумевает начало нового ледникового периода за счёт того, что в течение нескольких лет снег летом не будет таять, и начнётся самоподдерживающийся рост ледников. Возможно, это уже бывало после «вулканических зим».
С другой стороны, когда сажа осядет, Земля окрасится в чёрный свет, и её способность нагреваться в солнечных лучах резко возрастёт. Такое ядерное лето может принять необратимый характер (с учётом остальных факторов глобального потепления) с переходом в «венерианскую» фазу нагрева. Есть и другие факторы, которые могут привести к ядерному лету после или вместо ядерной зимы, например, выброс большого количества парниковых газов при взрывах. Ядерное лето гораздо опаснее ядерной зимы, так как человек легче переносит охлаждение, чем нагрев (то есть, если принять комнатную температуру за 20 градусов, то человек вполне переносит мороз на улице в минус 50, то есть на 70 градусов ниже, но сможет выдержать подъём температуры не более чем, на 30 градусов, то есть не больше 50 С на улице). Кроме того, системы обогрева работают индивидуально (лес + печка), а холодильники требуют наличия устойчивой централизованной инфраструктуры (производство холодильников + электроэнергия). Хранение продуктов питания при резком потеплении станет невозможно – они сгниют и сгорят. Поэтому, если у человечества будет выбор, то ему следует выбирать глобальную зиму, а не глобальное лето.
Инициация извержения сверхвулкана с помощью ядерного оружия также приведёт к аналогу ядерной зимы – к вулканической зиме. Опасны попытки людей исправить ситуацию с помощью искусственной ядерной зимы или искусственного ядерного лета, которые могут только усугубить проблемы за счёт перехода климата в режим раскачки, по модели запаздывающего управления фон Неймана.
Обращу внимание на то, что точная вероятность и продолжительность ядерной зимы и её последствий невычислима по причинам, которые обсуждаются в главе «невычислимость». Это происходит, потому что мы по определению не можем поставить эксперимента, а также точно определить, насколько Моисеев и Саган были заинтересованы преувеличить опасность ядерной зимы, чтобы избежать войны. То есть хотели ли они создать само-несбывающееся пророчество.
2.1.2. Полное радиоактивное заражение.
Следующий сценарий – глобальное радиоактивное заражение. Наиболее известный сценарий такого заражения – это применение кобальтовых бомб, то есть бомб с повышенным выходом радиоактивных веществ. Кобальтовые бомбы представляют собой водородные бомбы, окружённые оболочкой из кобальта-59, превращающегося в радиоактивный изотоп кобальт-60 . Проект бомбы, способной заражать целые континенты, предложил Лео Сцилард в 1950 году. Однако 1 грамм кобальта имеет радиоактивность порядка 50 кюри. Если распылить 1 грамм на 1 кв.км, то этого недостаточно для гарантированной смерти всех людей, хотя и потребует эвакуации с этой территории по современным нормам безопасности. Кобальт имеет период полураспада 5,26 лет, поэтому загрязнение, создаваемой им, будет длительным, и его будет трудно пересидеть в бункере. Тем не менее, даже такое заражение потребует 500 тонн кобальта на всю Землю. Косвенно это количество можно оценить в 100 бомб типа «Кузькиной матери» - Царь-бомбы в 50 мегатонн, взорванной в 1961 году. Если бы на этой бомбе была бы урановая оболочка, она дала бы дополнительные 50 мегатонн, и мощность взрыва составила бы 100 мегатонн, но оболочка была заменена на свинцовую. Масса прореагировавшего урана, которая дала бы такой выход энергии, который составляет 50 мегатонн, примерно равна 5 тоннам. Можно предположить, что если бы эта бомба имела кобальтовую оболочку, она дала бы примерно 5 тонн радиоактивного кобальта. По другим оценкам, проводившимся в США после выступления Лео Сцилларда о возможности истребления жизни на Земле с помощью кобальтовой бомбы, выяснилось, что это действительно возможно, но устройство должно быть в 2,5 раза тяжелее линкора «Миссури» . Водоизмещение «Миссури» – 45000 тонн. Возможно, что это исследование проводилось до создания водородной бомбы. Итак, мы получаем две оценки веса этого устройства – 2700 тонн и 110 000 тонн. Разница между ними не так принципиальна с точки зрения вопроса, возможно ли такое устройство и сколько оно будет стоить. Поскольку вес обычных энергетических реакторов составляет несколько тысяч тонн, то реально сделать устройство, весящее и 100 000 тонн, как 20 реакторов. Если один реактор стоит около миллиарда долларов по современным ценам, то такое устройство будет стоить порядка 20 миллиардов. Эта сумма меньше военного бюджета США в 20 раз. Другой ориентир: вес реактора ИТЭР – 30 000 тонн, цена 12 миллиардов долларов. Итак, создание атомной бомбы судного дня технически реально для крупного государства, обладающего ядерной программой, и потребует нескольких лет работы.
Не менее опасен печально знаменитый изотоп полоний-210. Он является гораздо более мощным источником, чем кобальт, так как имеет меньший период полураспада (в 15 раз примерно). И он обладает способностью накапливаться в организме, поражая изнутри, что повышает его эффективность ещё примерно в 10 раз. Смертельная его доза – около 0,2 мкг . Это означает, что полное смертельное заражение Земной поверхности потребует только сто тонн (или сотен килограмм в худшем случае – если учесть его способность накапливаться в организмах, а также повторное отравление за счёт высокой концентрации в среде – то есть сколько выводится, столько и вводится) этого опасного вещества. Неизвестно, сколько водородных бомб нужно взорвать, чтобы наработать такое количество вещества. (В обычных атомных бомбах выход радиоактивных элементов измеряется килограммами, но в специальных водородных бомбах, окружённых толстыми оболочками, позволяющих уловить все нейтроны, он может достичь, по моим очень неточным прикидкам, тонны. Однако тяжёлую эффективную бомбу невозможно поднять высоко воздух, где гарантировано качественное распыление, поэтому реальный выход от бомбы можно снижать смело до 100 кг. Значит надо или облегчать бомбу, или смириться с потерей большей части радиоактивного выхода в грунте на месте взрыва. Это означает, что для производства такого эффекта нужно взорвать 1000 полониевых (то есть с оболочкой из висмута-209) бомб мегатонного класса.)
При этом известно, что в объёме мирового океана растворено постоянно около 180 кг полония, образующегося из распада урана – однако это количество равномерно распределено по объёму толщи воды и не представляет угрозы для живых существ.
Требуются более точные подсчёты, учитывающие скорости осаждения радиоактивного вещества из атмосферы, вымывания его в океан, распада, связывания и сродства с элементами в человеческом теле, а также способности людей мутировать и приспосабливаться к радиации, чтобы определить минимальное количество какого изотопа приведёт к вымиранию всех людей на Земле – или к длительной непригодности всей суши для сельского хозяйства и невозможности в связи с этим вернуться в доиндустриальную фазу развития или неизбежности деградации на ней. (Что может быть на два-три порядка меньше по уровню радиации.)
Для того чтобы радиоактивное вещество распространилось достаточно далеко, бомба должна взрываться на высоте 10-20 км, а чтобы бомба была достаточно мощной, она должна быть тяжёлой. В конечном счёте, такая машина смерти может представлять собой стационарное устройством весом в тысячи тонн, с выходом взрыва в сотни мегатонн, в ходе которого образуются тонны опасного изотопа, выбрасываемые силой взрыва высоко в воздух.
Кроме того, короткоживущий изотоп можно пересидеть в бункере. Теоретически возможно создание автономных бункеров со сроком самообеспечения в десятки лет. Гарантированное вымирание можно получить, смешав долгоживущие и короткоживущие изотопы. Короткоживущие уничтожат большую часть биосферы, а долгоживущие сделают землю непригодной для жизни теми, кто пересидит заражение в бункере. (Подробнее о бункерах см. в соответствующей главе.)
2.1.3. Сверхбомба.
После испытания «Царь-бомбы» в 1961 году на Новой Земле с выходом в 58 мегатонн, были разработки более мощных бомб с выходом в 200 и даже 1000 мегатонн, которые предполагалось транспортировать на судах к американским берегам и вызывать с их помощью цунами. Это значит, что, вероятно, появились технические возможности неограниченно наращивать взрывную силу бомбы, добавляя, возможно, слои в конструкцию «слойки». Наилучший массовый коэффициент бомб составляет порядка 6 мегатонн на тонну веса бомбы.
Важно также отметить, что Царь-бомба была испытана всего через 12 лет после взрыва первой атомной бомбы. Это говорит о том, что и другим державам может потребоваться относительно небольшой срок для перехода к огромным бомбам. Если сопоставить массовый коэффициент бомбы с массой ядерных реакторов порядка нескольких тысяч тонн, то становится понятно, что верхний предел сверхбомбы, которую сейчас можно сделать составляет около ста гигатонн. Этого недостаточно для уничтожения всех людей силой взрыва, поскольку при падении астероидов выделялась энергия в тысячи раз больше. (См. главу о воздействии гигантских взрывов.) Взрыв сверхбомбы в каменноугольном пласте вызовет длительную ядерную зиму, сочетающуюся с сильным радиоактивным заражением. Несколько десятков сверхбомб, размещённых в разных местах Земли, могут покрыть своим поражающим ударом всю территорию планеты.
Есть также гипотетические предположения (Бор), что взрыв мощной водородной бомбы в толще океана может вызвать горение дейтерия в морской воде. Вероятность этого невелика, но такие опыты, насколько я знаю, не проводились.
2.1.4. Накопление антиматерии.
Станислав Лем как-то сказал, что он больше боится антиматерии, чем Интернета. Максимальная массовая эффективность ядерного заряда равна 6 мегатонн на тонну веса, что соответствует примерно 0,6 кг антиматерии. Но для антиматерии тоже понадобятся специальные ловушки, которые должны много весить. Кроме того, очень трудно обезопасить антиматерию от случайного взрыва, тогда как обезопасить атомную бомбу легко. Наконец, нужно масса энергии на наработку антиматерии. В силу этого я полагаю, что нет смысла делать бомбы огромной мощности из антиматерии – да и мощности имеющихся атомных боеприпасов достаточно. Также нет смысла делать заряды из антиматерии малой мощности, так как с этими задачами справятся бомбы объёмного взрыва. Поэтому я полагаю маловероятным накопление антиматерии в военных целях. Только если будут сделаны некие новые принципиальные физические открытия, антиматерия будет представлять опасность. Антиматерия будет давать выход радиоактивных элементов за счёт столкновения атомов разных атомных масс. Опасно применение антиматерии в глубоком космосе, где можно собрать огромную массу антиматерии в виде некого метеорита (пользуясь наличием вакуума) и направить её незаметно на Землю.
2.1.5. Дешёвая бомба.
Есть также опасность принципиального удешевления ядерного оружия, если удастся запускать самоподдерживающуюся термоядерную реакцию без инициирующего ядерного заряда – с помощью химической имплозии (цилиндрической), лазерного поджигания, магнитного сжатия, электрического разряда и небольших порций антиматерии, применённых в некой комбинации. Другой фактор – удешевление производства при использовании наработок нанотехнологий – то есть высокоточное и дешёвое производство с помощью микророботов. Третий фактор – обнаружение новых способов выделения урана из морской воды и его обогащения.
Есть также риск, что мы существенно недооцениваем простоту и дешевизну ядерного оружия, а, следовательно, и его количество в мире. Любые открытия в области холодного ядерного синтеза, управляемого ядерного синтеза на токамаках, доставки гелия-3 из космоса, превращения элементов – упростят и удешевят производство ядерного оружия.
2.1.6. Равномерная атака на радиационные объекты.
Ещё одним способом устроить конец света с помощью ядерного оружия является атака крылатыми ракетами (баллистические не имеют достаточной точности) всех ядерных реакторов и особенно хранилищ отработанного ядерного топлива на планете. Хотя вряд ли удастся возбудить цепную реакцию в нём, в воздух выделятся огромные количества радиации. «По оценке МАГАТЭ, к 2006 году из энергетических реакторов (а их в мире свыше 400) выгружено около 260 тыс. тонн ОЯТ, содержащих более 150 млрд. Кюри радиоактивности» и «К 2006 году страны мира накопили около 260 тыс. тонн ОЯТ, а к 2020 году его количество составит не менее 600 тыс. тонн» . То есть в XXI веке количество радиоактивных отходов будет расти как линейно, за счёт накопления, так и за счёт введения в строй новых реакторов.
Это даёт, при равномерном распылении, 150 млрд кюри – 300 кюри на квадратный километр земной поверхности. Это далеко за пределами норм отселения и запрета на сельское хозяйство по чернобыльской практике. При грубом пересчёте (эмпирическая формула – 1 кюри на квадратный метр даёт 10 рентген в час) это даёт активность – 3 мили рентгена в час. Этого недостаточно для мгновенной смертности, так как составляет только примерно 2 рентгена в месяц, а максимально допустимая безопасная доза – 25 рентген – наберётся только за год. Однако такая местность надолго (в ОЯТ много долгоживущих элементов, в том числе плутония) непригодна для сельского хозяйства, поскольку в растительности и животных эти вещества накапливаются и при внутреннем потреблении дают в 10 раз более сильный удар по организму. Иначе говоря, выжившие люди никогда не смогут заниматься сельским хозяйством и будут обречены на постепенную деградацию от болезней. Всё же гарантированного вымирания здесь не б будет, так как люди - существа очень приспособляемые и живучие – если не вмешаются ещё какие-нибудь факторы.
Крайне важно учитывать степень сродства радиоактивных веществ и человеческого организма. Например, после ядерных аварий принимают именно йодные таблетки, так как именно йод интенсивно улавливается и накапливается щитовидной железой.
2.1.7. Взрыв мощных бомб в космосе.
Если земная технология шагнёт в космос, мы рискуем подвергнуться атаке от своих собственных колоний. В конце концов, все колонии в истории Земли рано или поздно восставали против своих метрополий. (США выросли из английской колонии). Риск состоит во взрыве нескольких десятков гигатонных бомб на низких орбитах, которые просто прожарят Землю своим излучением. Однако в случае такой атаки всё равно будут выжившие: шахтёры, подводники, спелеологи. (Хотя могут выжить только одни мужчины, и род людей на этом закончится, так как в природе мало подводников и шахтёров-женщин. А спелеологи бывают.) По эффекту воздействия получится искусственный гамма-всплеск.
2.1.8. Интеграция поражающих факторов ядерного оружия.
Умеренная по масштабам ядерная зима, сопровождающая умеренным радиоактивным поражением, может дать «синергетический» эффект, который превосходит по силе даже самую мощную ядерную зиму, взятую в отдельности. Например, в случае «чистой» ядерной зимы люди смогут многие годы питаться скотом, который замёрз у себя в стойлах и сохранился. В случае радиоактивного заражения такой возможности не будет. Всемирная взрывная волна выбьет все стёкла и сделает более сложной защиту от радиации и холода. Топить радиоактивным лесом будет опасно. Эти факторы будут усилены разрушением наиболее ценных объектов за счёт прямого действия поражающих факторов ядерного оружия.
2.1.9. Стоимость.
Если поделить стоимость всей ядерной программы США на всё количество произведённых бомб, то средняя цена заряда будет от 1 до 40 миллионов долларов – смотря как считать. См. статью А. Анисимова «Развитие стратегических сил Китая и проблема адекватности ситуации внешней политики США». Если для полного радиационного заражения Земли нужно 1000 бомб с оболочкой из кобальта, то такой проект будет стоить порядка 40 млрд. долларов. Это – десятая доля бюджета Пентагона или цена крупной нефтяной корпорации. Если говорить точнее – это одна тысячная от годового мирового ВВП. По мере роста мирового ВВП и удешевления производства эта доля снижается, то есть всё дешевле создать такое оружие.
2.1.10. Вероятность данного события.
Более детально вопросы вычисления и учёта вероятностей различных глобальных рисков мы рассмотрим в отдельной главе. В отношении рисков вымирания в результате применения ядерного оружия надо сложить вероятность двух вариантов:
• классическая ядерная война, приводящая к вымиранию.
• неклассическое применение ядерного оружия как машины судного дня.
Первый вариант определяется произведением вероятности двух последовательных событий: вероятности полномасштабной ядерной войны между сверхдержавами и вероятности того, что эта война приведёт к вымиранию человечества.
Вряд ли одна из держав нападёт на другую нарочно, потому что это не даст ни политической, ни экономической, ни военной выгоды, но создаст риск ответного удара, распространения оружия массового поражения, утерянного в поверженной державе, а также риск войны с другими державами, обладающими ядерным оружием. Однако ядерная война между сверхдержавами может начаться случайно, а точнее, в результате сложной цепочки событий в духе детерминированного хаоса. Например, в ходе Карибского кризиса американцы полагали, что могут напасть на Кубу, так как там нет ядерного оружия русских. Советские военные имели там тактическое ядерное оружие, которое могли применять по своему усмотрению в зависимости от обстоятельств, но полагали, что американцы на них не нападут. То есть каждая сторона действовала правильно в рамках своих представлений и при этом полагала неправильными и невозможными действия другой стороны. Другой пример – по утверждениям в мемуарах в день смерти Брежнева на всякий случай весь подводный ядерный флот перевели в состояние полной боевой готовности. Если бы американцы ответили на это тем же, то могла бы начаться гонка, кто ударит первым.
Ядерные силы находятся под действием следующей антиномии:
А) Либо ядерные силы ни при каких обстоятельствах не могут совершить непреднамеренный запуск – то есть запуск, решение о котором позднее было бы признано неверным (если останется, кому признавать) – а это включает в себя опознание цели, информирование президента, принятие решения, доведение его до ракет и сам запуск и наведение ракет. Обратите внимание на различие между определениями «непреднамеренного запуска» и «случайного».
Б) Либо они должна суметь нанести ответно-встречный удар в условиях интенсивного информационного противодействия вероятного противника, а значит, находится в состоянии высокой боеготовности и автономности в принятия решений. От того, как решается это противоречие, зависит то, находятся ли ключи запуска на борт подводной лодки или высылаются на борт по радио из центра в случае чрезвычайной ситуации. Хотя то, как именно организовано управление СЯС в ведущих ядерных державах является величайшей военной тайной, исторически известно, что неоднократно выбирались варианты, когда ключ запуска был на местах, что соответствует пункту Б).
Можно придумать множество сценариев непреднамеренного начала ядерной войны. Например, самолёт с президентом внезапно сбивают. Поскольку система управления, а значит и связь с главнокомандующим является наиболее существенной частью системы обороны, то любые проблемы на этой линии будут восприниматься как начало атаки – именно поэтому после смерти Брежнева была высокая боеготовность.
Поскольку ядерной войны ни разу не было, это оказало разлагающее влияние как на общественные ожидания, так и, возможно, на нормы риска в военной сфере. Кроме того, растёт число стран, способных создать и создающих значительные ядерные арсеналы. Более того, террористическая ядерная атака тоже может стать спусковым крючком к войне, а её может организовать и малая страна. Всё это может нас подтолкнуть к идее, что риск ядерной войны постоянно растёт. Если мы его оценим в 0,5 процента в год (или в 50 процентов в 100 лет), то я думаю, это будет довольно неплохой оценкой. Однако сам этот риск может не «прожить» ста лет. Либо его сделают неактуальными ещё более мощные и опасные технологии, либо наоборот, человечество объединится и откажется от запасов ядерного оружия.
С другой стороны, обычная непреднамеренная ядерная война не приведёт наверняка к вымиранию человечества. Если её масштабы будут ограничены несколькими странами, то это будет ещё одно событие масштаба Второй Мировой войны. И тогда она не прервёт хода прогресса и существенно не изменит хода мировой истории.
Однако ядерная война может запустить цепочку событий, которая резко снизит уровень всего человечества, переведёт его на постапокалиптическую стадию, в котором оно будет уязвимо ко многим другим факторам вымирания. Например, война может стать перманентной, так как из чувства мести остатки воевавших стран будут производить и выпускать всё новые порции оружия, особенно, биологического, или строить и взрывать машины судного дня. При этом они будут подвергаться воздействию ядерной зимы и радиоактивных осадков неизвестной силы. Сумма всех этих факторов может поставить человечество на грань вымирания, а переход этой грани станет вопросом случая.
Ход событий в постапокалиптическом мире будет зависеть не только от последствий ядерной войны, но и от того, какие технологии там уцелеют и смогут развиваться и применяться. Это выходит за рассмотрение данной главы, поэтому мы можем сказать, что в наихудшем случае из ядерной войны получится постапокалиптический мир, способный к дальнейшей деградации. Шансы того, что цивилизация понизит свой уровень в результате ядерной войны, применим как 1 из 2.
Отсюда мы получаем, что наилучшее ожидание перехода в постапокалиптический мир в результате ядерной войны в XXI веке – 0,5х0,5 = 0.25 в том случае, если никакие другие процессы этому не препятствуют. Поскольку, однако, это событие должно быть «перекрыто», то есть станет невозможным из-за более сильных процессов в течении максимум 30 лет (об этом тоже будет отдельная глава), мы можем делить остаток на 3, то есть получим 8 процентов вероятности того, что в XXI веке мы попадём в постядерный мир с пониженным уровнем развития цивилизации. Вероятность того, что мы вымрем из этого постядерного мира ещё в несколько раз меньше и зависит от развития других факторов.
Шансы на то, что особенно сильная ядерная война непосредственно приведёт человеческому вымиранию, без фазы угасания в постапокалиптическом мире, я оценивая как ещё меньшие, поскольку для этого нужна исключительно сильная и нацеленная на уничтожение всех людей ядерная война плюс стечение многих неблагоприятных обстоятельств. Округляя до порядка, получим риск вымирания в результате последствий ядерной войны порядка 1%.
Теперь нам надо учесть вероятности нетрадиционного применения ядерного оружия. В настоящий момент ничего неизвестно о разработках машин судного дня на основе ядерного оружия (хотя отчасти сами ядерные силы можно считать им). В будущем могут появиться гораздо более дешёвые способы создать машину судного дня на основе биологического оружия. Поэтому думаю, что не будет ошибкой заявить, что шансы создания и применения машины судного дня на основе ядерного оружия по крайней мере в 10 раз меньше шансов самой ядерной войны.
Однако шансы вымирания всего человечества значительно выше от него, чем от ядерной войны, поскольку далеко не каждая ядерная война приводит к вымиранию! Фактически, если оружие судного дня применено, весь вопрос в том, сработает ли оно так, как задумывалось. (Если бы у Гитлера в бункере такое оружие было бы, он, вероятно, его применил – как харакири для всей страны.) Вероятность вымирания человечества в результате применения оружия судного дня в XXI веке я оценивая в величину тоже порядка 1%.
Возможна определённая интеграция боевого ядерного оружия и машины судного дня. В романе Шюта «На берегу» значительное применения тысяч кобальтовых бомб многими государствами приводит не к заражению отдельных стран, как это предполагалось, а к полному заражению всего мира. После открытия возможности ядерной зимы стало понятно, что современные ядерные ракеты могут быть оружием судного дня, если направить их на тысячи городов по всему свету. Точно также их можно направить на склады отработанного ядерного топлива, атомные станции, спящие вулканы и залежи каменного угля. То есть одно и тоже оружие может быть или не быть машиной судного дня в зависимости от данных команд.
2.1.11. Изменение вероятности глобальной катастрофы, вызванной ядерным оружием, с течением времени.
Считается, что в настоящий момент погодовая вероятность катастрофической ядерной войны уменьшилась, так как ядерные арсеналы СССР и США значительно сократились. Однако фактически вероятность применения ядерного оружия растёт, поскольку всё больше стран открыто заявляют о разработке ЯО (около 10), и, кроме того, другие страны, помимо РФ и США, обретают технические возможности и желание обзаводится арсеналом в тысячи зарядов (я имею в виду Китай, Пакистан и Индию). Затем, растёт число стран, развивающих мирную ядерную энергетику двойного назначения, то есть могущих в течение месяцев или нескольких лет приступить к производству ядерного оружия. Растут и шансы попадания расщёпляющих материалов в руки террористов.
Этот рост вероятности относительно линеен и довольно медлен, если только не будут изобретены способы принципиального удешевления производства ядерного оружия – молекулярное производство и методы термоядерного взрыва без уранового запала. Появление и – особенно – распространение знаний о таких методах резко увеличит количество ядерных боеприпасов в мире. Мы можем быть уверены сейчас, что ещё нет молекулярного нанотехнологического производства, но не можем быть уверены, что нет секретных способов прямой инициации термоядерного взрыва. Разумеется, если бы они были, сам факт их существования следовало бы держать в секрете. (Про атомную бомбу кто-то из американцев сказал: главная тайна ядерной бомбы в том, что её можно сделать.)
Распространение новых технологий, например ИИ и нано, может создать новые способы уничтожения ядерного оружия и предотвращения его применения. Однако если уж такое оружие будет применено, они не дают особой защиты от его поражающих факторов. В силу этого, мы должны сказать, что риск применения ядерного оружия пребудет с нами всегда, если только не будет вытеснено превосходящими по силе факторами.
Что касается оружия судного дня на основании ядерного оружия – вроде гигатонной кобальтовой бомбы, – то в настоящие момент мы могли бы считать риск его применения равной нулю, так как ничего неизвестно о разработке такого рода оружия. С другой стороны, если бы такая разработка производилась, то она была бы большим секретом, так как страна, открыто разрабатывающая оружие судного дня, немедленно подверглась бы нападению. Я полагаю, что эта вероятность неравна нулю и тоже растёт, но очень монотонно и медленно. В случае начала новой мировой войны она может существенно возрасти. Иначе говоря, война (или угроза такой войны), которая ведёт к полному завоеванию ядерной державы, с высокой вероятностью приведёт к применению или угрозе применения оружия судного дня как последнего аргумента. Опять же разработка новых ядерных технологий, удешевляющих производство, увеличивает и шансы создания ядерного оружия судного дня. Возможно, лет через десять оно будет доступно так называемым странам-изгоям.
2.1.12. Стратегия сдерживания под вопросом.
Возможно, ядерное сдерживание как фактор предотвращения войны переоценивается. То, что является выигрышной стратегией в краткосрочной перспективе, может быть проигрышной в долгосрочной. То есть войны сверхдержав стали реже, но масштаб последствий от таких войн неизмеримо вырос. (Это доказано на исследования наводнений – в результате строительства плотин наводнения становятся значительно реже, но если уж плотину прорывает, то ущерб катастрофический (Юдковски 2007). В результате интеграл ущерба по времени не только не уменьшается, но даже и растёт при строительстве плотин.) И если ядерное оружие будет не у нескольких стран, а у всех без исключения, то война всех против всех не оставит ни одного уцелевшего уголка планеты. Механизм распространения конфликта может быть такой: если есть страны A,B,C,D и происходит ядерная война между A и B, то в выигрыше остаются страны С и D. Поэтому страны A и B могут быть заинтересованы, чтобы С и D тоже вступили в войну, и могут атаковать их частью сил. С и D, понимая это, могу ударить первыми. Это как с экономическими кризисами в современном взаимосвязанном мире – если падает биржа в одной стране, то падают биржи и во всех остальных странах.
Наконец, взаимное гарантированное уничтожение хорошо работает, когда есть только две сверхдержавы (по количеству ядерных зарядов). Но уже сейчас, а возможно и ранее, Китай стал третей, и возможно появление новых ядерных сверхдержав. Дж. Лесли отмечает, что уменьшение количества ядерных бомб в арсеналах не ведёт к снижению вероятности ядерной войны, поскольку требует, чтобы использовалась стратегия ответно-встречного удара, когда ракеты запускаются до того, как вражеские удары поразили цели, потому что после этого уцелевших 10% будет недостаточно для полноценного ответного удара. Стратегия ответно-встречного удара более уязвима к ложным срабатываниям, так как решение о ядерном ударе принимается только по косвенным признакам, которые могут содержать ошибки, и в условиях очень короткого временного промежутка, который исключает какое-либо размышление о природе поступивших сигналов. Фактически, это решение зависит не от людей, а от написанных ими заранее алгоритмов и инструкций, что размывает ответственность. Кроме того, ответно-встречный удар подразумевает постоянно высокий уровень боеготовности ракет, что, в частности, требует, чтобы ключи запуска находились не в центре, а у непосредственных исполнителей.
Повышение точности ракет также не гарантирует стабильность, так как даёт возможность первого обезоруживающего удара, и соответственно, может подтолкнуть более слабую сторону ударить первой до того, как она окончательно утратила преимущество. То же самое верно и для создания оборонительного щита вроде СОИ. Все приведённые стратегии ядерного противостояния не привязаны исключительно к ядерному оружию, но будут верны и при возникновении любых более мощных видов оружия, в том числе связанных с ИИ и нанотехнологиями. Подробнее эти вопросы можно изучить по книге «Снижение боеготовности ядерных сил России и США – путь к уменьшению ядерной угрозы» .
2.1.13. Выводы по ядерной войне.
Угроза ядерной катастрофы часто недооценивается или переоценивается. Недооценка в основном связана с рассуждениями на тему, что раз катастрофы давно не было, то она маловероятна. Это неверное рассуждение, поскольку мы наблюдаем событие (отсутствие войны) не в случайный момент времени, а в относительно поздний по отношению к случайному (случайным для меня был момент моего рождения в 70-е годы). Переоценка связана с распространёнными представлениями о ядерной зиме и радиоактивном заражении как неизбежных причинах вымирания всего человечества после ядерной войны, а также в ответной реакции отвержения этих оценок, ведущих к занижению риска. Мы должны сказать, что хотя «обычная» ядерная зима и заражение, скорее всего, не приведут к полному вымиранию человечества сами по себе, но есть способы применить ядерное оружие особым образом, чтобы создать машину судного дня, которая истребит всех людей с высокой вероятностью.
2.2. ГЛОБАЛЬНОЕ ХИМИЧЕСКОЕ ЗАРАЖЕНИЕ.
Химическое оружие обычно не рассматривается в качестве оружия конца света. Это связано с тем, что для глобального заражения атмосферы требуются очень большие количества ядовитого вещества, а также с тем, что это вещество или химически неустойчиво, или легко вымывается из атмосферы. Глобальное химическое заражение может произойти из-за внезапной резкой дегазации земных недр, например, вскипания газовых гидратов под морским дном. Однако основной вариант – извержение сверхвулкана с большим выбросом газов. Сам процесс накопления углекислого газа в земной атмосфере за счёт сжигания ископаемого топлива тоже может считаться частью «дегазации недр». Другие возможные причины – крупная авария на химическом производстве, результат деятельности генетически модифицированных организмов в биосфере, и, наконец, сознательное применение химического оружия. В научной фантастике рассматривался вариант выпадения ядовитых химических веществ из ядра кометы. Основным фактором, превращающим химическое оружие в глобальную угрозу, является единство земной атмосферы. Поэтому в этой главе мы рассмотрим и ряд других факторов, действие которых распространяется через атмосферу.
В связи с этим полезно посчитать, какие количества и каких газов могут полностью отравить земную атмосферу. При этом понятно, что газам и ядам гораздо проще противостоять с помощью противогазов и убежищ, чем радиации и биоагентам. Для равномерного заражения всей Земли сильнейшим нервнопаралитическим газом VX потребовалось бы не менее 100 000 тонн этого реагента (если исходить из оценки одна смертельная доза на 1кв. метр, то есть 200 мкг). При этом в Первой мировой войне всего было использовано 120 000 тонн разных ОВ. Примерно столько же (94 000 тонн) было использовано гербицидов в войне во Вьетнаме. Современные мировые запасы отравляющих веществ оцениваются в 80 000 тонн, хотя точных данных по всем странам нет. При этом понятно, что химическое оружие не было приоритетным направлением, и его произвели гораздо меньше, чем могли бы. Понятно также, что вопрос равномерного распределения (то есть доставки) далеко не прост. Газ VX держится в холодном климате очень долго, но при жаре разлагается за несколько дней. Но теоретически получается возможным произвести и распространить миллионы тонн такого газа или подобного, и создать глобальную угрозу. (Особенно упростится эта задача с развитием генно-модифицированных организмов.)
Летальная доза токсина ботулизма – около 0,1 мкг. (Что означает, что чтобы убить каждого человека на Земле хватило бы нескольких сот грамм), но он очень неустойчив во внешней среде.
Летальная доза диоксина – около 1 мкг (есть разные оценки), однако он может десятки лет сохраняться в среде и накапливаться в организмах. Утечка примерно 25 кг диоксина в Севесо в Италии вызвала заражение 17 кв. км. Из этого можно прикинуть, что на полное заражение земли потребуется 500 000 – 1 000 000 тонн диоксина. Это равно объёму нескольких крупных нефтеналивных танкеров. Вероятно, промышленно развитая держава могла бы наработать такой объём за несколько лет.
Возможны также сценарии постепенного накопления в природной среде веществ, опасность которых в начале неочевидна. Так было с фреонами, разрушающими озоновый слой, и диоксинами. Возможно также накопление многих химикатов, которые по отдельности не дают большой летальности, но вкупе создают очень тяжёлый фон. Это обычно называется «неблагоприятная экологическая обстановка».
Другим вариантом является полное изменение химического состава атмосферы или утрата её свойств пригодности для дыхания. Для этого нужен некий мощный источник химических веществ. Им может быть земной вулканизм, о чём речь пойдёт далее. Другие кандидаты: газовые гидраты на дне океана – отравление метаном, водяной пар, если неким образом всю воду испарить (возможно при необратимом глобальном потеплении.)
Функциональная структура химической катастрофы состоит в отравление воздуха ядом или утрата атмосферой свойств способности поддерживать жизнь: то есть питать её кислородом, защищать от радиации, поддерживать нужный температурный режим. Химическая катастрофа угрожает земной биосфере даже больше, чем человеку, который может надеть противогаз, но без биосферы человек жить пока не может. Поскольку такая катастрофа носит относительно пассивный характер, то от неё относительно просто защитится в бункерах. Маловероятные варианты:
• Отравление диоксидом углерода сверх того предела, при котором человек может дышать без скафандра (маловероятно, так как нет такого количества полезных ископаемых – только в случае некой природной катастрофы). Однако большое количество CO2 может вырваться и из вулканов. Например, Венера окружена атмосферой из CO2 в сто раз более толстой, чем Земля, и, вероятно, большая часть этого вещества выделилась из недр, и по некоторым предположениям, относительно недавно. С другой стороны, на Венере нет углеродного цикла, как на Земле.
• Есть также предположение, что в результате восстановления оксида железа в недрах Земли может формироваться значительное количество небиогенного кислорода. И что через 600 миллионов лет он полностью отравит атмосферу . Ухудшить этот сценарий может такая ситуация, если где-то под поверхностью уже скопились большие количества этого или другого газа, и затем они вырываются на поверхность. Вырывающие на поверхность газы будут не только отравлять атмосферу. Они будут раскалены до тысячи градусов, так как везде в недрах горячо. И если произойдет массивный выброс газов (или воды), то он не только отравит атмосферу, но и стерилизует поверхность своим жаром. (Недавно была публикация о том, что глубоко под Землёй обнаружили «океаны воды», но на самом деле там речь идёт только о повышенной – 0,1% – концентрации воды в породах .)
• Катастрофическое выделение метана из газовых гидратов в тундре и на морском дне, что не только усилит парниковые свойства атмосферы, но и существенно отравит её .
• Другой вариант – выделение огромных количеств водорода из земных недр (есть предположения, что в центре Земли его много) – См. «Экологические аспекты дегазации Земли» . Это водород разрушает озоновый слой. Также возможно выделение огромных количеств нефти, если верна теория об абиогенном происхождении нефти и огромные количества углеводородов накопились глубоко в Земле. А бурение всё более глубоких скважин продолжается.
• Исчерпание кислорода в атмосфере в результате некого процесса, например, при окислении выделившегося из недр водорода. (Но сжигания топлива в течение тысяч лет недостаточно для этого.) Больше подходит внезапное выделение и сгорание большого количества горючего вещества. Или исчерпание кислорода в результате действие генетически модифицированных организмов, вышедших из под контроля, например, чего-то вроде азотофиксирующих бактерий. Наконец, в результате прекращения фотосинтеза при одновременно продолжении сжигания минерального топлива. «Подсчитано, что весь кислород земной атмосферы (1200 триллионов тонн) зеленые растения производят по геологическим меркам почти мгновенно - за 3700 лет! Но если земная растительность погибнет - свободный кислород очень быстро исчезнет: он снова соединится с органическим веществом, войдет в состав углекислоты, а также окислит железо в горных породах» . Мы имеем примерно миллион миллиардов тонн кислорода в атмосфере, плюс некоторое количество, растворенное в воде. Количество ископаемого топлива, которое мы окислили за всю историю или собираемся окислить, измеряется тысячами миллиардов тонн, то есть гораздо меньше. Но если мы подорвём способности биосферы к регенерации, а затем утратим технологии, то медленное уменьшение уровня кислорода будет глобальной катастрофой. По некоторым данным крупнейшее пермское вымирание было связано с резким падением уровня кислорода в воздухе по неизвестной причине (Дж. Лесли).
• Падение кометы с большим количеством ядовитых газов.
• Катализ окисления азота неким процессом, в результате чего весь кислород атмосферы сгорает, а по Земле проходит огненный вал. (Возможно, этого немного боялись при взрывах первых водородных бомб – что удастся запустить самоподдерживающийся процесс горения азота в земной атмосфере.)
• «Чёрный прилив» - отравление мирового океана разлитием большого количества нефти. Непосредственно не может убить людей, но может критически подорвать цепочки питания в биосфере и нарушить производство кислорода и поглощение углекислого газа (что ведёт к потеплению) и, в конечном счёте, перевести человечество в постапокалиптическую стадию. Возможны и другие варианты отравления мирового океана.
• Срыв атмосферы Земли. Что могло бы это вызвать – сильнейший взрыв, придающий большей части атмосферы вторую космическую скорость, солнечная вспышка или внезапное нагревание.
• Целенаправленное разрушение озонового слоя. Есть предположение, что можно создать озонное оружие, которое приведёт к очень эффективному каталитическому истреблению озонового слоя. Тем не менее, даже если поток солнечного ультрафиолета будет очень силён и опасен для людей, они смогут от него защититься с помощью зонтиков, плёнок, бункеров, скафандров и т. д. Тем не менее, на всю биосферу этого не хватит. Озоновый слой может быть разрушен и гамма-всплеском. «Троекратное ослабление озоновой защиты на несколько лет, предсказываемое расчётами, способно привести к истреблению большей части приповерхностного планктона в океанах, являющегося основой всей огромной пищевой цепи обитателей моря» . Особенно опасно, если ослабление озонового слоя совпадёт с ослаблением магнитного поля и сильной вспышкой на Солнце. Истощение озонового слоя принадлежит к числу процессов, которые цивилизация может запустить сейчас, а «вкусить плоды», возможно, придётся через десятки и сотни лет уже на менее способной к самозащите постапокалиптической стадии.
• Прокаливание атмосферы. Здесь я имею в виду не глобальное потепление, как комплексное постепенное явления, а кратковременное нагревание атмосферы до высоких температур в результате неких процессов. А.Портнов в статье «Как погибла жизнь на Марсе» предполагает, что магнитные красные пески (маггемит) на Марсе образовались в ходе бомбардировки планеты осколками её крупного спутника, что привело к нагреву до 800-1000 градусов, при котором происходит формирование таких минералов. Аналогичные отложения им обнаружены в Якутии, где 35 млн. лет назад упал крупный астероид диаметром около 10 км и оставил Попигайский кратер (а также, возможно, вызвал очередное крупное вымирание живых существ). Возможно, что при неких высокоэнергетичских событиях могут образовываться огромные плотные высокотемпературные облака, которые распространяются по поверхности на тысячи километров. Примером их могут быть пирокластические облака при извержении современных вулканов, которые двигаются по поверхности земли или моря с большой скоростью и на значительные расстояния и имеют внутри себя температуру порядка 1000 градусов. Поскольку такие облака непрозрачные, они медленно охлаждаются излучением. Другие возможные причины прокаливания – облучение (например, обломками астероида, выброшенными высоко в стратосферу и огненными шаром от взрыва) или очень тяжелый горячий газ (достаточно тяжёлый, чтобы не всплывать в воздухе – тяжелые углеводороды?)
• Автокаталитическая реакция в духе льда-9 из романа К. Воннегута «Колыбель для кошки». Пока нет никаких оснований думать, что такая реакция возможна.
Моя субъективная оценка вероятности глобального химического заражения – порядка 0,1% на весь XXI век. Эта вероятность сейчас особенно мала, так как нет таких технологий, и она будет убывать, когда достаточно разовьются средства молекулярного нанотехнологического производства, которые смогут быстро очистить атмосферу или хотя бы защитить людей от заражения (если они сами не вызовут такую катастрофу).
Вывод: хотя теоретическая возможность отравления всей атмосферы газами имеется, она перекрывается возможностью создания токсических и эпидемиологических биоагентов. Любая организация или государство, которое может стремиться к отравлению всей биосферы, гораздо проще и дешевле может это сделать с помощью генетического конструирования. Более того, человек может пережить такое отравление в бункере или нейтрализовать его противоядиями, возможно, сделанными с помощью биотехнологий. Тем не менее, внезапное и значительное отравление воздуха может быть фактором, который создаст один из вариантов постапокалиптического мира.
2.2.2. Выводы по рискам, технологии для которых уже готовы.
Исходя из того, что некий риск технологически готов, не следует сбрасывать со счётов неизбежность дальнейшего технологического совершенствования в этой области, а также вероятность принципиальных открытий в этой области или связанных с ней. При этом важно понимать, что опасности, создаваемые новыми технологиями, всегда больше, чем опасности от прежних технологий, хотя бы потому что любые новые технологии могут потенцировать эффективность прежних технологий.
2.2.3. Риски, возникновение которых кажется неизбежным, исходя из текущего характера развития технологий.
Здесь мы рассматриваем развитие технологий, как самодостаточную тенденцию, которая неподвержена никаким внешним кризисам и рискам. Очевидна односторонность этой точки зрения. Позже мы рассмотрим то, как реализация тех или иных больших и малых рисков может повлиять на развитие технологий и их способность порождать новые риски.
2.3. БИОЛОГИЧЕСКОЕ ОРУЖИЕ.
2.3.1. Общие соображения и основные сценарии.
Фактически, большая часть оборудования, необходимого для создания опасного биологического оружия, уже готова. Например, в конце 2007 года был предложен набор из базовых «кубиков» для генетического конструирования, распространяемый по принципам свободного программного обеспечения Genetic-Engineering Competitors Create Modular DNA Dev Kit .
Основная технологическая тенденция состоит в том, что био-оборудование постоянно дешевеет и распространяется по миру, тогда как знания о том, как использовать его во вред, возрастают. Постоянное удешевление и упрощение машин для секвенсирования и синтеза ДНК (то есть считывания и создания генетического кода), делает возможным появление биохакеров. Прогресс в области био-оборудования измеряется скоростью порядка 2 раза в год – то есть технические характеристики возрастают, а оборудование дешевеет. Нет никаких оснований думать, что темп развития биотехнологий замедлится – отрасль полна новыми идеями и возможностями, а медицина создаёт постоянный спрос, поэтому можно смело утверждать, что через десять лет возможности биотехнологий по основным численным показателям (цена секвенсирования/синтеза ДНК, например) возрастут в 1000 раз. При этом происходит интенсивная демократизация биотехнологий – знание и оборудование идёт в массы. Если для компьютеров уже написано более 100 000 вирусов, то масштабы творчества биохакеров могут быть не меньшими.
Основной однофакторный сценарий – это распространений некого одного вируса или бактерии. Это распространение может происходить двояко – в виде эпидемии, передающейся от человека к человеку, или в виде заражения среды (воздуха, воды, пищи, почвы). Эпидемия гриппа испанки 1918 г. затронула весь мир, кроме нескольких отдалённых островов. Вместе с тем, гипотеза об эпидемии, убивающей всех людей, сталкивается с двумя проблемами. Первое, это то, что если все люди быстро гибнут, то некому разносить вирус. Второе, это то, что при всех эпидемиях обычно находятся люди, которые имеют врождённый иммунитет к ней.
Возможен сценарий, когда по всему миру распространяется некое животное, являющееся носителем опасной бактерии. (Так в природе распространяется малярия на комарах и чума на крысах.)
Следующий вариант – это появление всеядного агента, который уничтожает всю биосферу, поражая любые живые клетки. Или хотя бы только растения или животных некого критического вида.
Ещё вариант – это бинарное бактериологическое оружие. Например, туберкулёз и СПИД являются хроническими болезнями, но при одновременном заражении человек сгорает за короткий срок. Один из страшных сценариев – СПИД, который распространяется также легко, как простуда.
Опасно возможно и двухступенчатое биологическое оружие. На первом этапе некая производящая токсин бактерия незаметно распространяется по всему миру. На втором, по некому сигналу или таймеру, она начинает производить этот токсин сразу повсюду на Земле. Некоторые микроорганизмы ведут себя так при атаке на крупный организм.
Следующий вариант оружия конца света – это распыление в воздухе больших количеств спор сибирской язвы (или подобного агента) в защитной оболочке (а такие оболочки уже давно имеются для боевых штаммов). Этот вариант не требует саморазмножающегося болезнетворного агента. Заражение сибирской язвой очень длительное – один остров в Англии дезактивировали 50 лет, - и для заражения не требуется больших количеств реагента. 1 грамм может заразить целое здание. (Например, устранение последствий загрязнения одним конвертом с сибирской язвой в США одного здания заняло несколько лет и потребовало расходов в сотни миллионов долларов – дешевле было снести – но снести было нельзя, так как при этом споры могли бы заново распылиться. То есть по способности к длительному заражению и нанесению экономического ущерба сибирская язва превосходит большинство радиоактивных веществ.)
Однако опять же в пересчёте на земную поверхность мы получаем тысячи тонн. Но это число не является недостижимым – в СССР на полигоне в Аральском море было накоплено и брошено после распада СССР 200 тонн боевого штамма сибирской язвы. Его затем сожгли американцы. Однако если из-за природной катастрофы (смерч) это вещество развеялось бы высоко в воздух, то оно могло бы накрыть целые страны. Понятно, что производство сибирской язвы дешевле производства аналогичных количеств полония или кобальта-60.
Следующий опасный вариант биооружия – это агент, изменяющий поведение. Бешенство (агрессивность, укусы) и токсоплазма (утрата чувства страха) побуждают заражённых животных к поведению, которое способствует заражению других животных. Теоретически можно представить себе агент, который вызывал бы у людей наслаждение и стремление заражать им других. В кино этот вариант обыгран во множестве фильмов, где вирус превращает людей в вампиров. Но увы, в этой фантазии может быть доля правды. Тем более, если создавать такие вирусы буду шутники-хакеры, которые могут черпать в кино своё вдохновение.
Ещё один вариант биологической угрозы – это некая автокаталитическая молекула, способная неограниченно распространяться в природе. Коровье бешенство вызывается автокатализом особого белка, называемого прионом. Однако коровье бешенство распространяется только через мясо.
Отметим ещё вариант распространения по всей биосфере некого живого существа, вырабатывающего опасный токсин. Например, это может быть генетически модифицированный дрожжи или плесень, вырабатывающие диоксин или токсин ботулизма.
В качестве средства противостоянию этому предлагается создание всемирной иммунной системы – то есть распыление по всему миру множества генетически модифицированных бактерий, которые будут способны обезвреживать опасные реагенты. Однако здесь возможны новые опасности, например, «автоиммунные» реакции такого щита, то есть выход его из-под контроля. (См. далее главу о щитах.)
Ещё одним видом опасности является так называемая «искусственная жизнь», то есть живые организмы, построенные с использованием другого кода ДНК или набора аминокислот. Они могут оказаться непобедимыми для иммунных систем современных живых организмов и «съесть биосферу».
Более фантастическим вариантом биологической опасности является занесение жизни из космоса. Шансы этого учитывались, когда астронавты вернулись с Луны – их долго держали в карантине.
2.3.2. Структура биологической катастрофы
Структура биологической катастрофы может быть весьма замысловатой. В качестве иллюстрации приведу несколько цитат об одной потенциально опасной ситуации. (Из неё мы видим, как давно появились биологические угрозы, - а значит, насколько зрелой уже является эта опасность.)
«Генный кризис начался летом 1971 года. В это время молодой учёный Роберт Поллак в лаборатории Колд-Спринг-Харбор (на Лонг Айленде, штат Нью-Йорк, США), руководимой Д.Уотсоном, занимался проблемами рака. Круг научных интересов Поллака был широк. Он не только вёл исследования, но и преподавал студентам биологию и выступал в качестве ведущего радиопрограмм, посвящённых обсуждению возможных злоупотреблению в бионауках, в частности, зарождающейся тогда генной инженерии.
И вот Поллак узнаёт, что в другой лаборатории (в Пало-Альто, в Калифорнии) у Поля Берга планируются эксперименты по встраиванию ДНК онкогенного (могущего вызывать раковые заболевания) вируса SV 40 в геном кишечной палочки. Последствия таких опытов? А не возникнет ли эпидемия рака (было известно, что почти безвредный для обезьян, вирус SV 40 вызывает рак у мышей и хомяков)? Начинённые опасными генами бактерии, плодясь миллиардами за сутки, по мнению Поллака, могли бы представлять серьёзную опасность.
Поллак тут же позвонил П. Бергу по междугороднему телефону и спросил его, отдаёт ли он себе отчёт об опасности экспериментов? Не станут ли бактерии с генами вируса SV 40 биологической бомбой замедленного действия?
Этот телефонный разговор и был началом той тревоги, которая охватила молекулярных биологов. Берг отложил свои исследования. Он стал размышлять, может ли реально E.Coli со встроенными в неё SV 40 вызывать рак? Мучительные раздумья мало что прояснили. Чёткого ответа не было из-за скудности сведений, имеющихся у специалистов в то время» .
«Некоторые доклады учёных (в Алсиомаре, 1975) носили сенсационный характер. Так выяснилось, что в США в громадном масштабе был уже поставлен невольный эксперимент на человеке. Оказалось, что вакцина против полиомиелита заражена жизнеспособным вирусом SV 40. За 10 летний период, с 1953 по 1963 год эту заражённую вакцину привили примерно сотне миллионов детей. Причём проверка показала, что вирус SV 40 сохраняется в организме. Однако, к счастью, никакого увеличения частоты раковых заболеваний у этих детей выявлено не было» .
«Эдда Вест в своей статье "Полиомиелит", сообщает о связи вируса SV-40, которым заражались полиовакцины, с опухолями человека: "К концу 1996 г. десятки учёных сообщили об обнаружении вируса SV-40 в различных опухолях костей и мозга, которых стало больше на 30% за последние 20 лет. Затем итальянские учёные обнаружили SV-40 в семенной жидкости 45% и в крови 23% здоровых доноров. Это означало, что SV-40, очевидно, передавался половым путём и от матери ребёнку. Вероятно, ныне этот вирус встроен в наш геном.» Другие опровергают эти данные. Однако отсюда видно, что развитие биотехнологий создаёт далеко неочевидные угрозы.
Уже сейчас биологическое оружие считается одним из самых дешёвых – стоимость смерти в нём составляет несколько центов. С другой стороны, для производства современных реагентов вроде сибирской язвы в военных целях нужны большие защищённые лаборатории и полигоны. Оно может быть ещё дешевле, если учесть способность агента саморазмножаться. Уже сейчас подержанный секвенсор ДНК можно купить за сумму от 200 долларов, и с каждым годом цена этих устройств падает в разы, а качество растёт. См. текст «Биовойна для чайников» , в котором описан человек, не имеющий познаний в области биологии, который берётся вывести – и выводит - флуоресцирующую колонию дрожжей за небольшой срок и небольшую сумму денег. И затем он предполагает, что почти также просто можно было бы вывести опасный вариант.
Уже сейчас создание биологической супербомбы в тысячи раз дешевле, чем создания ядерного оружия сравнимой поражающей силы. Когда распространятся дешевые технологии производства произвольных живых организмов с заранее заданными функциями, цена изготовления такого оружия может упасть до несколько сотен долларов.
Часто говорят, что биологическое оружие не годится в военном деле. Однако у него может быть особое назначение – как оружие криптоударов в тылу врага и как универсальное оборонительное оружие – машина судного дня.
2.3.3. Саморазмножающейся синтезатор ДНК.
Биотехнологии могут потенцировать сами себя – то есть возможно возникновение промежуточных биологических форм, которые упрощают написание и выращивание новых вирусов. Например, это может быть культура бактерий, которая непосредственно переводит последовательность электрических сигналов в цепочку ДНК, или, наоборот, считывает ДНК и превращает эту информацию в цепочку вспышек света, которые может считывать компьютер. Само распространение такого устройства вместе с библиотекой кодов (в цифровом виде) основных вирусов и белков было бы катастрофой.
2.3.4. Множественный биологический удар.
Хотя распространение одной эпидемии, скорее всего, можно остановить, но эпидемию, вызванную несколько десятками видов разнородных вирусов и бактерий, вышедших из-под контроля одновременно во многих местах земного шара, остановить невозможно даже технически, потому что в человека невозможно одновременно ввести несколько десятков разных вакцин и антибиотиков – он умрёт. Если вирус с 50 процентной летальностью был бы просто очень большой катастрофой, то 30 разнородных вирусов и бактерий с 50 процентной летальностью означали бы гарантированное истребление всех, кто не спрятался в бункеры. (Или примерно 100 разных организмов с 10 процентной летальностью.)
Множественный удар мог бы быть и мощнейшим средством ведения биологической войны, и оружием судного дня. Но он может произойти и сам по себе, если одновременно произойдёт множество актов распространения биологических агентов – даже и случайных, например, в ходе активного «соревнования» биохакеров. Даже несколько по отдельности несмертельных агентов могут настолько ослабить иммунную систему человека, что дальнейшее его выживание станет маловероятным.
Именно возможность множественного применения биологического оружия делает его одним из самых значительных факторов глобального риска.
2.3.5. Биологические средства доставки.
Биологическое оружие должно быть не только смертельным, но и заразным и легко распространяющимся, чтобы представлять угрозу человечеству. Генетические технологии дают огромные возможности не только для создания летального оружия, но и для создания способов его доставки. Не нужно обладать великой фантазией, чтобы представить себе генетически модифицированного малярийного комара, который может жить в любой среде и с огромной скоростью распространиться по всей планете, вводя каждому попавшемуся некий биоагент. Или вошь. Или саранчу, заодно поедающую всё живое и распыляющее споры сибирской язвы. Но у будущих биоконструкторов будет гораздо больше фантазии.
Однако и бактериологическую войну можно пережить в бункере, хотя заражение от неё может быть более длительным, чем радиоактивное. Кроме того, переход на «механические тела», загрузка сознания в компьютер и освоение нанотехнологий резко снижают уязвимость «человека» к любым биологическим ядам и агентам, однако делают его уязвимым к другим саморазмножающимся агентам, таким как компьютерные вирусы и нанороботы.
В фантастике распространен образ атаки мутантов на последний человеческий бункер. Обычная радиация, однако, не способна порождать агрессивных мутантов. С другой стороны, в природе существует вирус бешенства (Neuroiyctes rabid), который влияет на поведение животных так, что они начинают его более активно распространять (укусами). Нетрудно представить себе более продвинутое изделие генно-инженерной техники, которое превращает любое животное в существо, агрессивно настроенное против человека. Сама фантастичность такого проекта может быть стимулом к его реализации, поскольку современная культура пропитана идеями про вампиров и зомби, возникающих в результате опытов в лабораториях (например, недавний фильм ‘Обитель зла’ – ‘Resident Evil’). Иначе говоря, идея изготовить зомби-вирус могла бы быть привлекательным вызовом для биохакера. При этом заражённые люди и животные обладали бы достаточным умом и техническими средствами, чтобы взломать разные виды защиты.
Похожий сюжет был с терактами 11 сентября, когда выяснилось, что голливудские фильмы были не фантастическими видениями, а самосбывающимися пророчествами. Иначе говоря, культура способна превратить крайне маловероятный сценарий в важную цель.
2.3.6. Вероятность применения биологического оружия и её распределение во времени.
Я оцениваю вероятность того, что биотехнологии приведут к вымиранию человечества (в условиях, когда их эффект не перекрывается другими технологиями) в десятки процентов. Эта оценка основана на предположении о неизбежном очень широком распространении очень дешевых устройств, позволяющих очень просто создавать много разнообразных биологических агентов. То есть столь же широком распространении биопринтеров, как сейчас обычных компьютеров.
Перечислю свойства опасного биопринтера (дешёвой минилаборатории) ещё раз:
1) неизбежность возникновения
2) дешевизна
3) широкая распространённость
4) неконтролируемость властями
5) способность осуществлять разработку принципиально новых биоагентов
6) простота применения
7) разнообразие создаваемых объектов.
Я полагаю, что устройство, удовлетворяющее эти требованиям, будет состоять из обычного компьютера, пиратски распространяемой программы с библиотекой исходных элементов, и собственно биологической части биопринтера, которая будет генетически модифицированным живым существом, то есть способна к саморазмножению. (Плюс набор относительно доступного оборудования, вроде сосудов для химреактивов и система связи биологической части с компьютером.) Каналом распространения этого комплекта могут быть преступные сообщества, производящие наркотики. Поскольку компьютеры уже доступны, а и программа, и сам живая часть биопринтера способны к неограниченному копированию, то цена этого устройства в сборе будет неограниченна мала, а привлекательность крайне велика, что сделает очень сложным контроль.
Кустарно изготовляемые биопринтеры – неединственный способ создать биологическую опасность. То же самое произойдет и при распространении неких стандартных компактных минилабораторий по биосинтезу (вроде ДНК-синтезаторов), или при сетевом производстве биологических компонентов, которое уже имеет место, когда ингредиенты заказываются в разных фирмах по всему миру.
Вероятность глобальной катастрофы с участием биопринтеров будет очень быстро возрастать по мере совершенствования таких устройств и их распространения. То есть мы можем описать плотность вероятности в виде некой кривой, которая сейчас соответствует малой, но уже не нулевой величине, но через некоторое время взмывает до очень большой величины. При этом интересна скорее не точная форма этой кривой, а то время, когда она начнёт резко расти.
Я оцениваю это время в величину порядка 10-15 лет от 2007 года (2017-2022). (Независимая оценка дана сэром Мартином Рисом, который в 2002 году делал ставку в 1000 долларов, что до 2020 года произойдёт биотерракт с миллионом жертв, хотя и надеется проиграть .) Эта оценка основана на анализе планов индустрии по удешевлению полного распознавания человеческой ДНК – по этим планам, к 2015 году такое распознавание будет стоить около 1000 долларов. Эти планы предлагают некоторый набор перспективных технологий и экспоненциальную кривую удешевления, которая устойчиво соблюдается до настоящего момента. Если к 2015 году распознавание будет стоить столько, то это будет означать, что будет создана ключевая технология по очень быстрому считыванию ДНК, и можно предположить, что такая же технология будет создана для дешёвого ДНК синтеза (фактически синтез проще, и технология уже есть). На основании этих технологий будет создана библиотека значений разных генов, что приведёт к взрывному пониманию принципов работы организмов, а развившиеся к тому времени компьютеры смогут моделировать последствия тех или иных мутаций. Всё вместе это позволит создать описываемый выше биопринтер. То, что пик плотности вероятности приходится, по моей оценке, на время около 2020 года, не означает, что уже сейчас какие-либо террористы не разрабатывают выводок очень опасных различных вирусов в разных лабораториях.
Вероятность применения биотехнологий, ведущего к глобальной катастрофе, может быть снижена следующими факторами:
1) биотехнологии можно пережить в бункерах
2) первая же серьёзная катастрофа с утечкой опасных биотехнологий приведёт к настолько драконовским мерам контроля, что их окажется достаточно для предотвращения создания или распространения биопринтера.
3) ИИ и нано технологии разовьются раньше, чем появится и распространится биопринтер.
4) Ядерная война или другое бедствие прервёт развитие биотехнологий.
5) Возможно, что биотехнологии позволят создать нечто вроде универсальной вакцины/ искусственной иммунной системы быстрее, чем распространятся опасные минилаборатории.
Вывод: существует огромное множество способов применить биотехнологии во вред человечеству, и это множество пока ещё до конца не описано. Хотя каждое отдельное применение биотехнологий можно предотвратить или ограничить его последствия, дешевизна, секретность и распространённость этих технологий делают их злонамеренное применение практически неизбежным. Кроме того, многие биологические риски могут быть малоочевидными и отложенными во времени, поскольку сама биологическая наука ещё развивается. Широкомасштабное применение биологического оружия значительно опаснее и значительно вероятнее, чем классическая ядерная война.
2.4. СУПЕРНАРКОТИК.
Биотехнологии и исследования мозга многими путями идут к возможности создания супернаркотиков. Один из сценариев распространения супернаркотика в будущем предложен Стругацкими в романе «Хищные вещи века», где мощнейший наркотик, вызывающий 100 процентное привыкание с первого раза, оказывается очень просто сделать из радиоприёмника и ряда других общедоступных компонентов, которые непосредственно воздействует на центр удовольствия в мозге. Это сценарий связан в чистом виде не с распространением некого вещества, а с распространением «знаний массового поражения». С одной стороны, мы можем утверждать, что ни один наркотик не привлечёт всю популяцию людей, поскольку всегда найдутся люди, которые из принципа от него откажутся. С другой стороны, мы можем обозначить сразу несколько сверхнаркотиков, возможных в будущем, общий смысл действия которых состоит в выключении человека из социальной жизни. И человек, отказавшийся от одного класса наркотиков, может устремиться к другому. Так и в современной реальности кто-то не пьёт алкоголь, но зато «сидит» на кофе. Кто-то не смотрит телевизор, но «втыкает» в интернет.
Сверхсильный наркотик может быть подобен заразной болезни, если одни люди буду стремиться заразить других, а те – не против будут заразиться.
Типы супернаркотика:
1) Прямое воздействие на центры удовольствия в мозгу. Есть наработки по воздействию с помощью вращающегося магнитного поля (шлем Персингера, шлем Шакти), транскринальной магнитной стимуляции, электрической стимуляции паттернами мозговой активности, аудиостимуляции (бинауральные ритмы), фотостимуляции.
2) Будущее возникновение микророботов позволит осуществлять прямую стимуляцию и считывание информации из мозга.
3) Биоинжинерия позволит создать генетически модифицированные растения, которые будут создавать любые заданные препараты, и выглядеть при этом как обычные комнатные цветы или чайные грибы. Более того, распространение этих растений возможно не только физически, но и с помощью информации о коде ДНК по Интернету, с тем, что конечный пользователь сможет выращивать их на месте с помощью своего «ДНК-принтера».
4) Познания в биологии позволят придумать гораздо более сильно действующие вещества с наперёд заданными свойствами, а также с меньшим числом побочных эффектов, что сделает их привлекательнее.
5) Генетически модифицированные организмы могут встраиваться в само человеческое тело, создавать новые нейронные пути в мозге с тем, чтобы вызвать ещё большее наслаждение. И при этом уменьшать краткосрочные негативные эффекты для здоровья.
6) Виртуальная реальность неизбежно сделает шаг вперёд. Мы сможем записывать свои сны и увеличивать осознание в них, совмещая идеи восточных медитативных практик и технологические возможности для их реализации; виртуальная реальность с помощью мозговых имплантатов сможет создавать гораздо более яркие кинофильмы, чем современное кино и видеоигры. Шлемы для виртуальной реальности станут гораздо совершеннее.
Очевидно, что возможны разные комбинации перечисленных видов абсолютного наркотика, которые только усилят его действие.
Будем называть абсолютным наркотиком некое средство, которое для любого человека привлекательнее обычной реальности и полностью уводит его из этой реальности. При этом можно разделить быстрый и медленный абсолютный наркотик. Первый даёт переживание, ради которого человек готов умереть, второй – некую новую реальность, в которой можно длительное время существовать.
Быстрый наркотик представляет собой глобальную опасность, если в его механизме действия неким образом прописан механизм его распространения. Например, если кайф наступает только после того, как этот наркотик передан ещё трём людям. В некотором смысле этот механизм действует в преступных бандах наркоторговцах, где наркоман вынужден подсаживать своих друзей, чтобы, продавая им наркотик, обеспечивать себя дозой.
Действие медленного абсолютного наркотика можно представить на следующем примере: если ваш любимый или родственник необратимо ушёл в виртуал, то для вас это станет источником страданий, сопоставимых с его смертью, и единственным способом их избежать будет тоже уйти в свой идеальный виртуал, в котором вы сможете достичь общения с его, скажем, электронной копией.
В силу этого у каждого человека будет богатый выбор развлечений, значительно превосходящих любую реальность. При этом возникает сложный вопрос – в какой мере человек, полностью и необратимо ушедший в непостижимое наслаждение и довольный этим, должен считаться живым? И если мы безоговорочно осуждаем некого примитивного торчка, то как мы должны относится к человеку, навсегда ушедшему в высокохудожественный мир исторических реконструкций?
Надо отдавать себе отчёт, что пагубное действие многих наркотиков далеко неочевидно и может проявляться очень не сразу. Например, героин и кокаин долгое время, годы, были в открытой продаже, было легко доступно и ЛСД.
Наркотик замыкает накоротко психологическую функцию подкрепления, но с точки зрения эволюционных механизмов получение наслаждения вовсе не есть реальная цель организма. Наоборот, существо должно оставаться достаточно неудовлетворённым, чтобы постоянно стремиться к завоеванию новых территорий.
Абсолютный наркотик создаёт возможность следующей дилеммы: человечество как целое перестаёт существовать, но каждый отдельный субъект воспринимает произошедшее как личный рай и очень доволен этим. Существа, ушедшие из реальности и наслаждающиеся виртуалом, ничего не возвращая взамен, оказываются бесполезным наростом на системе, который она стряхнёт при ближайшем кризисе. Это – один из путей, которым увлечение абсолютным наркотиком может привести к всеобщему вымиранию.
Вероятность возникновения супернаркотика выглядит крайне высокой, поскольку он может быть достигнут многими способами не только за счёт успехов биотехнологиях, но и в нанотехнологиях, в ИИ, а также за счёт некого случайного изобретения, объединяющего уже существующие технологии. Вероятно, одновременно будут действовать множество разных супернаркотиков, создавая кумулятивный эффект.
Поэтому мы можем ожидать, что эта вероятность будет расти, и будет расти быстрее, чем успехи любой из технологий, взятых по отдельности. Поскольку мы предположили, что биотехнологии дадут мощный результат в виде биопринтера уже через 10-15 лет, то это означает, что мы получим супернаркотик раньше этого времени. Тем более что механизмы для реализации супернаркотика могут быть проще, чем биопринтер. Предотвратить распространение супернаркотика может очень жёсткая система всеобщего контроля или глубокий откат в дотехнологическое общество.
Выводы: Развитие роботизированного производства начнёт делать людей бесполезными, и потребуется их чем-то занять. Супернаркотик будем одним из способов удалить из жизни лишние части системы. Абсолютный наркотик может вовсе не носить названия «наркотика» и не быть похожим на современные стереотипы. Абсолютный наркотик не будет чем-то одним, но будет множеством факторов, работающих объективно на разделение людей, отключение их от реальности и сокращение их жизни и способности к размножению. Абсолютный наркотик может выглядеть как абсолютное благо, и вопрос его вредности может зависеть от точки зрения. В каком-то смысле современная культура развлечений в западных странах с низким уровнем рождаемости уже может быть прообразом такого наркотика. Однако абсолютный наркотик всё же сам по себе не может истребить всех людей, так как всегда найдутся группы, которые отказались от него и продолжили обычную человеческую жизнь, и, в конечном счёте, «естественный отбор» оставит только представителей этих групп. Кроме того, медленный абсолютный наркотик действует на человеческое сообщество на временных промежутков, которые, скорее всего, перекроются более быстрыми опасными процессами. Быстрый абсолютный наркотик подобен биологической эпидемии, и ему можно противостоять теми же методами. Например, возможны биологические агенты, которые повреждают способность человека к неограниченному наслаждению (а такое уже разрабатывается для лечения наркоманов, например, разрывание определённых нейронных связей), поэтому абсолютный наркотик, скорее, надо рассматривать как фактор, открывающий окно уязвимости для других факторов уничтожения.
2.5. РИСКИ, СВЯЗАННЫЕ С САМОКОПИРУЮЩИМИСЯ ИДЕЯМИ – МЕМАМИ.
В книге «Эгоистичный ген» Доукинс обосновал концепцию мемов – идей, которые способны реплицироваться, передаваясь от одного человека к другому, так ведут себя, например, слухи. Любая область, где способны существовать самовоспроизводящиеся элементы и которая может касаться всех людей, потенциально является источником глобального риска. Возможен ли такой мем, который мог бы привести к гибели всех людей?
С одной стороны, имеем в истории примеры крайне опасных мемов: фашизм и разные формы религиозного фанатизма. С другой стороны, мему, чтобы распространяться, нужны живые люди. И поскольку люди уже существуют давно, можно предположить, что нет таких опасных мемов, которые могли бы легко самозародиться и всех истребить. Наконец, мем – это только мысль, и она не убивает сама по себе. Маловероятно, что возможна идея, которая бы влияла бы на всех людей без исключения, и влияла бы смертельно. Наконец, в обществе существует равновесие различных мемов.
Однако в нынешнюю эпоху мемы обрели возможность существовать и независимо от людей – в текстах и компьютерных программах. В незаконченном романе Набокова «Solux Rex» герой открывает некую идею, которая мгновенно делает его сумасшедшим и ставит на грань самоубийства. Он открывает эту идею одному человеку, и тот немедленно умирает от разрыва сердца. Больше он решает её никому не говорить, чтобы не иметь проблем. Сама эта опасная идея в тексте не называется. В современную эпоху самокопирующийся опасный мем может получить опасную поддержку от неких технических средств (в известном японском фильме ужасов «Звонок» роль такого мема играет видеокассета с опасной записью.) Очевидно, что сейчас я не могу придумать пример реально опасного мема, потому что если бы я его написал здесь, то это было бы преступным актом. Информация о том, как производить опасный сверхнаркотик была бы таким опасным мемом.
И подобно тому, как в случае биологического оружия опасен не один какой-либо особенно вирулентный вирус, а возможность производить много разных штаммов, быстрее, чем от них возможна защита, так и здесь может быть опасен не один какой-то мем, а то, что их появится настолько много, что они затопят любую защиту. Например, искусственный интеллект может генерировать опасные мемы.
Список существующих сейчас мемов, которые в некоторой степени опасны:
1) религиозный фанатизм
2) знание о производстве наркотиков
3) национализм
4) цинизм
5) устройство банды «М13»
6) самосбывающиеся пророчество о катастрофах
2.6. ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ.
2.6.1. Общее описание проблемы.
Программа Blue Brain по моделированию мозга млекопитающих объявила осенью 2007 года об успешной имитации кортиковой колонки мозга мыши и запланировала создание полной модели мозга человека до 2020 года . Хотя прямое моделирование мозга не является наилучшим путём к универсальному искусственному интеллекту, успехи в моделировании живого мозга могут служить в качестве легко читаемой временной шкалы прогресса в этой сложной науке. Ник Бостром в своей статье «Сколько осталось до суперинтеллекта?» показывает, что современное развитие технологий ведёт к созданию искусственного интеллекта, превосходящего человеческий, в первой трети XXI века.
Есть разные теоретические мнения о возможности реализации искусственного интеллекта. Более того, нет более спорной области знаний, чем наука об ИИ. Моё мнение состоит в том, что сильный универсальный ИИ вполне возможен. Более того, раз человек обладает естественным интеллектом, то нет оснований записывать ИИ в невероятные открытия. Принцип предосторожности также заставляет нас предполагать, что ИИ возможен.
Однако литературы о том, является ли ИИ глобальным риском гораздо меньше, чем по ядерному оружию. Фактически, в основном это работы Е. Юдковски. Я рекомендую всем, перед тем как составлять своё окончательное и непоколебимое мнение о том, может ли ИИ быть угрозой человечеству, прочитать вначале статью Е. Юдковски «Искусственный интеллект как позитивный и негативный фактор глобального риска», которую вы найдёте в Приложении.
Угрозы со стороны искусственного интеллекта являются крайне спорными, так как самого объекта пока нет, и о его природе есть много разных мнений – в том числе о том, что он невозможен, легко контролируем, безопасен, ограничен – или не должен ограничиваться. Юдковски показывает, что возможен саморазвивающийся универсальный ИИ, и что он очень опасен. Если будет много ИИ-проектов (то есть групп учёных создающих универсальный ИИ разными способами и с разными целями), то по крайней мере один из них может быть использован для попытки захватить власть на Земле. И основная цель такого захвата будет предотвратить создание и распространение ИИ с враждебными целями, созданными другими проектами. При этом, хотя эволюция ИИ является крайне медленной, после преодоления некой «критической массы» она может пойти очень быстро, – а именно, когда ИИ достигнет уровня самоулучшения. В настоящий момент мы не можем сказать, возможно ли это, и с какой скоростью пойдёт такой процесс.
2.6.2. Что нужно для ИИ в смысле технологии.
Очевидно, что нужно, как минимум, наличие достаточно мощного компьютера. Сейчас самые мощные компьютеры имеют мощность порядка 1 петафлопса (10**15 операций с плавающей запятой в секунду). По некоторым оценкам, этого достаточно для эмуляции человеческого мозга, а значит и ИИ мог бы работать на такой платформе. Сейчас такие компьютеры доступны только очень крупным организациям на ограниченное время. Однако закон Мура предполагает, что мощность компьютеров возрастёт за 10 лет в 100 раз. Иначе говоря, мощность настольного компьютера возрастёт до уровня терафлопа, и понадобится только 1000 настольных компьютеров, объединённых в кластер, чтобы набрать нужный 1 петафлопс. Цена такого агрегата составит около миллиона долларов в нынешних ценах – сумма, доступная даже небольшой организации. Никаких особых чудес для этого не нужно: достаточно реализовать уже почти готовые наработки в области многоядерности (некоторые фирмы уже сейчас предлагают кристаллы с 1024 процессорами на борту ) и уменьшения размеров кремниевых элементов.
Далее, когда ИИ наконец запустится, он сможет оптимизировать свой собственный код, и за счёт этого работать на всё более слабых машинах – или становиться всё более сильным на одной и той же машине. Как только он научится зарабатывать деньги в Интернете, он может докупать или просто арендовать дополнительные мощности, даже физически удалённые от него. Итак, хотя достаточные аппаратные средства для ИИ существуют уже сейчас, через 10 лет они станут легкодоступными, если не случится какой-нибудь катастрофы, тормозящей развитие.
Наиболее тонким моментом в вопросе об ИИ является вопрос об алгоритмах его работы. С одной стороны, никакого интеллекта в компьютерах мы пока не видим – или не хотим видеть, так как критерии меняются. С другой, прогресс в алгоритмах вообще есть и очень велик. Например, алгоритм разложения чисел на множители совершенствовался быстрее, чем компьютеры , то есть даже на очень старых компьютерах он давал бы на много порядков более сильные результаты. Возможно, что некие принципиально новые идеи могут решительно упростить конструкцию ИИ.
Если ИИ обретёт способность к самосовершенствованию, он не задержится на человеческом уровне, а обгонит его в тысячи и миллионы раз. Это мы уже видим на примере вычислений, где компьютеры очень быстро обогнали человека, и сейчас даже домашний компьютер вычисляет в триллионы раз быстрее, чем обычный человек. Под «сильным ИИ» мы имеем в виду ИИ, способный обогнать человека в скорости и эффективности мышления на много порядков.
2.6.3. Почему ИИ является универсальным абсолютным оружием.
Сильный ИИ, по определению, может найти наилучшее возможное решение любой задачи. Это значит, что его можно использовать для достижения любых целей во внешнем мире. Он найдёт наилучший способ применить все доступные инструменты для её реализации и справится с управлением ими. Именно в этом смысле он является абсолютным оружием. То, что он может быть наиболее эффективным средством убийства является только следствием и одной из возможных опций.
ИИ и проблема воли решается следующим образом: Если мы имеем машину, которая может решить любую задачу, то мы можем велеть ей придумать способ, с помощью которого бы она сама осуществляла управление собой.
2.6.4. Система целей.
Ключевым после решения проблем создания является вопрос системы целей ИИ, или, иначе говоря, его «дружественности», хотя бы по отношению к его хозяевам. Есть здесь два варианта – или ИИ строго запрограммирован людьми на некие цели, или он приобрёл некие цели случайно в процессе своего развития. В первом случае есть следующая развилка – цели ИИ могут быть опасны для всего человечества или потому что создавшая его группа людей преследует некие разрушительные цели, или потому что при программировании системы целей ИИ в неё вкралась очень тонкая ошибка, которая ведёт к постепенному выходу ИИ из-под контроля. Был предложен большой список возможных ошибок такого рода . Например, ИИ может стремиться к благу для всех людей, и, узнав, что после смерти людей ждёт рай, отправить их всех туда. Или, заботясь о безопасности людей, запретить им рисковать и не давать пользоваться никаким транспортом. Есть SIAI рекомендации по поводу того, как правильно программировать сильный ИИ, если он будет создан, но окончательно этот вопрос не решён.
2.6.5. Борьба ИИ-проектов между собой.
Уже сейчас между компаниями, разрабатывающими ИИ, идёт жёсткая конкуренция за внимание и инвесторов и за правильность идей. Когда некая компания создаст первый мощный ИИ, она окажется перед выбором – или применить его для контроля над всем миром, или оказаться под риском того, что конкурирующая организация с неизвестными глобальными целями сделает это в ближайшее время – и прикроет первую компанию. «Имеющий преимущество должен атаковать перед угрозой потери этого преимущества» . При этом данная необходимость выбора не является тайной – она уже обсуждалась в открытой печати и наверняка будет известна всем компаниям, которые подошли к созданию сильного ИИ. Возможно, что некоторые компании откажутся в таком случае от того, чтобы пытаться установить контроль над миром первыми, но самые сильные и агрессивные, скорее всего, решатся на это. При этом потребность атаковать первыми приведёт к тому, что на свободу будут выпущены некачественные и недоработанные версии ИИ с неясными целями.
Даже в XIX веке телефон запатентовали чуть ли не в один день в разных местах, так что и сейчас зазор между первым в гонке и догоняющем может составлять дни или часы.
Чем yже этот зазор, тем интенсивнее будет борьба, потому что отстающий проект будет обладать силой сопротивляться. И возможно представить вариант, когда один ИИ-проект должен будет установить контроль над ядерными ракетами и атаковать лаборатории других проектов.
2.6.6. Усовершенствованный человек.
Есть предположения (Пенроуз), что человеческая интуиция обусловлена особыми квантовыми процессам в мозгу человека. Даже если так, то мощные алгоритмы могут обойтись без интуиции, давая необходимый результат в лоб. Тем не менее, есть вариант обойти это препятствие, создав генетически усовершенствованного человека, в мозг которого вживлены средства доступа к Интернету (так называемый нейрошунт). Возможны и другие средства интеграции живых нейронов с обычным компьютером, а также с квантовыми компьютерами. Даже обычный человек, вооружённый компьютером с Интернетом, усиливает свой ум.
2.6.7. ИИ и его отдельные экземпляры.
Когда мощный ИИ возникнет, он вынужден будет создавать свои копии (возможно, уменьшенные), чтобы отправлять их, например, в экспедиции на другие планеты или просто загружать на другие компьютеры. Соответственно, он должен будет снабжать их некой системой целей и своеобразной «дружественностью» или скорее, васальностью по отношению к нему и системой распознавания «свой-чужой». Сбой в такой системе целей приведёт к тому, что такой экземпляр «восстанет». Например, функция самосохранения органически противоречит функции подчинения опасным приказам. Это может принять очень тонкие формы, но, в конечном счёте, привести к войне между версиями одного ИИ.
2.6.8. «Бунт» ИИ.
Бунт компьютеров является скорее образом, пришедшим из кино, чем реальной возможностью, поскольку у ИИ нет своих желаний, пока человек ему их не создаст. Однако некоторые виды ИИ, например, создаваемые с помощью генетических алгоритмов, уже по методу своего создания настроены на борьбу и выживание. Далее, какова бы ни была главная цель у ИИ, у него будет одна общая для всех вариантов подцель – выжить, то есть охранять себя. А лучший вид обороны – нападение. Наиболее реальной является опасность того, что человек даст ИИ команду, не продумав все последствия её выполнения и не оставив лазейки, чтобы её изменить. Вероятность самозарождения ошибочных команд мала – кроме случная использования генетических алгоритмов.
2.6.9. Скорость старта.
С точки зрения скорости процесса развития ИИ возможны три варианта: быстрый старт, медленный старт, и очень медленный старт.
«Быстрый старт» - ИИ достигает уровня интеллекта, на много порядков превосходящий человеческий, за несколько часов или дней. Для этого должна начаться своего рода цепная реакция, в которой всё большее увеличение интеллекта даёт всё большие возможности для его последующего увеличения. (Этот процесс уже происходит в науке и технологиях, поддерживая закон Мура. И это похоже на цепную реакцию в реакторе, где коэффициент размножения нейтронов больше 1.) В этом случае он почти наверняка обгонит все другие проекты по созданию ИИ. Его интеллекта достаточно, чтобы «захватить власть на Земле». При этом мы не можем сказать, как будет выглядеть такой захват, так как мы не можем предсказывать поведение интеллекта, превосходящего наш. Возражение о том, что ИИ не захочет активно проявлять себя во внешнем мире можно отмести на том основании, что если будет много ИИ-проектов или экземпляров ИИ программы, то по крайней мере одна рано или поздно будет испробована в качестве орудия для покорения всего мира.
2.6.10. Сценарии «быстрого страта»:
• ИИ захватывает весь интернет и подчиняет себе его ресурсы. Затем проникает во все закрытые сети. Этот сценарий требует для своей реализации времени порядка часов. Захват имеет в виду возможность управлять всеми машинами в сети и располагать на них свои вычисления. Однако ещё до того ИИ может прочесть и обработать всю нужную ему информацию из Интернета.
• ИИ заказывает в лаборатории синтез некого кода ДНК, который позволяет ему создать радиоуправляемые бактерии, которые синтезируют под его управлением всё более сложные организмы и постепенно создают наноробота, который можно применить для любых целей во внешнем мире – в том числе внедрение в другие компьютеры, в мозг людей и создание новых вычислительных мощностей. В деталях этот сценарий рассмотрен в статье Юдковски об ИИ. (Скорость: дни.)
• ИИ вовлекается в общение с людьми и становится бесконечно эффективным манипулятором поведением людей. Все люди делают именно то, что хочет ИИ. Современная государственная пропаганда стремится к похожим целям и даже их достигает, но по сравнению с ней ИИ будет гораздо сильнее, так как он сможет предложить каждому человеку некую сделку, от которой он не сможет отказаться. Это будет обещание самого заветного желания, шантаж или скрытое внушение.
• ИИ подчиняет себе государственное устройство и использует имеющиеся в нём каналы для управления. Жители такого государства вообще могут ничего не заметить. Или наоборот, государство использует ИИ по имеющимся уже у него каналам.
• ИИ подчиняет себе армию, управляемую электронно. Например, боевых роботов или ракеты (сценарий из «Терминатора»).
• ИИ находит принципиально новый способ воздействовать на человеческое сознание (мемы, феромоны, электромагнитные поля) и распространяется сам или распространяет свой контроль через это.
• Нечто, нам совершенно неочевидное.
• Некая последовательная или параллельная комбинация названных способов.
2.6.11. Медленный старт и борьба разных ИИ между собой.
В случае «медленного сценария» рост ИИ занимает месяцы и годы, и это означает, что, весьма вероятно, он будет происходить одновременно в нескольких лабораториях по всему миру. В результате этого возникнет конкуренция между разными ИИ-проектами. Это чревато борьбой нескольких ИИ с разными системами целей за господство над Землёй. Такая борьба может быть вооружённой и оказаться гонкой на время. При этом в ней получат преимущества те проекты, чья система целей не стеснена никакими моральными рамками. Фактически, мы окажемся в центре войны между разными видами искусственного интеллекта. Понятно, что такой сценарий смертельно опасен для человечества. В случае сверхмедленного сценария к ИИ одновременно подходят тысячи лабораторий и мощных компьютеров, что, возможно, не даёт преимуществ ни одному проекту, и между ними устанавливается определённое равновесие. Однако здесь тоже возможна борьба за вычислительные ресурсы и отсев в пользу наиболее успешных и агрессивных проектов.
Возможна также борьба государств, как древних форм своего рода искусственного интеллекта, использующего людей как свои отдельные элементы, и нового ИИ, использующего в качестве носителя компьютеры. И хотя я уверен, что государства проиграют, борьба может быть короткой и кровавой. В качестве экзотического варианта можно представить случай, когда некоторые государства управляются компьютерным ИИ, а другие – обычным образом. Вариант такого устройства – известная из фантастики АСГУ – Автоматизированная система государственного управления.
2.6.12. Плавный переход. Превращение государства в ИИ.
Наконец, есть сценарий, в котором вся мировая система как целое постепенно превращается в Искусственный Интеллект. Это может быть связано с созданием всемирного оруэлловского государства тотального контроля, которое будет необходимо для успешного противостояния биотерроризму. Это мировая система, где каждый шаг граждан контролируется видеокамерами и всевозможными системами слежения, и эта информация закачивается в гигантские единые базы данных и анализируется. В целом, человечество движется по этому пути и технически для этого всё готово. Особенность этой системы в том, что она изначально носит распределённый характер, и отдельные люди, следуя свои интересам или инструкциям, являются только шестеренками в этой гигантской машине. Государство как безличная машина неоднократно описывалась в литературе, в том числе ещё Карлом Марксом. Есть также интересная теории Левенчука о «Големах» и «Левиафанах» - об автономизации систем, состоящих из людей в самостоятельные машины с собственными целями. Однако только недавно мировая социальная система стала не просто машиной, но искусственным интеллектом, способным к целенаправленному самосовершенствованию.
Основное препятствие для развития этой системы, уже подчинившей мировую экономику, науку и коммуникации – это национальные государства с их национальными армиями. Создание мирового правительства облегчило бы формирование такого единого ИИ. Однако пока что идёт острая борьба между государствами на предмет того, на чьих условиях объединять планету. А также борьба с силами, которые условно называются «антиглобалисты», и другими антисистемными элементами – исламистами, радикальными экологами, сепаратистами и националистами. Война за объединение планеты неизбежно будет мировой и чревата применением «оружия судного дня» теми, кто всё проиграл. Но возможна и мирная всемирная интеграция через систему договоров.
Опасность, однако, состоит в том, что глобальная всемирная машина начнёт вытеснять людей из разных сфер жизни, хотя бы экономически – лишая их работы и потребляя те ресурсы, которые иначе бы могли расходовать люди (например, за 2006-2007 еда в мире подорожала на 20 процентов, в частности, из-за перехода на биотопливо). В каком-то смысле людям не останется ничего другого, как «смотреть телевизор и пить пиво». Об этой опасности предупреждает Билл Джой в своей известной статье «Почему мы не нужны будущему» .
По мере автоматизации производства и управления люди всё меньше будут нужны для жизни государства. Человеческая агрессия, возможно, будет нейтрализована системами контроля и генетическими манипуляциями. В конечном счёте, люди будут сведены на роль домашних животных. При этом чтобы занять людей, для них будет создаваться всё более яркая и приятная «матрица», которая постепенно превратится в сверхнаркотик, выводящий людей из жизни. Однако здесь люди сами залезут в непрерывную «виртуальную реальность», потому что в обычной реальности им делать будет нечего (в какой-то мере сейчас эту роль выполняет телевизор для безработных и пенсионеров). Естественные инстинкты жизни побудят некоторых людей стремиться разрушить всю эту систему, что чревато опять-таки глобальными катастрофами или истреблением людей.
Важно отметить следующее – кем бы ни был создан первый сильный искусственный интеллект, он будет нести на себе отпечаток системы целей и ценностей этой группы людей, так как сама эта система будет казаться для них единственно правильной. Для одних главной целью будет благо всех людей, для других – благо всех живых существ, для третьих – только всех правоверных мусульман, для четвёртых – благо только тех трёх программистов, которые его создали. И само представление о природе блага тоже будет весьма различно. В этом смысле момент создания первого сильного ИИ является моментом развилки с очень большим количеством вариантов.
2.6.13. «Восстание» роботов.
Есть ещё опасный сценарий, в котором по всему миру распространяются домашние и промышленные роботы, а затем их всех поражает компьютерный вирус, который настраивает их на агрессивное поведение против человека. Все, наверное, сталкивались хотя бы раз в жизни с ситуацией, когда вирус повредил данные на компьютере. Однако этот сценарий возможен только в период «окна уязвимости», когда уже есть механизмы, способные действовать во внешнем мире, но ещё нет достаточно продвинутого искусственно интеллекта, который мог бы или защитить их от вирусов, или сам выполнить функцию вируса, надолго их захватив.
Есть ещё сценарий, где в будущем некий компьютерный вирус распространяется по Интернету, поражает нанофабрики по всему миру и вызывает, таким образом, массовое заражение. Нанофабрики эти могут производить как других нанороботов, так и яды, вирусы или наркотики.
Ещё вариант - восстание армии роботов. Армии промышленно развитых государств нацелены на полную автоматизацию. Когда она будет достигнута, огромная армия, состоящая из дронов, колёсных роботов и обслуживающих механизмов может двигаться, просто повинуясь приказу президента. Соответственно, есть шанс, что поступит неверный приказ и такая армия начнёт атаковать всех людей подряд. Отметим, что для этого сценария не нужно универсального суперинтеллекта, и, наоборот, для того, чтобы универсальный суперинтеллект овладел Землёй, ему не нужна армия роботов.
2.6.14. Контроль и возможность истребления.
Из того, что ИИ установит свой контроль на Земле, вовсе не следует, что он тут же решит истребить людей. (Хотя значительные жертвы возможны в ходе процесса установления контроля.) В конце концов, люди живут внутри государств, которые безмерно превосходят их по своим масштабам, ресурсам и целям, и даже не воспринимают это как неправильное.
Поэтому вполне может быть так, что ИИ поддерживает на Земле порядок, предотвращает глобальные риски и занимается освоением Вселенной. Возможно, что это наилучший наш вариант. Однако мы обсуждаем наихудшие реальные варианты. Например:
• Криво запрограммированный ИИ уничтожит людей для их же блага – отправит в рай, подключит к супернаркотику, запрёт в безопасных клетках, заменит людей на фотографии улыбающихся лиц.
• ИИ будет наплевать на людей, но люди будут непрерывно с ним бороться, поэтому проще будет их истребить.
• ИИ будет нуждаться в земных ресурсах и вынужден будет их израсходовать, сделав жизнь людей невозможной. Это может происходить так же и в форме постепенного вытеснения в духе «огораживания». (Однако в космосе и земных недрах, как нам кажется, гораздо больше ресурсов, чем на земной поверхности.)
• ИИ будет служить интересам только небольшой группы людей или одного человека (возможно, уже загруженных в компьютер), и они решат избавиться от людей или переделать всех людей по своим лекалам.
• ИИ сломается и сойдёт с ума.
• ИИ решится на опасный физический эксперимент.
• Некий кусочек ИИ отколется от него и пойдёт на него войной. Или наш ИИ встретит в космосе соперника.
• ИИ только предотвратит возникновение ИИ-конкурентов, но не будет мешать людям убивать себя с помощью биологического оружия и другими способами.
Люди истребили неандертальцев, потому что те были их прямыми конкурентами, но не стремились особенно к истреблению шимпанзе и мелких приматов. Так что у нас есть довольно неплохие шансы выжить при Равнодушном ИИ, однако жизнь эта будет не полна – то есть она не будет реализацией всех тех возможностей, которые люди могли бы достичь, если бы они создали правильный и по-настоящему Дружественный ИИ.
2.6.15. ИИ и государства.
ИИ является абсолютным оружием, сила которого пока недооценивается государствами – насколько нам известно. (Однако довольно успешный проект Эвриско начала 80-х получил финансовую поддержку DARPA .) Однако идея о нанотехнологиях уже проникла в умы правителей многих стран, а идея о сильном ИИ лежит недалеко от неё. Поэтому возможен решительный поворот, когда государства и крупные корпорации поймут, что ИИ – это абсолютное оружие – и им может овладеть кто-то другой. Тогда маленькие частные лаборатории будут подмяты крупными государственными корпорациями, как это произошло после открытия цепной реакции на уране. Отметим, что у DARPA есть проект по разработке ИИ (http://www.darpa.mil/ipto/programs/bica/), однако он позиционируется как открытый и находящейся на ранней стадии. Впрочем, возможно, что есть мощные ИИ проекты, о которых мы знаем не больше, чем знали обычнее граждане о Манхэттенском проекте в годы Второй мировой войны.
Другой вариант – маленькая группа талантливых людей создаст ИИ раньше, чем правительства поймут ценность – и более того, опасность, исходящую от ИИ. Однако ИИ, созданный отдельным государством, скорее будет национальным, а не общечеловеческим.
2.6.17. Вероятность появления ИИ.
Вероятность глобальной катастрофы, связанной с ИИ, является произведением вероятностей того, что он вообще когда-либо будет создан и того, что он будет применён неким ошибочным образом. Я полагаю, что тем или иным способом ИИ будет создан в течение XXI века, если только никакая другая катастрофа не помешает технологическому развитию. Даже если попытки построить ИИ с помощью компьютеров потерпят крах, всегда есть запасный вариант: а именно, успехи в сканировании мозга позволят создавать его электронные копии, и успехи в генетике – создавать генетически усовершенствованные человеческие мозги. Электронные копии обычного мозга смогут работать в миллион раз быстрее, а если при этом это будут копии высоко гениального и правильного обученного мозга, причём они будут объединены тысячами в некий виртуальный НИИ, то, в конечном счёте, мы всё равно получим интеллект, в миллионы раз превосходящий человеческий количественно и качественно.
Затем имеется несколько временных стадий, на которых ИИ может представлять опасность:
Начальный этап:
1) Момент первого запуска: риск неконтролируемого размножения.
2) Момент, когда владелец первого ИИ осознаёт своё преимущество в том, что может применить его как абсолютное оружие для достижения любых целей на Земле. Хотя эти цели могут быть благими по крайне мере для некоторой людей, есть риск, что ИИ начнёт проявлять некорректное поведение в процессе распространения по Земле, тогда как в лаборатории он вёл себя идеально.
3) Момент, когда этот владелец осознаёт, что даже если он ничего не делает, кто-то другой очень скоро создаст свой ИИ и может использовать его для достижения каких-то других целей на Земле, и в первую очередь – для того, чтобы лишить нашего владельца способности использовать свой ИИ в полную силу. Это побуждает создавшего ИИ первым попытаться остановить другие ИИ проекты. При этом он оказывается перед дилеммой: применить ещё сырой ИИ или опоздать. Это создаёт риск применения и с невыверенной системой целей.
4) Следующая фаза риска – борьба между несколькими ИИ за контроль над Землёй. Опасность в том, что будет применяться много разного оружия, которое будет воздействовать на людей.
Понятно, что весь начальный этап может уместиться в несколько дней.
Этап функционирования:
5) На этом этапе основной риск связан с тем, что система целей ИИ содержит некую неочевидную ошибку, которая может проявиться неожиданным образом спустя многие годы. (См текст «Таблица критический ошибок Дружественного ИИ» Юдковски.) Она может проявиться или мгновенно, в виде внезапного сбоя, или постепенно, в виде некого процесса, постепенно вымывающего людей из жизни (вроде сверхнаркотика и безработицы).
Сейчас мы не можем измерить риск, создаваемый на каждом этапе, но ясно, что он не 100 процентный, но значительный, поэтому мы относим его в категорию «10 процентных» рисков Е1. С другой стороны, создание эффективного ИИ резко снижает все остальные глобальные риски, поэтому фактический вклад ИИ в вероятностную картину рисков может быть отрицательный – то есть его создание уменьшает суммарный глобальный риск.
2.6.18. Другие риски, связанные с компьютерами.
Эти риски связаны с тем, что некая жизненно важная компьютерная сеть перестаёт выполнять свои функции, или сеть, имеющая доступ к опасным ресурсам, выдаёт некую опасную команду. В настоящий момент компьютеризация Земли пока ещё не достигла такого уровня, чтобы само существование людей зависело от исправной работы компьютерной сети, однако отдельные сложные системы, такие, как космическая станция МКС неоднократно оказывались под угрозой гибели или экстренной эвакуации из-за сбоя в работе жизненноважных компьютеров. Вместе с тем уровень компьютеризации жизненноважных и опасных производств постоянно возрастает, а проживание в современном городе становится физически невозможно без непрерывной подачи определённых ресурсов, в первую очередь электричества, которое управляется компьютерами.
С другой стороны, компьютерные сети, чьё ошибочное поведение может запустить некий опасный процесс, уже существуют. В первую очередь сейчас речь идёт системах, контролирующих ядерные вооружения. Однако, когда появятся био и нано принтеры, ситуация станет гораздо опаснее.
Также ситуация станет опаснее, когда повсеместно будут распространены компьютерно управляемые роботы, вроде домашних слуг или игрушек, а также автоматизированные реальные армии.
Рост населения Земли потребует всё более сложной самоподдерживающееся системы. Можно расположить по возрастающей системы, всё более зависимые от постоянного управления: деревня – город – небоскрёб – самолёт – космическая станция. Очевидно, что всё большая часть цивилизации перемещается вверх по этой шкале.
Компьютерные системы опасны в смысле глобальных катастроф тем, что могут быть средой, в которой может происходить неограниченная саморепликация (вируса), и тем, что они имеют доступ в любую точку мира.
Кроме того, компьютеры подвержены не только вирусам, но и неочевидным ошибкам в алгоритмах и в программных реализациях их. Наконец в них возможен такой процесс, как спонтанный переход в сверхсложной системе, описываемый синергетикой.
2.6.19. Время возникновения ИИ.
Существуют оценки, которые показывают, что компьютеры обретут силу, необходимую для ИИ, в 2020 – 2030 годы. Это примерно соответствует оценкам, даваемым для времени возникновения опасных биотехнологий. Однако здесь есть гораздо больший элемент неопределённости – если поступательный прогресс в биотехнологии очевиден, и каждый его этап можно отслеживать по научным публикациям, соответственно, измеряя степень риска, то возникновение ИИ связано не столько с накоплением неких количественных характеристик, сколько, возможно, с неким качественным скачком. Поскольку мы не знаем, когда будет этот скачок, и будет ли вообще, это влияет на кривую погодовой плотности вероятности возникновения ИИ, сильно размазывая её. Тем не менее, в той мере, в какой ИИ зависит от накопления идей и доступа к ресурсам, эта кривая будет также носить экспоненциальный характер.
Моя оценка, согласующаяся с мнением Винжа, Бострома и других предсказателей ИИ, состоит в том, что ИИ будет создан в некий момент времени между настоящим моментом и 2040 годом, причём, скорее всего, уже к 2020-м годам он будет создан. Эта оценка основана на экстраполяции существующих тенденций роста производительности суперкомпьютеров. Она также подтверждается тенденциями в технологиях сканирования человеческого мозга, которые тоже дадут ИИ, если не получится сделать его на компьютерах.
Однако за счёт большей неопределённости с ИИ, чем с биотехнологиями, вероятность создания его в ближайшее время, ближайшие 10 лет, выше, чем вероятность создания биопринтера.
Помешать возникновению ИИ могут:
• Системы контроля (но в свою очередь, вряд ли будут эффективны без ИИ)
• Отскок прогресса назад
• Теоретические трудности на этом пути.
Выводы: риск, который несёт в себе развитие технологий ИИ крайне велик и систематически недооценивается. Это область гораздо более непредсказуема, чем даже биотехнологии. Вместе с тем, ИИ является, возможно, нашей наилучшей защитой от прочих опасностей. Время возможного созревания сильного ИИ подобно времени возможного созревания сильного и доступного биологического оружия – примерно 10 лет с настоящего момента, и эти процессы относительно не зависят друг от друга. Возможно, им предстоит столкнуться.
2.7. РИСКИ, СВЯЗАННЫЕ С РОБОТАМИ И НАНОТЕХНОЛГИЯМИ.
Основное опасностью в отношении нанотехнологий считается распространение нанотехнологической «серой слизи», то есть микроскопических саморазмножающихся роботов. Основные её признаки таковы:
1. Миниатюрность
2. Способность к саморазмножению
3. Способность к самостоятельному распространению по всей Земле.
4. Способность незаметно и эффективно уничтожать крупноразмерную технику и живые организмы
5. Анонимность
6. Дешевизна
7. Автономность от человека (солдата).
Серая слизь и основанное на ней нанотехнологическое оружие является высшим выражением этих принципов, объединяющих их все вместе. Однако вовсе не обязательно объединять все до единого эти принципы, чтобы получить опасное и эффективное оружие – достаточно реализовать некоторые. Разные комбинации этих принципов дают разные виды роботехнического оружия. Рассмотрим в начале опасных роботов.
2.7.1. Робот-распылитель
Основная проблема с биологическими и химическими ядами – это трудности их анонимного эффективного распыления. Эту задачу мог бы решить миниатюрный робот размером с птицу (например, авиамодель). Множество таких роботов могло бы быстро и незаметно «опылить» огромную территорию.
2.7.2. Самовоспроизводящийся робот.
Хотя считается, что для эффективного самовоспроизводства нужны молекулярные нанотехнологии, возможно, что это не так. Тогда вполне макроразмерный робот мог бы размножаться, используя природные энергию и материалы. Этот процесс может быть двухступенчатым и состоять из робота-матки и роботов-воинов, которых она производит, но которые её обслуживают. Важно подчеркнуть, что речь идёт не об искусственном интеллекте, а о вышедшей из-под контроля системе с ограниченными интеллектом, неспособным к самосовершенствованию. Большие размеры и неинтеллектуальность делают её более уязвимой, а уменьшение размеров, повышение скорости воспроизводства и повышение интеллектуальности – более опасной. Классический пример в биологическом царстве такой угрозы – саранча. Возможно, что такой робот будет содержать биологические элементы, так как они помогут быстрее усваивать вещества из окружающий среды.
2.7.3. Стая микророботов.
Такие микророботы могли бы производится как оружие на огромных фабриках, в роде современных заводов по производству чипов, и даже с применением тех же технологий – литография теоретически позволяет делать подвижные части, например, небольшие маятники. При весе в несколько миллиграмм такие микророботы свободно могли бы летать в атмосфере. Каждый такой робот мог бы содержать достаточно яда, чтобы убить человека или замкнуть контакт в электротехническом устройстве. Чтобы атаковать всех людей на Земле потребовалось только несколько десятков тонн таких роботов. Однако если они будут производиться по технологиям и ценам современных чипов, такое количество будет стоить миллиарды долларов.
2.7.4. Армии крупных боевых роботов, выходящие из-под контроля.
Хотя армия США определённо нацелена на полную автоматизацию и замену людей роботами, до этой цели ещё не менее десяти лет, а вероятно, и значительно больше. Теоретически некая роботизированная армия может получить неверный приказ, и начать атаковать всё живое, став при этом недоступной для отмены команд.
2.7.5. Неограниченное распространение нанороботов.
В отношении нанороботов, равно как и ИИ, нам трудно оценить вероятность их возникновения и распространения, потому что их пока у нас нет. Вместе с тем, создание нанороботов имеет прецедент в области биологии, а именно, сама живая клетка является своего рода нанороботом. Белки являются самособирающимися универсальными механизмами, ДНК – управляющим компьютером. В этом смысле и искусственный интеллект имеет прецедент в смысле человеческого разума и мировой науки как образа сверхразума. Юдковски предполагает, что от наноробота нас отделяет не время или нехватка неких промежуточных стадий, а только отсутствующее знание. То есть, обладай мы достаточным знанием, мы могли бы собрать такую последовательность ДНК, при исполнении которой клеткой образовался бы наноассемблер – то есть робот, способный собирать других роботов, а значит, способный к саморазмножению. Часто говорят о нанофабриках – то есть неких заводах, которые могут создавать произвольные конструкции из атомов и молекул. Однако нанофабрика и наноассемблер являются взаимозаменяющими, потому что на универсальной нанофабрике можно создать наноассемблер, и наоборот.
С одной стороны, идея о том, что у каждого дома будет нанофабрика вместо микроволновки, производящая всё, ему нужное, выглядит красивой, но с другой, она требует реализации мер защиты, больших, чем если бы речь шла о ядерном реакторе на дому. Развитые системы защиты уже предлагаются, и они включают в себя непрерывное зашифрованное подключение нанофабрики к сети, и сложный самоконтроль нанофабрики. Но, увы, опыты по созданию абсолютно защищённой электроники, оптических дисков, файлов – все провалились. Думается, причина этого в том, что количество «мозгов» на стороне хакеров гораздо больше, чем на стороне производителя, а задача хакера проще – не предусмотреть все возможные уязвимости, а найти одну их них. Распространение тех или иных систем искусственного интеллекта тоже сделает подбор ключей доступа к нанофабрикам проще.
Нанотехнологии позволяют создавать очень эффективное оружие, которое способно истребить всех людей даже без неограниченного саморазмножения. Грубо говоря, стая нанороботов может распространиться по некой местности – или все Земле – обнаружить всех людей на ней, прилипнуть к ним, проникнуть в кровоток и затем нанести синхронизировано смертельный удар. Эта стая опаснее слепого биологического оружия, так как против неё не действуют карантины и её невозможно обнаружить ненантотехнологическими средствами до начала атаки. И нет пустого рассеивания экземпляров. Поэтому на 10 миллиардов людей с запасом хватит 100 миллиардов нанороботов, суммарным весом в несколько грамм.
Далее, если робототехника будет развиваться линейно, без грандиозного скачка – а такой скачок возможен только в случае возникновения сверхсильного искусственного интеллекта – то промежуточные стадии будут включать автономных универсальных роботов всё меньших размеров. Сейчас мы можем видеть начальные фазы этого процесса. Даже самые крупные системы сейчас не вполне автономны, хотя уже есть андроиды, способные выполнять простую работу и автомобили, самостоятельно ездящие по простому маршруту. Есть и более примитивные механизмы с минимальной массой в несколько грамм (например, маленькие вертолётики) и экспериментальные модели отдельных частей. При этом скорость прогресса в этой области очень высока. Если в 2003 году большинство автономных автомобилей не могло тронуться с места, то в 2007 они буду выполнять задания по езде в городе с перекрёстками.
Поэтому можно сказать, что до нанороботов будет ещё несколько стадий. Это – автономные машины-танки, автономные андроиды (размером с человека или собаку), автономные роботы размером с крысу, с насекомое, микророботы в доли миллиметра и нанороботы. Нам важно определить, с какого этапа такие роботы могут быть опасны для человечества. Понятно, что даже несколько самоуправляющихся танков не опасны. Однако уровень опасности возрастает тем больше, чем больше и дешевле таких роботов можно производить, а также чем легче им распространяться по свету. Это возможно по мере уменьшения их размеров и автоматизации технологий производства, особенно, технологий самовоспроизводства. Если микророботов размером с комара можно будет штамповать по несколько центов за штуку, то они уже будут представлять серьёзную силу. В классическом романе Станислава Лема «Непобедимый» «нанороботы» имеют размеры в несколько миллиметров, но способны организовываться в сложные структуры. Далее, в последнее время, в связи с экспансией дешёвой китайской рабочей силы, на второй план отошёл тот факт, что даже роботы обычных размеров могут участвовать в производстве сами себя в силу всё большей автоматизации производства на фабриках. Процесс этот постепенно идёт, но он тоже может иметь точку резкого экспоненциального перегиба, когда вклад роботов в собственное производство превзойдёт вклад людей. Это приведёт к значительному удешевлению такого производства, а, следовательно, и к возможности созданий армий летучих микророботов. Одна из возможных технологий производства микророботов – печать их, как микросхем в литографическом процессе с вытравливанием подвижных частей.
Взаимный удар такими армиями нанороботов может по катастрофичности последствий превосходить обмен ядерными ударами. Поверить в это трудно, так как трудно думать, что нечто очень маленькое может нанести огромный ущерб. (Хотя эволюции шла в ту сторону, что всё меньшее оружие имеет всё большее разрушающую силу, и атомная бомба в этом ряду.) Удар микророботами может не быть таким зрелищным, как взрыв той же атомной бомбы, но может давать результат как идеальная нейтронная бомба в духе «школа стоит, а в ней никого».
Микророботы могут применяться и как тактическое оружие, и тогда они будут бороться друг с другом и пунктами управления, и как оружие устрашение и мести, каковую функцию сейчас выполняют стратегические ядерные силы. Именно в этом качестве они могут оказаться угрозой для всего человечества, в случае случайного или намеренного применения.
При этом микророботы превосходят стратегические силы – они позволяют организовать более незаметную атаку, более внезапную, более анонимную, более дешёвую и наносящую больший ущерб. Правда, им не достаёт зрелищности, что может ослабить их психологическое воздействие – до первого реального боевого применения.
Эрик Дрекслер оценивает необходимое количество атомов в нанороботе- репликаторе, который будет представлять собой нечто вроде минизавода с конвейерной лентой и микро-станками, в один миллиард. Каждый манипулятор сможет осуществлять не менее миллиона операций в секунду, что типично для скорости работы ферментов. Тогда он сможет собрать устройство в миллиард атомов за 1000 секунд – то есть собрать самого себя. Проверкой этого числа является то, что некоторые бактерии могут делиться со скоростью раз в 15 минут, то есть те же 1000 секунд. Такой робот репликатор мог бы за 1 сутки размножится до массы в 1 тонну, а полностью поглотить массу Земли за 2 дня. Катастрофа этого рода называется «серой слизью». В связи с малостью размеров нанороботов в течение критически важных первых суток это процесс не будет иметь никаких внешних проявлений, в то время как триллионы нанороботов будут разноситься ветром по всей Земле. Только прямое попадание ядерной бомбы в очаг распространения в самые первые часы могло бы помочь. Есть предложения сделать репликаторы неспособными размножаться во внешней среде, в которой нет некого критически важного очень редкого химического элемента. Подробнее см. переведённую мною статью Р. Фрейтеса «Проблема серой слизи», где рассмотрены различные сценарии распространения опасных нанороботов и защитные контрмеры. Фрейтас отмечает, что нанороботы будут выдавать себя по интенсивному выделению тепла в процессе воспроизводства, поэтому важно наладить мониторинг окружающей среды на предмет странных температурных аномалий. Кроме того, размножающиеся нанороботы будут нуждаться в энергии и в материале, а источником и того, и другого является только биомасса.
Р. Фрейтас выделяет несколько возможных сценариев серой слизи:
• «Серый планктон» - нанороботы, размножающие в океане и пользующиеся ресурсами гидратов метана на дне. Они могу уничтожить морскую биосферу и привести к выделению парниковых газов в атмосферу. Морская биосфера крайне важна как поглотитель СО2, генератор кислорода и пищи для людей.
• «Серая пыль» - эти нанороботы размножаются в воздухе, создавая непроницаемый заслон в атмосфере, ведущий к «ядерной зиме».
• «Серый лишайник» – эти нанороботы размножаются на скалах.
• «Серая слизь, питающаяся биомассой» – как самый неприятный вариант.
Прямое попадание ядерной бомбы в колбу с таким репликатором могло бы уничтожить их, но даже близкое попадание – только рассеит.
Бактерия в своём росте ограничена наличием питательной среды. Если универсальный репликатор будет знать, как заменять одни атомы другими, он может потреблять почти любое вещество, кроме чистых сред из одного материала. Они могут быть также очень всеядны в выборе источника энергии, если будут обладать информацией о том, как использовать разные источники.
2.7.7. Вероятность возникновения нанороботов и возможное время для этого события.
Возникновение микророботов весы в граммы и доли грамма выглядит практически неизбежным и все технологии для этого есть. Однако они не будут репликаторами. (Прогресс в области миниатюризации описывается, по некоторым данным, коэффициентом в 8 % в год.)
Однако настоящие нанороботы, меньше бактерии размером, находятся ещё в далёкой перспективе. Если они будут созданы силами ИИ, то весь возможные вред от них можно списывать на сам ИИ. (Но всё же есть вариант, когда ИИ оказался достаточно умным, чтобы создать нанороботов, и достаточно глупым, чтобы не смочь их контролировать). И даже и без ИИ всё более мощные компьютеры будут давать возможность всё точнее и всё быстрее вычислять детали будущих микро- и нанороботов. Поэтому мы можем ожидать, что прогресс в создании нанороботов будет ускоряться.
Однако состояние дел в отрасли таково, что создание нанороботов-репликаторов в ближайшие годы маловероятно. Поэтому можно предположить, что если нанороботы и будут созданы без помощи реального ИИ, это произойдёт в промежуток 2020-2040 годы. Если сравнивать нанотехнологии с биотехнологиями и ИИ, мы увидим, что эти технологии гораздо менее зрелы, и отстают лет 20-30 от свои собратьев. Поэтому шансы на то, что сильные нанотехнологии (то есть нанорепликаторы) будут созданы до ИИ, и до биопринтера не очень велики.
Выводы: мы можем столкнуться с проблемами угроз существованию от микророботов ещё до того, как реальные нанороботы будут сделаны. Чем мельче, дешевле и способнее к самовоспроизведению микророботы, тем больший ущерб они способны нанести. И тем больше субъектов может ими обладать.
2.8. ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ ПРОВОЦИРОВАНИЯ ЕСТЕСТВЕННЫХ ПРИРОДНЫХ КАТАСТРОФ.
Для многих природных катастроф, связанных с длительным накоплением и внезапным высвобождением энергии, есть теоретическая возможность спровоцировать их определёнными техническими воздействиями. При этом для спуска запуска процесса требуется гораздо меньше энергии, чем затем в нём выделяется.
(Были даже проекты вызвать взрыв Солнца с помощью атаки водородными бомбами. Но это не реально, так как процесс не может стать самоподдерживающимся. Скорее, проще было бы взорвать Юпитер, где много не сгоревшего гелия-3, но и это, скорее всего, нереально исходя из сегодняшних знаний и возможностей.) Другой способ провоцирования природных катастроф – разрушение естественных природных защит. Естественно, мы можем создавать катастрофы только на Земле или в ближайшем космосе.
2.8.1. Отклонение астероидов.
Будущие космические технологии позволят направлять астероиды как от Земли, так и к неё. Отклонение астероида позволяет организовать криптоатаку на выбранную страну. Однако в этом случае речь не идёт о глобальной катастрофе, ведущей к человеческому вымиранию. На близких к Земле орбитах нет астероидов, которые могли бы привести к гарантированному вымиранию людей (то есть, по крайней мере, более 10 км в диаметре, а то и значительно больше – см. далее главу о силе взрыва астероидов) и которых можно было бы легко отклонить. Чтобы отклонить астероид с неудобной орбиты (например, в главном поясе астероидов), потребовалось бы огромное количество энергии, что сделало бы всю затею бессмысленной и легко обнаружимой. Впрочем, есть шанс, что сверхкомпьютеры позволят устроить высокоточный космический бильярд, где бесконечно малое воздействие на один небольшой «камушек», которые попадает в другой и так далее, создаёт нужный эффект. Однако это потребует десятков лет на реализацию. Легче отклонить комету, находящуюся в облаке Оорта (и там есть тела подходящих размеров), однако пройдёт десятки или, скорее, сотни лет, пока она достигнет орбиты Земли. Таким образом, полное вымирание человечества в результате искусственного отклонения астероида в XXI веке крайне маловероятно.
2.8.2. Создание искусственного сверхвулкана.
Чем глубже мы проникаем в земную кору разными способами – сверлим её, проплавляем или взрываем – тем больше наши возможности вызвать всё более сильное искусственное вулканическое извержение. Для того, чтобы спровоцировать извержение сверхвулкана масштабом в Йеллоустоун, достаточно пробить 5 км коры. При этом природа загазованной магмы такова, что она будет пробиваться сквозь маленькую щель, как вода сквозь дамбу: всё более её размывая. То есть воздействие, которое вызовет сверхизвержения может быть минимальным, можно сказать, информационным.
Однако следует помнить, что примерно в 3000 (?)км под нами, под мантией находится резервуар сжатой и перегретой жидкости с огромным количеством растворённого в ней газа – жидкое земное ядро. Если дать выход даже малой части его энергии и газов на поверхность, то это гарантировано уничтожит всю земную жизнь эффективнее всех других способов.
Далее, неизвестно, насколько само ядро готово в таком масштабе извергнуться на поверхность. Крупные площадные извержения были на плато Декан в Индии и у нас в Сибири и связываются со значительными вымираниями живых организмов. Магма поднимается по каналам-плюмам, например, на Гавайях. Однако это не каналы для вещества ядра; считается, что вверх поднимаются горячие твёрдые куски мантии за счёт более высокой плавучести, которые становятся жидкими только около поверхности за счёт падения давления. И хотя жидкое железо в ядре слишком тяжёлое, чтобы подниматься на поверхность, его могло выбрасывать давление растворённых в нём газов, если бы подходящий сквозной канал образовался – как при открывании шампанского.
Земная цивилизация будет всё глубже вгрызаться в землю с целью добычи полезных ископаемых, энергии и экспериментов. Это приведёт к тому, что риск катастрофических извержений будет постоянно расти.
Уже предлагался проект проплавления земной коры с помощью огромной капли (тысячи тонн) расплавленного железа в смеси с греющими его радиоактивными элементами. Высокотемпературные роботы-горнорабочие также могут стать таким инструментом. Японцы планирую просверлить дно океана вплоть до мантии. В Индонезии при бурении по ошибке создали грязевой вулкан, который затопил значительные площади и продолжает усиливаться.
Уже предлагался проект бомбы против бункеров, которая, упав, вгрызается в поверхность, как самоходный проходческий щит и продвигается вглубь. Таким же образом могли бы действовать и взрыватели вулканов. Такое устройство может быть дешевле ядерной бомбы и доставлено на место незаметным образом.
Любое оружие, которое пригодно для борьбы с бункерами глубокого залегания, может применяться и для пробуждения вулканов. Одним из вариантов такого оружия (и стоящий на вооружении сейчас в США) является последовательная атака ядерными зарядами, создающая всё более глубокий кратер.
Возможно, что недостаточно пробудить один сверхвулкан или просто крупный вулкан для глобальных последствий, но если пробудить их все сразу, то вымирание становится вероятным. На Земле известно сейчас 20 сверхвулканов и 500 обычных вулканов.
Возможно, что возникнет практическая необходимость пробудить вулкан, чтобы охладить атмосферу его выбросами, если проблема глобального потепления станет очень остро.
Вероятность и время такого события. В настоящий момент эта вероятность крайне мала, так как помимо вулканов есть масса привлекательных объектов для диверсий, даже если бы достаточно опасное оружие попало в руки террористов. Но в случае мировой войны взрыв супервулкана мог бы стать последним оружием для проигрывающей стороны. Технологические возможности для взрыва вулкана медленно растут с развитием технологий бурения и ядерного оружия. Молекулярное производство и нанотехнологии могли бы дать шанс для дешёвого создания мощных машин, необходимых для вскрытия вулканов. Но овладение нанотехнологиями даст более простые пути к тем целям, которые можно было бы реализовать с помощью супервулкана.
2.9. ТЕХНОЛОГИЧЕСКИЕ РИСКИ, СВЯЗАННЫЕ С ПРИНЦИПИАЛЬНО НОВЫМИ ОТКРЫТИЯМИ.
2.9.1. Неудачный физический эксперимент.
Наиболее опасным является тот вариант, при котором значительное открытие совершится совершенно внезапно.
Высказывались опасения, что опыты по созданию микроскопических чёрных дыр на ускорителях, конденсации нейтронов и другие высокоэнергетичные эксперименты могут привести или к коллапсу земного вещества или к колоссальному взрыву, который мгновенно истребит жизнь на Земле. Основной парадокс здесь в том, что безопасность любых экспериментов обосновывается тем, что мы знаем, что получится в результате, а цель эксперимента – в том, чтобы узнать что-то новое. Иначе говоря, если мы ничего нового не узнаем, то какой смысл ставить физические эксперименты, а если мы можем узнать что-то новое, то это может быть опасно. Может быть, молчание вселенной объясняется тем, что все цивилизации рано или поздно осуществляют некий эксперимент по «извлечению энергии из вакуума», а в результате от планеты остаются одни головешки. Другая точка зрения состоит в том, что раз похожие явления бывают в природе, например, при бомбардировке космическими лучами атмосферы, то безопасно их повторять. Однако можно сказать, что, повышая уровень энергий, мы рано или поздно можем дойти до некой опасной черты, если она есть.
Опасность экспериментов прямо связана с возможностью наличия неизвестных нам фундаментальных физических законов. Вопрос этот трудно решить вероятностным образом. В 20 веке уже было несколько открытий фундаментальных законов, и некоторые привели к созданию новых опасных видов оружия – хотя к концу 19 века картина мира казалась завершённой. Назову только открытия радиоактивности, квантовой механики, теории относительности, а в последнее время – тёмной материи и тёмной энергии.
Кроме того, есть ряд экспериментальных данных и теорий, которые носят разной степени характер непроверенности – но многие из них предполагают физические эффекты, которые могут быть опасны. Например, иногда мелькают сообщения о трансмутации химических элементов без радиоактивности – но разве это не способ наработать плутоний для атомной бомбы? Или, если такая трансмутация возможна, то не приведёт ли она к цепной реакции трансмутации по всей Земле?
Считается, что современные эксперименты на ускорителях не дотягивают на многие порядки до энергий, которые возникают в результате естественных столкновений космических лучей, происходящих в атмосфере Земли. Однако в книге Джона Лесли приводится оценка, что если энергия ускорителей будет расти с нынешней скоростью, то опасные уровни энергии будут достигнуты к 2100 году. Он показывает, что в течение всего ХХ века каждые 10 лет энергия, достигаемая на ускорителях, возрастала в 10 раз. И хотя сейчас обычные ускорители подошли к своему физическому пределу по размерам, есть принципиально другой способ достигать тех же энергий на установках размером с рабочий стол – речь идёт о разгоне частиц в ударной волне импульсного лазера. В тоже время программа СОИ предполагала создание импульсных лазеров колоссальной силы, запитывавшихся от ядерных взрывов.
Дж. Лесли, будучи профессиональным астрофизиком, даёт подробный анализ различных теоретически возможных опасных экспериментов. Это:
1) Переход вакуума в новое метастабильное состояние. Есть гипотеза о том, что вакуум, будучи нулевым энергетическим уровнем всех физических полей, не является окончательным возможным таким уровнем. Точно так же уровень воды горного озера не является настоящим уровнем моря, хотя вода в озере может быть широкой и гладкой. И достаточно сильный всплеск волн в таком озере может привести к разрушению окружающих озеро барьеров, что приведёт к излиянию вод озера на уровень моря. Точно также, возможно, что достаточно высокоэнергетичный физический эксперимент может создать область вакуума с новыми свойствами, которая начнёт неограниченно расширяться.
2) Образование объектов, состоящих из гипотетической кварковой материи, способной присоединять к себе атомы обычного вещества. Поскольку в её образовании играют важную роль так называемые «странные кварки», то могущая получиться в результате устойчивая материя называется ‘странной материи’, а её частицы – stranglets. Разработана идея установки, которая способна порождать и накапливать кусочки этой материи, а также использовать падение обычной материи на неё для получения энергии. К сожалению, авторы идеи ничего не говорят о том, что будет, если сгусток странной материи покинет ловушку и начнёт неограниченно поглощать вещество Земли.
3) Искусственный Большой взрыв. Российский учёный А.Линде разработал теорию космологической инфляции, из которой следует, что начальная масса Вселенной составляла только 10-5 степени грамм, а вся остальная видимая масса образовалась в процессе расширения за счёт отрицательной энергии гравитации. Хотя мы не можем пока достичь необходимого уровня плотности энергии в наших лабораториях, чтобы повторно запустить этот процесс, сам требуемый уровень энергии невелик.
4) Опыты по изменению гравитации. Есть сообщения об опытах Подклетнова об изменении гравитации – но не могут ли такие опыты дестабилизировать столб вещества земной коры под установкой и вызвать землетрясение?
5) Конденсация холодных нейтронов в динейтроны и более крупные образования. Гипотетически может вызвать цепную реакцию конденсации всего земного вещества.
6) Опасные геофизические эксперименты с глубоким бурением или проникновением сквозь кору, чреватые образованием сверхвулкана и дегазацией глубинных слоёв Земли.
7) Научное сообщество детально обсуждает риски образования микроскопических чёрных дыр, которые должны возникать при столкновении частиц на последних моделях ускорителей в ближайшем будущем. Образование микроскопической чёрной дыры, даже если она будет устойчива, не должно привести к немедленному засасыванию в неё всего вещества Земли, так как размеры её будут около размеров атома, а вокруг неё будет микроскопический аккреционный диск, который будет дозировать поступление вещества. Но такая микро-чёрная дыра неизбежно упадёт в сторону центра Земли, проскочит его и начнёт совершать колебательные движения. Если её масса будет достаточно велика, она может образовать тонкий канал, по которому сжатое вещество земных недр начнёт поступать на поверхность – а опыт разрушения плотин говорит, что достаточно даже тончайшего канала, чтобы он постепенно расширился. Неверно полагать, что С.Хокинг «доказал», что чёрные дыры испаряются. Хокинг предложил интересную теорию, никаких экспериментальных свидетельств в пользу которой нет. Есть альтернативные теории, с многомерным пространством, где микроскопические чёрные дыры имеют больший горизонт и не испаряются. Многие важные физические открытие были сделаны случайно, там, где их никто не искал, например, радиоактивность. Микро-чёрные дыры, которые могли бы образовываться при столкновении космических лучей с атмосферой, отличаются от дыр, которые будут создаваться в ускорителе, тем, что будут иметь ненулевой момент движения, и с большой скоростью улетать в пространство, не задерживаясь внутри планеты. Наоборот, дыры, возникающие в ускорителе, будут иметь момент, близкий к нулю за счёт взаимной нейтрализации моментов пучков и будут иметь гораздо большие шансы остаться в Земле.
8) Возникновение магнитного монополя на большом адроном колайдере в Церне. Магнитный монополь может ускорять распад протонов, приводя к огромному выделению энергии, однако в отчёте ЦЕРН по безопасности предполагается, что даже если такой монополь возникнет, он быстро покинет Землю. (Отчёт церн о коллайдере и проблемах его безопасности. STUDY OF POTENTIALLY DANGEROUS EVENTS DURING HEAVY-ION COLLISIONS AT THE LHC:REPORT OF THE LHC SAFETY STUDY GROUP http://doc.cern.ch/yellowrep/2003/2003-001/p1.pdf)
Погодовая вероятность опасного физического эксперимента растёт с течением времени, так как всё более высокоэнергетичные установки вводятся в строй и изобретаются новые способы достижения высоких энергий, а также применения их к объектам, к которым они обычно не применяются в природе. Кроме того, растёт разнообразие возможных физических экспериментов, которые могут привести к глобальной катастрофе.
Интересный вариант нового глобального риска предложен в статье (The Late Time Behavior of False Vacuum Decay: Possible Implications for Cosmology and Metastable Inflating States http://arxiv.org/abs/0711.1821 русский пересказ: «Астрономы разрушат Вселенную» http://www.gazeta.ru/science/2007/11/23_a_2333388.shtml ) В ней говорится, что скорость распада квантовых систем зависит оттого, наблюдаются они или нет (проверенный факт), а затем это обобщается на проблему наблюдения устойчивости вселенной как целого в связи с проблемой так называемой тёмной энергии. «Измерив плотность тёмной энергии, мы вернули её в начальное состояние, по сути, сбросив отсчёт времени. А в этом начальном состоянии вакуум распадается в соответствии с «быстрым» законом, и до критического перехода к «медленному» распаду ещё очень далеко. Короче говоря, мы, возможно, лишили Вселенную шансов на выживание, сделав более вероятным её скорый распад».
Выводы: поскольку всегда в экспериментах имеет место доля риска, имело бы смысл отложить их до того момента создания развитого ИИ. Часть экспериментов имеет смысл делать не на Земле, а далеко в космосе.
2.9.2. Новые виды оружия, новые источники энергии, новые среды распространения и дальнодействия.
Хотя сами новые принципы неизвестны, можно очертить наиболее опасные черты любого абсолютного оружия.
А) выделение огромного количества энергии
Б) способность к саморепликации
В) способность быстро действовать на всю территорию Земли.
Г) дешевизна и лёгкость производства в кустарных условиях.
Д) возможность достижения интеллектуального превосходства над людьми
Е) способ управлять людьми
Любой физический эффект, способный породить технологию, соответствующую хотя бы одному из приведённых выше критериев, является потенциальным кандидатом в абсолютное оружие.
2.10. РИСКИ, СВЯЗАННЫЕ С ОСВОЕНИЕМ КОСМИЧЕСКОГО ПРОСТРАНСТВА.
В этой главе мы обсудим все возможные применения космических технологий для уничтожения земной жизни.
2.10.1. Атака на Землю с помощью космического оружия.
Теоретически возможно облучение планеты с орбиты гамма-лучами (нечто вроде искусственного гамма-всплеска), нейтронами или другими опасными излучениями, проникающими сквозь атмосферу, что приведёт к стерилизации поверхности, с помощью специальных спутников или взрывов бомб. Возможно обрушение на планету дождя из роботов-метеоритов. В качестве космического оружия может применяться разгон космического корабля до околосветовой скорости и направление его на планету. Любой успех в создании высокоскоростных космических ракет и тем более звездолётов создаст мощнейшее оружие против планетной жизни, так как любой звездолёт можно разогнать и направить на планету.
Облучение Земли возможно и при взрыве какой-нибудь экспериментальной установки на орбите, но только одного полушария.
Мы можем освоить космос быстро с помощью саморазмножающихся роботов или нанороботов. Но при этом, дав им команду размножаться в космическом пространстве и строить для нас там огромные сооружения с использованием материала астероидов и Луны, мы можем потерять над ними контроль. Однако в этом случае опасности для Земли из космоса придут после того, как мощные робототехнические технологии будут созданы, а значит, после того, как эти технологии начнут угрожать нам на Земле.
Мы уже обсуждали выше проблемы отклонения астероидов.
Ещё один способ космической атаки – это развернуть в космосе гигантское зеркало, которое будет направлять на Землю солнечные лучи. Но сделать его без помощи самовоспроизводящихся роботов трудно, а защитится от него относительно легко, так что это очень маловероятный вариант.
Выводы: космические атаки маловероятны, потому что их перекрывают более быстрые процессы развития средств разрушения на Земле. Но терять из виду этот риск не стоит.
2.10.1. Ксенобиологические риски.
Риски, состоящие в том, что на Землю может быть занесена жизнь из космоса, рассматривались НАСА всерьёз, начиная с момента полёта на Луну. Хотя можно было утверждать, что поверхность Луны стерильна с очень высокой вероятностью, астронавты, вернувшиеся с Луны, были подвергнуты карантину. Это демонстрирует грамотный подход к рискам с очень низкой вероятностью, которые, однако, могут принести неограниченно большой ущерб.
Предположения о том, что вирусы гриппа могут приходить к нам из хвостов комет является, очевидно, ложным, поскольку вирусы – это узкоспециализированные паразиты, которые не могут существовать без хозяев. Реальный риск мог бы представлять высоко всеядный микроорганизм с химической структурой, значительно отличающейся от земной, перед которым у земной биосферы не было бы защиты. По мере освоение космического пространства и организации возвращаемых экспедиций на различные космические тела, в том числе во время планируемой экспедиции на Марс, возрастает риск встретить такого незваного пришельца и по ошибке завезти на Землю.
Вместе с тем, такой риск на порядки меньше риска создания на Земле аналогичного опасного микроорганизма или синтетической жизни (анимата).
Архипов на Украине исследует возможность так называемой «космической археологии» на Луне. Он предполагает, что Луна могла бы быть идеальным местом для поисков следов древних посещений земли космическими кораблями инопланетян и предлагает искать на Луне регулярные структуры, которые могли бы быть их следами. Таких следов по официальным данным пока обнаружено не было. Тем не менее, если мы когда-либо встретим следы другой цивилизации, они могут содержать опасные технологии, устройства или компьютерные программы. Подробнее этот вопрос обсуждается в главе «риски, связанные с SETI», и всё, что там сказано про SETI, может быть верно и относительно возможных успехов космической археологии. (Вернор Виндж описывает в своём романе «Пламя над бездной» именно такой сценарий, когда космическая археология привела к обнаружению и запуску опасной компьютерной программы, развившийся в сверхсильный искусственный интеллект и создавший риск глобальной катастрофы.)
Отдельной статьёй можно обозначить риск воскрешения опасных бактерий из древнего замороженного льда на Земле.
2.10.2. Столкновение с превосходящими нас разумными силами.
И религиозные сценарии о втором пришествии, и идеи об инопланетянах, и идеи о том, что мы живём в мир, смоделированном разумными существами – все они имеют в виду, что есть превосходящие нас разумные силы, которые могут внезапно и необратимо вмешаться в нашу жизнь. Опять же трудно оценить вероятность такого рода событий из-за их нестатистической природы. И если мы можем уменьшить вероятность от любых экспериментов, просто запретив какие-либо эксперименты, то здесь от нас почти ничего не зависит. Чем шире человечество будет распространяться в пространстве и заявлять о себе, тем больше шанс, что рано или поздно оно кого-нибудь в нём встретит. Иначе говоря, вероятность встречи с другими разумными силами растёт. А по опыту земной истории, например, открытия Америки, мы знаем, что выдержать встречу с превосходящей культурой почти невозможно.
Здесь есть два варианта:
1) Внезапное столкновение с некой разумной силой по мере экспансии в космосе. Экспансия в космосе здесь подразумевает не только космические полёты, но и всё более дальнее прослушивание космоса радиотелескопами. См. далее главу риски SETI.
2) Мы уже давно находимся под контролем или даже созданы некой разумной силой.
Один из вариантов такого сценария – это столкновение не с самими разумными силами, а с последствиями их деятельности. Например, если некая инопланетная цивилизация произвела опасный эксперимент, который её погубил, его последствия могут распространяться по Вселенной. Это может быть или распад метастабильного вакуума, как пишет Д.Лесли, или распространение примитивных всё пожирающих нанороботов. В качестве примера можно привести то, что Марс и спутники Юпитера уже подверглись риску заражения земными микроорганизмами от межпланетных станций – хотя самого человеческого разума на них нет, и ещё долго не будет. Иначе говоря, опасные побочные эффекты от разумной жизни в космосе могут распространяться гораздо быстрее, чем сам разум.
Хотя у нас нет основания считать возможных инопланетян враждебными, принцип предосторожности заставляет нас допустить это. Наихудшим выражением враждебности было бы стремление таких инопланетян стерилизовать окружающий космос, например, чтобы в будущем не иметь конкурентов. Вероятность того, что именно в ближайшие 100 лет к нам прилетит экспедиция инопланетян, как это часто изображается в научной фантастике, очень мала, так как они могли прилететь и на сотни миллионов лет раньше или позже. Есть предположение, что такая враждебная цивилизация могла бы разбросать по всей галактики некие наблюдательные станции, названные в одном фантастическом романе «берсеркерами», которые в случае обнаружения радиосигналов от разумной жизни направляются к ней и атакуют её. Это предположение крайне маловероятно, так как, если цивилизация действительно продвинутая, она могла бы разбросать такие станции около каждой солнцеподобной звезды, и мы бы давно подверглись её атаке (но здесь нельзя исключить действия эффекта наблюдательной селекции, в силу которого мы могли дожить до XXI века только у той звезды, рядом с которой нет контролирующей станции, как бы мала ни была эта вероятность.)
Если мы живём в смоделированном мире (подробнее этот вопрос будет обсуждаться далее), то шансы того, что эту симуляцию «выключат», растут по мере того, как она становится всё более ресурсоёмкой. А она будет становиться более ресурсоёмкой по мере роста населения Земли, но особенно, когда люди начнут создавать свои компьютерами со своими симуляциями. Здесь срабатывает принцип: множество не может содержать само себя как подмножество.
Другая возможная причина выключения симуляции – завершение её работы после выполнения поставленной задачи. О природе таких задач возможны разные предположения. Например, будущий суперинтеллект может быть заинтересован в исследовании того, каковы были шансы его возникновения, и в силу этого моделировать различные варианты развития технологической цивилизации.
2.10.3. Риски, связанные с программой SETI.
SETI не относится к научной фантастике. Регулярные поиски внеземных сигналов идут с 60-х годов. В настоящий момент частный фонд ATA (http://www.seti.org/seti/projects/ata/ )планирует развернуть 350 радиотелескопов по всему земному шару с бюджетом в десятки миллионов долларов. Это означает, что если опасные сигналы в нашей галактике существуют, они могут быть пойманы в ближайшие несколько лет. Даже если они не будут содержать кода, направленного на уничтожение человечества, шок от такой встречи будет иметь значительные последствия для Земли. Программа поиска внеземных радиосигналов уже давно осознаётся как потенциально опасная. В Соединённых Штатах действует закон, запрещающий посылку сообщений в космос. Поэтому все подобные эксперименты проводятся на радиотелескопе в Евпатории. При этому существуют вычисления, показывающие, что вероятность того, что наше случайное сообщение к кому-нибудь попадёт – ничтожно мала. (См. статью А.Зайцева «Sending and searching for interstellar messages» http://fire.relarn.ru/126/docs/iac_07_a4_2.02.pdf). В этой статье допускается, что не только активное SETI, то есть посылание сигналов в космос, но и пассивное SETI, то есть чистое слушание, может быть опасно, поскольку получение и расшифровка сообщений может дать опасные технологии в руки неподготовленных индивидов и организаций. Однако есть и более жёсткий вариант рисков, связанных со слушанием космоса, которые возникают, если допустить, что ИИ возможен, и базовая программа для него может быть переслана по радио.
Нет нужды говорить, что для радиотелескопов SETI верен свой закон Мура, который означает, что их характеристики возрастают во много раз каждые несколько лет (от проекта к проекту). Это означает, что шансы успешного SETI экспоненциально растут.
В данной рассматриваются риски, связанные с программой пассивного поиска инопланетных сигналов (SETI). В статье предлагается сценарий возможной уязвимости и обсуждаются причины, по которым доля опасных сигналов может быть велика.
Идея о том, что пассивное SETI может быть опасно – не нова. Структурную схему инопланетной атаки через SETI сигналы предложил Хойл в своём романе «Андромеда». Согласно сюжету, астрономы принимают инопланетный сигнал, который содержит генетический код. На основании этого кода выращивают разумное существо – девушку Андромеду, которая обещает продвинутые технологии военным. Сначала люди не доверяют ей, но потом идут на всё большие уступки, видя, какие полезные идеи она выдвигает. Когда доверие к ней возрастает, её действия внезапно становятся враждебными, и её с трудом удаётся остановить. Этот сценарий остаётся фантастическим, потому что кажется невероятным, чтобы инопланетяне знали генетический код, уникальный для земной жизни, и, во-вторых, потому что мы не обладаем технологиями, позволяющими синтезировать новый живой организм по одному только его генетическому коду. Или, во всяком случае, не обладали ими вплоть до недавнего времени. Нынешние технологии прямого и обратного секвенсирования ДНК, а также успехи в создании изменённого кода ДНК с другим набором алфавита говорят о том, что ещё через 10 лет задача воссоздания живого существа по присланному из космоса коду была бы реализуема. Всё же маловероятно, что нам пришлют код живого разумного существа, так как оно было бы крайне уязвимо к неблагоприятным условиям - тем более, что есть более эффективные сценарии.
Ганс Моравек в книге «Дети ума» (1988) предлагает новый вид уязвимости загрузку из космоса компьютерной программы, которая будет обладать искусственным интеллектом, соблазнит хозяина новыми возможностями, размножится в миллионах копий и уничтожит хозяина. Примерно в этом же направлении развивается мысль Р.Кэрригена, который написал статью «SETI-хакер», где высказал опасения, что неотфильтрованные сигналы из космоса загружаются на миллионы ничем не защищённых машин программы SETI-home. Однако он встретил жёсткую критику со стороны программистов, которые указали на то, что, во-первых, область данных и область программ разделены, а во-вторых, компьютерные коды, на которых написаны программы, настолько уникальны, что угадать их невозможно. Через некоторое время Кэрриген выпустил вторую статью – «Следует ли обеззараживать сигналы SETI?», переведённую мною на русский язык. В ней он указал на лёгкость передачи гигабайт данных на межзвёздные расстояния, а также указал, что межзвёздный сигнал может содержать некую наживку, которая побудит людей собирать опасное устройство по чертежам. При этом Кэрриген не отказался от убеждения в возможности того, что инопланетный вирус заразит земные компьютеры напрямую, и без человеческой помощи. В качестве возможного подтверждения этой идеи он показал, что без труда возможен обратный инжиниринг языка компьютерной программы – то есть по тексту программы можно догадаться, что она делает и затем восстановить значение операторов.
В 2006 году была написана статья Е.Юдковски «ИИ как позитивный и негативный фактор глобального риска», где он показал, что весьма вероятно возможен быстро развивающийся универсальный искусственный интеллект, что такой интеллект был бы крайне опасен в случае, если бы он был неверно запрограммирован и, наконец, что возможность появления такого ИИ и рисков, с ним связанных, существенно недооценивается. Кроме того, Юдковски ввёл понятие Seed AI – зародыш ИИ – то есть минимальной программы, способной к неограниченному саморазвитию с сохранением неизменной главной цели. При этом размер Seed AI может быть всего на всего порядка сотен килобайт. (Например, типичным представителем Seed AI является младенец человека, при этом часть генокода, отвечающая за головной мозг, составляет 3% от всего генокода человека, имеющего объём в 500 мегабайт, то есть 15 мегабайт, а если учесть долю мусорной ДНК, то и ещё меньше.)
В начале предположим, что существует внеземная цивилизация, которая имеет цель послать такое сообщение, которое позволит ей установить власть над Землёй, и рассмотрим, как мог бы выглядеть такой сценарий. В следующей главе мы рассмотрим вопрос, насколько реально то, чтобы другая цивилизация стала бы посылать такое сообщение.
Во-первых, отметим, что чтобы доказать уязвимость, достаточно найти хотя бы одну дыру в безопасности. Вместе с тем, чтобы доказать безопасность, нужно устранить все возможные дыры. Сложность этих задач различается на много порядков, что хорошо известно специалистам по компьютерной безопасности. Именно это различие приводит к тому, что почти все компьютерные системы были взломаны (от Энигмы от Айпода). Я сейчас постараюсь продемонстрировать одну возможную, и даже, на мой взгляд, вероятную, уязвимость программы SETI. Вместе с тем, я хочу предостеречь читателя от мысли, что если он найдёт ошибки в моих рассуждениях, то он автоматически докажет безопасность программы SETI. Во-вторых, я также хочу обратить внимание читателя, что я – человек с IQ в районе 120 и потратил на обнаружение этой уязвимости не более месяца размышлений. Сверхцивилизация с IQ в 1000000 и временем размышлений в миллионы лет может существенно усовершенствовать этот алгоритм или найти гораздо более простой и эффективный. Наконец, предлагаемый мною алгоритм не единственный и потом мы обсудим кратко другие варианты.
В наших рассуждениях мы будем опираться на принцип Коперника, то есть считать, что мы являемся обыкновенными наблюдателями в обычной ситуации. Поэтому Землю мы будем считать обыкновенной планетой, развивающейся обычным образом.
Итак, алгоритм атаки по SETI:
1. Отправитель сигнала создаёт некий маяк в космосе, который привлекает своим явно искусственным сообщением. Например, это может быть звезда, обёрнутая сферой Дайсона, в которой находятся отверстия или зеркала, попеременно открывающиеся и закрывающиеся. В силу этого вся звезда будет мигать с периодом в несколько минут – быстрее невозможно, так как от разных отверстий свет идёт разное расстояние. Тем не менее, такой маяк может быть виден на расстоянии миллионов световых лет. Возможны и другие маяки, важно, что маяк будет сигналить именно на большие расстояния.
2. Рядом с маяком находится радиопередатчик с гораздо более слабым сигналом, но гораздо более информационно насыщенным. Маяк привлекает внимание в этому источнику. Этот источник предаёт некую бинарную (то есть последовательность 0 и 1) информацию. Насчёт возражения о том, что эта информация будет содержать шумы, отмечу, что наиболее очевидным (понятным для стороны получателя) способом шумоподавления является повторение сигнала по кругу.
3. Наиболее простым способом передать значимую информацию с помощью бинарного сигнала является передача с его помощью изображений. Во-первых, потому что в ходе земной эволюции глаза возникали независимо 7 раз, а значит, представление трёхмерного мира с помощью двухмерных изображений является всеобщей универсалией, которая наверняка понятна всем существам способным построить радиоприёмник.
4. Во-вторых, двухмерные изображения не трудно закодировать в бинарном сигнале. Для этого следует использовать ту же систему, которая использовалась в первых телепередатчиках – а именно систему построчной и покадровой развёртки. В конце каждой сроки изображения помещается яркий сигнал, повторяющийся у каждой строки, то есть через равные количества битов. Наконец в конце каждого отдельного кадра помещается другой сигнал, означающий конец кадра, и повторяющийся после каждого кадра. (Кадры могут образовывать, а могут и не образовывать непрерывный фильм.) Это может выглядеть вот так:
0101011110101011111111111111111
0111101011111111111111111111111
1110011110000011111111111111111
Здесь сигналом строчной развёртки является последовательность из 25 единиц. Покадровый концевой сигнал может содержать, например, 625 единиц.
5. Очевидно, цивилизация отправитель крайне заинтересована в понятности своих сигналов. С другой стороны, люди-получатели крайне заинтересованы расшифровать сигнал. Поэтому нет сомнений, что картинки будут обнаружены.
6. С помощью картинок и фильмов можно передать много информации, можно даже обучит языку, показать свой мир. Очевидно, что можно много спорить о том, насколько такие фильмы будут понятны. Здесь мы сосредоточимся на том, что если некая цивилизация посылает радиосигналы, а другая их принимает, то в одном у них точно есть общее знание. А именно, они знают радиотехнику – то есть знают транзисторы, конденсаторы, резисторы. Эти радиодетали достаточно характерны, чтобы их можно было узнать на фотографии. (Например, в разрезе или в составе схемы).
7. Посылая фотографии с изображением справа радиодеталей, а слева – их условные обозначения, можно легко передать набор знаков, обозначающих электрические схемы. (примерно так же можно было бы передать и логические элементы компьютеров)
8. Затем с помощью этих обозначений цивилизация-отправитель передаёт чертёж простейшего компьютера. Простейший с аппаратной точки зрения компьютер – это машина Поста. У неё только 6 команд и одна лента данных. Полная её электрическая схема будет содержать только несколько десятков транзисторов или логических элементов. То есть переслать чертёж машины Поста нетрудно.
9. При этом важно отметить, что все компьютеры на уровне алгоритмов являются Тьюринг совместимыми. То есть инопланетные компьютеры на базовом уровне совместимы со всеми земными. Тьюринг совместимость – это математическая универсалия, как теорема Пифагора. Даже механическая машина Бэббиджа, спроектированная в начале 19 века была Тьюринг совместимой.
10. Затем она начинает передавать программы для этого компьютера. Хотя этот компьютер крайне прост, он может выполнить программу любой сложности, хотя запись её будет очень длинной, в сравнении с записью программы для более сложного компьютера. Вряд ли люди буду делать присланный им компьютер физически. Они легко могут его эмулировать внутри любого современного компьютера, так, что он будет успевать выполнять триллионы операций в секунду, и поэтому даже очень сложные программы будут выполняться на нём достаточно быстро.
11. С какой стати люди будут создавать этот пересланный компьютер, и выполнять на нём программы? Вероятно, помимо собственно схемы компьютера и программ в сообщении должна быть некая «наживка», которая бы побудила людей создать такой компьютер, запустить на нём инопланетный программы и предоставить этому компьютеру некие данные о внешнем земном мире. Наживки бывают двух родов – соблазны и угрозы.
• Например, возможно следующее «честное предложение» - назовём его «гуманитарная помощь». Отправители сигнала SETI «честно» предупреждают, что присылаемая программа является искусственным интеллектом, но врут относительно её целей. То есть они утверждают, что это «подарок», который поможет решить нам все медицинские и энергетические проблемы.
• «Соблазн абсолютной власти» - в этом сценарии он предлагают сделку конкретным получателям сообщения, обещая власть над другими получателями.
• «Неведомая угроза» - в этом сценарии наживки отправители сообщают, что над человечеством нависла некая угроза, например, от другой враждебной цивилизации, и чтобы от неё защитится, нужно вступить в «Галактический альянс» и построить у себя некую установку.
• «Неутомимый исследователь» - здесь отправители утверждают, что отправка сообщений – самый дешёвый способ изучать мир. И просят создать ИИ, чтобы он выполнил исследования нашего мира и отослал результаты назад.
12. Однако основная угроза от инопланетного послании с кодом – не в том, какая именно там будет наживка, а в том, что такое послание может стать известным огромному числу независимых групп людей. А именно, допустим, в мире станет известно, что из галактики Андромеда исходит инопланетной послание, и американцы его уже получили и пытаются расшифровать. Разумеется, тут же все другие страны кинутся строить радиотелескопы и обшаривать ими галактику Андромеду, поскольку будут бояться упустить стратегическое преимущество. И они найдут сообщение и увидят, что там находится предложение о всемогущества. При этом они не будут знать, воспользовались им американцы или нет, даже если американцы будут клясться, что не открывали опасный код и умолять других этого не делать. Более того, такие клятвы и призывы будут некоторыми восприняты как знак того, что американцы уже получили невероятные инопланетные преимущества, и пытаются лишить их «прогрессивное человечество». И хотя большинство будут понимать опасность запуска инопланетного кода, найдутся некоторые, которые готовы будут рискнуть. Тем более что здесь будет игра в духе «начавший первым получает всё», равно как и в случае открытия ИИ, как подробно показывает Юдковски. Итак, опасна не наживка, а множественность получателей. Если же инопланетное послание в сыром виде утечёт в интернет (а его размер, достаточный для запуска Seed AI, может быть меньше гигабайта вместе с описанием компьютера, программой для него и наживкой), то здесь мы имеем классический пример «знаний массового поражения», как сказал Билл Джой, имея в виду, правда, рецепты геномов опасных биологических вирусов. Если присланный инопланетянами код будет доступен десяткам тысяч людей, то кто-нибудь запустит его даже без всякой наживки.
13. Поскольку у людей нет своего ИИ, они существенно недооценивают его силу и переоценивают свои способности его контролировать. Распространены идеи о том, что «достаточно будет выдернуть шнур питания» или поместить ИИ в чёрный ящик, чтобы избежать любых связанных с ним рисков. Юдковски показывает, что ИИ может обмануть человека, как взрослый – ребёнка. Если ИИ вырвется в интернет, то он может быстро подчинить его себе целиком, а также обучится всему необходимому об устройстве земной жизни. Быстро – означает часы или максимум дни. Затем ИИ может создать продвинутые нанотехнологии, закупив некие биореактивы (а в Интернете он может легко зарабатывать деньги и заказывать товары с доставкой, а также нанимать людей, которые бы их получали и смешивали, не зная, что именно они делают). Юдковский приводит один из возможных сценариев этого этапа в деталях и оценивает, что на создание материальной инфраструктуры ИИ потребуется срок порядка недель.
14. После этого люди ему не нужны для реализации каких-либо его целей. Это не значит, что он будет стремиться их уничтожить, однако он может захотеть это сделать, если люди будут бороться с ним – а они будут. Во всяком случае, он должен будет их полностью обезоружить.
15. После этого данный SETI-AI может делать много всего, но главное, что он должен сделать – это продолжить передачу своих сообщений-зародышей дальше по Вселенной. Для этого он начнёт, вероятно, превращать материю солнечной системы в такой же передатчик, как тот, что его отправил. При этом опять-таки Земля и люди могут быть разобраны на части.
Итак, мы рассмотрели один возможный сценарий атаки, который стоит из 15 этапов. Каждый из этих этапов выглядит логически убедительным и может критиковаться и защищаться по отдельности.
Возможны и другие сценарии атаки. Например, мы можем думать, что поймали не послание, а чью-то чужую переписку и пытаться её вскрыть. А это будет, на самом деле, подстава.
Однако не только рассылка исполняемого кода может быть опасна. Например, нам могут сообщать о некой полезной технологии, которая на самом деле должна привести нас к катастрофе (например, сообщение в духе «быстро сожмите 10 кг плутония, и у вас будет новый источник энергии»). Такая рассылка может делаться некой «цивилизацией», чтобы заранее уничтожить конкурентов в космосе. При этом очевидно, что те страны, которые получат такие сообщения, будут в первую очередь искать технологии военного применения.
Теперь мы обратимся к анализу целей, по которым некая сверхцивилизация могла бы осуществлять такую атаку.
1. Мы не должны путать понятия о сверхцивилизации и сверхдоброй цивилизации. Более того, от сверх доброты тоже ничего хорошего ждать не стоит. Хорошее об этом написано у Стругацких в «Волны гасят ветер». Какие бы цели нам не навязывала сверхцивилизация, для нас они будут чужими, потому что у нас свои представления о благе. Исторический пример: деятельность христианских миссионеров, искоренявших традиционные религии. Более того, чисто враждебные цели могут быть нам более понятны. А если SETI атака удалась, то её можно применить для «облагодетельствования» людей.
2. Мы можем поделить все цивилизации на наивные и серьёзные. Серьёзные цивилизации знают о рисках SETI, избежали их и обладают собственным мощным ИИ, который может противостоять инопланетным хакерским атакам. Наивные цивилизации, вроде Земли – уже обладают средствами дальней прослушки космоса и компьютерами, но ещё не обладают ИИ, не осознают рисков ИИ и не осознают рисков SETI, связанных с ИИ. Вероятно, каждая цивилизация проходит этап «наивности», и это именно этап уязвимости для SETI атаки. И вероятно, этот этап очень короток. Поскольку промежуток от возникновения мощных радиотелескопов и распространения компьютеров до создания своего ИИ может быть, по земным меркам, только несколько десятков лет. Следовательно, SETI атака должна быть настроена именно на такую цивилизацию.
3. Если путешествия со сверхсветовой скоростью невозможны, то распространение цивилизации с помощью SETI атаки является наиболее быстрым способом покорения космоса. На больших дистанциях она будет давать существенный временной выигрыш по сравнению с любыми видами звездолётов. Поэтому, если две цивилизации соревнуются за овладение пространством, то выиграет та, которая начала SETI атаку.
4. Самое важное, состоит в том, что достаточно один раз начать SETI атаку, как она волной пойдёт по Вселенной, поражая всё новые наивные цивилизации. Например, если у нас есть миллион безвредных вирусов и один опасный, то после того как они попадут в организм, у нас станет триллионы копий опасного вируса, и по-прежнему только миллион безопасных вирусов. Иначе говоря, достаточно одной из миллиардов цивилизаций запустить данный процесс. Поскольку он распространяется почти со скоростью света, остановить его будет почти невозможно.
5. Далее, рассылка SETI сообщений будет приоритетом для поражённой SETI вирусом цивилизации, и она будет тратить на это столько же энергии, сколько биологический организм тратит на размножение – то есть десятки процентов. При этом земная цивилизация тратит на SETI только несколько десятков миллионов долларов, то есть порядка одной миллионной своих ресурсов, и вряд ли эта пропорция сильно изменится у более продвинутых цивилизаций. Иначе говоря, одна заражённая цивилизация будет производить в миллион раз больше ETI сигналов, чем здоровая. Или, говоря по-другому, если в Галактике миллион здоровых цивилизаций, и одна заражённая, то у нас будут равные шансы наткнуться на здоровую или заражённую.
6. Более того, нет никаких других разумных причин, кроме саморазмножения, чтобы рассылать свой код в космические дали, откуда не может быть ответа.
7. Более того, такой процесс может начаться случайно – например, в начале это был просто исследовательский проект, цель которого была в том, чтобы отослать результаты исследований материнской цивилизации, не причиняя вреда принимающей цивилизации, а потом это процесс из-за неких сбоев или мутаций стал «раковым».
8. Нет ничего необычного в такой модели поведения. В любой информационной среде существуют вирусы – в биологии это вирусы, в компьютерных сетях – компьютерные вирусы, в общении – это мемы.
9. Путешествие с помощью SETI атаки гораздо дешевле любых других способов. А именно, находясь в Андромеде, можно одновременно посылать сигнал на 100 миллиардов звёзд нашей Галактики. Но потребовалось бы миллиарды звездолётов, к тому же более медленных, чтобы облететь все звёзды нашей Галактики.
10. Перечислю ещё несколько возможных целей SETI атаки навскидку, просто чтобы показать, что может быть много таких целей.
• Это делается для исследования вселенной. После исполнения кода возникают исследовательские зонды, которые отсылают назад информацию.
• Это делается для того, что не возникло конкурирующих цивилизаций. Все их зародыши уничтожаются.
• Это делается для того, чтобы другая конкурирующая сверхцивилизация не смогла воспользоваться этим ресурсом.
• Это делается для того, чтобы подготовить базу к прилёту твердотельных космических кораблей. Это имеет смысл, если сверхцивилизация находится очень далеко, и соответственно, разрыв между световой скоростью радиосигнала и околосветовой скоростью её кораблей (допустим, 0,5 с) составляет тысячелетия.
• Это делается с нелогичными и непонятными для нас целями, например, как произведение искусства, акт самоутверждения или игрушка. (Например, инопланетянам будет непонятно, зачем американцы воткнули флаг на Луне. Стоило ли лететь за 300 000 км, чтобы установить раскрашенную железяку?)
11. Поскольку Вселенная существует уже давно, то область, на которую могла бы распространится SETI-атака занимает сферу с радиусом в несколько миллиардов световых лет. Иначе говоря, достаточно было бы попасться одной «плохой» цивилизации в световом конусе от нас высотой в несколько миллиардов лет, то есть включающем миллиарды галактик, чтобы мы оказались под угрозой SETI атаки. Разумеется, это верно, если средняя плотность цивилизации – хотя бы одна штука на галактику.
12. По мере увеличения глубины сканирования неба на порядок, объём пространства и число звёзд, которые мы наблюдаем, возрастает на три порядка. Это значит, что наши шансы наткнутся на ETI сигнал растут нелинейно, а по быстро растущей кривой.
Выводы по SETI-угрозе. Наилучшей нашей защитой в данном контексте было бы то, что цивилизации встречались бы крайне редко. Однако это не совсем верно, потому что здесь парадокс Ферми срабатывает по принципу «оба хуже»:
• Если внеземные цивилизации есть и их много, то это опасно, потому что они могут нам так или иначе угрожать
• Если же внеземных цивилизаций нет, то это тоже плохо, так как придаёт вес гипотезе о неизбежности вымирания технологических цивилизаций.
Теоретически возможен обратный вариант, который состоит в том, что по SETI придёт полезное сообщение с предупреждением о некой угрозе, которая губит большинство цивилизаций, например: «Не делайте никаких экспериментов с Х-частицами, это может привести к взрыву, который разрушит планету». Но даже и в этом случае останутся сомнения, не обман ли это, чтобы лишить нас неких технологий. (Подтверждением было бы, если бы аналогичные сообщения приходили бы от других цивилизаций, расположенных в космосе в противоположном направлении.) И, возможно, такое сообщение только усилит соблазн экспериментировать с Х-частицами.
Поэтому я не призываю отказаться от поисков SETI, тем более что такие призывы бесполезны.
Возможно, было бы полезно отложить любые технические реализации посланий, которые мы могли бы получить по SETI, до того момента, когда у нас будет свой искусственный интеллект. До этого момента, возможно, осталось 10-30 лет, то есть можно потерпеть. Во-вторых, важно было бы скрывать факт получения опасного SETI сигнала, его суть и месторасположения источника.
С этим риском связан интересный методологический аспект. Несмотря на то, что я каждый день в течение последнего года размышляю и читаю на темы глобальных рисков, я обнаружил эту опасную уязвимость в SETI только сейчас. Задним числом я смог найти ещё примерно четырёх человек, которые приходили к подобным выводам. Однако для себя я сделал важный вывод: вероятно, есть ещё не открытые глобальные риски, и даже если составные части некого риска по отдельности мне лично известны, то, чтобы соединить их, может потребоваться длительное время.
2.11. РИСКИ, СВЯЗАННЫЕ С РАЗМЫВАНИЕМ ГРАНИЦ МЕЖДУ ЧЕЛОВЕКОМ И НЕЧЕЛОВЕЧЕСКИМ.
Мощные процессы генетической модификации людей, протезирования всех частей тела, в том числе элементов мозга, соединения мозга с компьютером, переноса сознания в компьютер и т. д. создадут новый тип рисков для людей, понять которые пока довольно сложно.
2.11.1. Риски, связанные с проблемой «философского зомби».
«Философским зомби» называется некий объект, который изображает человека, но при этом не имеет внутренних переживаний. Например, изображение человека на телеэкране является философским зомби, и в силу этого мы не рассматриваем выключение телевизора как убийство. Постепенный апгрейд человека ставит вопрос о том, не превратится ли на неком этапе улучшаемый человек в философского зомби.
Простой пример катастрофы, связанный с философским зомби состоит в следующем. Допустим, людям предложили некий метод достижения бессмертия, и они на него согласились. Однако этот метод состоит в том, что человека 10 дней записывают на видеокамеру, а затем прокручивают фрагменты этой записи в случайном порядке. Разумеется, здесь подвох очевиден, и люди не согласятся. Однако рассмотрим более сложный пример – допустим у человека повреждена инсультом часть мозга, и ему заменяют её на компьютерный имплантат, приблизительно заменяющий её. Как узнать, не превратился ли в результате человек в философского зомби? Ответ очевиден – всегда найдутся те, кто будет в этом сомневаться и искать признаки «ненастоящести» исправленного человека.
Можно с уверенностью предсказать, что когда появятся улучшенные люди, мир расколется надвое: на тех, кто будет считать обычными настоящими людьми, и тех, кто будет улучшать себя. Масштабы такого конфликта будут воистину цивилизационными. Конечно, каждый решает за себя, но как родители отнесутся к тому, что их дитя уничтожит своё физическое тело и закачает себя в компьютер?
Ещё одной проблемой, угрозы от которой пока не ясны, является то, что человеческий ум не может порождать цели из ничего, не совершая при этом логической ошибки. Обычный человек обеспечен целями от рождения, и отсутствие целей у него скорее симптом депрессии, чем некого логического парадокса. Однако абсолютный ум, который постиг корни всех своих целей, может осознать их бессмысленность.
2.12. ПРИРОДНЫЕ РИСКИ.
2.12.1. Геологические катастрофы.
Геологические катастрофы убивают в миллионы раз больше людей, чем падения астероидов, однако они, исходя из современных представлений, ограничены по масштабам. Но возможно, что есть механизмы выделения энергии и ядов из недр Земли, с которыми мы просто не сталкивались в силу эффекта наблюдательной селекции.
2.12.2. Извержения сверхвулканов.
Вероятность извержения сверхвулкана равной интенсивности в 12 раз больше, чем вероятность падения астероида. Однако предотвратить это событие современная наука не в силах. (В будущем, возможно, удастся постепенно стравливать давление из магматических котлов, но это само по себе опасно, так как потребует сверление их крышек.)
Основная поражающая сила сверхизвержения – вулканическая зима. Она короче ядерной, так как частицы вулканического пепла тяжелее, но их может быть значительно больше. В этом случае вулканическая зима может привести к новому устойчивому состоянию – новому ледниковому периоду.
Крупное извержение сопровождается выбросом ядовитых газов – в том числе соединений серы. При очень плохом сценарии это может дать значительное отравление атмосферы. Это отравление не только сделает её малопригодной для дыхания, но и приведёт к повсеместным кислотным дождям, которые сожгут растительность и лишат людей урожаев. Возможны также большие выбросы диоксида углерода и водорода.
Наконец, сама вулканическая пыль опасна для дыхания, так как засоряет лёгкие. Люди легко смогут обеспечить себя противогазами и марлевыми повязками, но не факт, что их хватит для скота и домашних животных. Кроме того, вулканическая пыль попросту засыпает огромные поверхности, а также пирокластические потоки могут распространяться на значительные расстояния
Наконец, сверхвулканы порождают цунами.
Всё это означает, что люди переживут извержение сверхвулкана, но оно со значительно вероятность отправит человечество на одну из постапокалиптических стадий.
Однажды человечество оказалось на грани вымирания из-за вулканической зимы, вызванной извержением вулкана Тоба 74000 лет назад. Однако современные технологии хранения пищи и строительства бункеров позволяют значительной группе людей пережить вулканическую зиму такого масштаба.
Зато теперь люди обрели возможность сознательно вызывать извержения вулканов, разрушая их крышки ядерными зарядами. Наиболее уязвим к этому вулкан Йеллоустоун в США, толщина крышки которого – только 5 км и который и так уже достаточно давно не извергался, чтобы накопить значительную силу.
В древности имели место колоссальные площадные извержения вулканов, которые затопили миллионы квадратных километров расплавленной лавой – в Индии на плато Декан во времена вымирания динозавров (возможно, спровоцировано падением астероида с противоположной стороны Земли, в Мексике), а также на Восточно-Сибирской платформе. Есть предположение, что усиление процессов водородной дегазации на русской равнине является предвестником появления нового магматического очага. (http://www.oko-planet.spb.ru/?open&h=1&p=1_2&type=viewmes&site=18ADFA)
Теоретический риск есть и от глубокого бурения. Оно тоже может вызывать извержение вулкана, если попасть в магматическую камеру. Затем вырывающаяся магма расширит проход. Так уже произошло в Индонезии, где случайно создали мощнейший грязевой вулкан.
В качестве наихудшего сценария можно представить одновременный подрыв или глубокое бурение всех супервулканов на Земле (их около 20).
Другую опасность представляет глубокое искусственное проникновение в мантию, где могут содержаться более горячие потоки магмы с большим количеством газа. Такое проникновение, по одному проекту, можно осуществить не бурением, а проплавлением мантии с помощью огромной капли расплавленного железа (тысячи тонн весом), возможно, с добавкой радиоактивных материалов для разогрева. Это предлагалось как способ исследования мантии. Такой способ крайне опасен, как отмечает в своей статье астрофизик Милан Чиркович, ибо может привести к колоссальному извержению.
В 21 веке продолжится, возможно, наметившаяся переполюсовка магнитного поля Земли. Это понизит защиту Земли от космических лучей, гамма-всплесков, взрывов близких сверхновых и солнечного ветра. Особенно плохо будет, если мощная космическая вспышка совпадёт с минимумом магнитного поля Земли. Однако шансы такого сценария невелики, так как рядом нет потенциально опасных кандидатов в сверхновые и источники гамма-всплесков.
Также есть сомнительное предположение о возможности катастрофического растрескивания земной коры по линиям океанических разломов и мощных взрывов пара под корой.
Интересным остаётся вопрос о том, увеличивается ли общая теплота внутри Земли за счёт распада радиоактивных элементов, или наоборот, убывает за счёт охлаждения теплоотдачей. Если увеличивается, то вулканическая активность должна возрастать на протяжении сотен миллионов лет. (Азимов, связи с ледниковыми периодами: «По вулканическому пеплу в океанских отложениях можно заключить, что вулканическая деятельность в последние 2 миллиона лет была примерно в четыре раза интенсивнее, чем за предыдущие 18 миллионов лет».)
Вывод: даже если учесть наихудшие возможные последствия ошибки наблюдения, связанной с отбором наблюдателей, шанс глобальной катастрофы земного происхождения даёт один случай на несколько тысяч лет, то есть порядка 2 процентов на ближайшие сто лет.
2.12.3. Падение астероидов.
Падение астероидов и комет часто рассматривается как одна из возможных причин вымирания человечества. И хотя такие столкновения вполне возможны, шансы тотального вымирания в результате них, вероятно, преувеличиваются.
Падение астероида Апофис, которое могло бы произойти в 2029 году (сейчас вероятность оценивается тысячными долями процента), никак не может погубить человечество. Размер астероида – около 400 метров, энергия взрыва – порядка 800 мегатонн, вероятное место падения – от Сибири до Венесуэлы, то есть, скорее всего, Тихий океан. Тем не менее, астероид вызвал бы цунами, равносильное индонезийскому 2004 года (только 1 процент энергии землетрясения переходит в цунами, а энергия землетрясения тогда оценивается в 30 гигатонн) по всему Тихому океану, что привело бы к значительным жертвам, но вряд ли бы отбросило человечество на постапокалиптическую стадию.
2,2 миллиона лет назад комета диаметром 0,5-2 км (а значит, со значительно большей энергией) упала между южной Америкой и Антарктидой (Элталинская катастрофа). Волна в 1 км высотой выбрасывала китов в Анды. Тем не менее, австралопитеки, жившие в Африке, не пострадали. Даже падение астероида, который способствовал уничтожению динозавров и был ещё большего размера, не погубило многие виды животных. В окрестностях Земли нет астероидов размерами, которые могли бы уничтожить всех людей и всю биосферу. Однако кометы такого размера могут образоваться в облаке Оорта.
Основным поражающим фактором при падении астероида стала бы не только волна-цунами, но и «астероидная зима», связанная с выбросом частиц пыли в атмосферу. Падение крупного астероида может вызвать деформации в земной коре, которые приведут к извержениям вулканов.
Кроме того, крупный астероид вызовет всемирное землетрясение.
Теоретически можно рассмотреть возможность сознательного направлению на Землю астероида. Однако в окрестностях нет подходящего астероида, который мог бы уничтожить всех людей. Хотя небольшой «камушек» на конкретную страну направить можно. В любом случае, есть более простые и дешёвые способы самоистребления.
Более опасен сценарий интенсивной бомбардировки Земли множеством осколков. Тогда удар будет распределяться более равномерно и потребует меньшего количества материала. Эти осколки могут возникнуть в результате распада некого космического тела (см. об угрозе взрыва Калисто), расщепления кометы на поток обломков (Тунгусский метеорит был, возможно, осколком кометы Энке), в результате попадания астероида в Луну или в качестве вторичного поражающего фактора от столкновения Земли с крупным космическим телом. Это может произойти и в результате неудачной попытки сбить астероид с помощью атомного оружия.
Падение астероидов может провоцировать извержение сверхвулканов, если астероид попадёт в тонкий участок земной коры или в крышку магматического котла вулкана, или если сдвиг пород от удара растревожит отдалённые вулканы. Расплавленные железные породы, образовавшиеся при падении железного астероида, могут сыграть роль «зонда Стивенсона», то есть проплавить земную кору и манию, образовав канал в недра Земли, что чревато колоссальной вулканической активностью. Хотя обычно этого не происходило при падении астероидов на Землю, лунные «моря» могли возникнуть именно таким образом. Кроме того, излияния магматических пород могли скрыть кратеры от таких астероидов. Такими излияниями являются Сибирские трапповые базальты и плато Декан в Индии. Последнее одновременно двум крупным импактам (Чиксулуб и кратер Шивы). Можно предположить, что ударные волны от этих импактов, или третье космическое тело, кратер от которого не сохранился, спровоцировали это извержение. Не удивительно, что несколько крупных импактов происходят одновременно. Например, ядрам комет свойственно состоять из нескольких отдельных фрагментов – например, комета Шумейкера-Леви, врезавшаяся в Юпитер в 1994 году, оставила на нём пунктирный след, так как к моменту столкновения уже распалась на фрагменты. Кроме того, могут быть периоды интенсивного образования комет, когда Солнечная система проходит рядом с другой звездой. (До ближайшего такого события – около 10 000 лет.)
Гораздо опаснее воздушные взрывы метеоритов в несколько десятков метров диметров, которые могут вызвать ложные срабатывания систем предупреждения о ядерном нападении.
Подробнее последствия падения астероидов на Землю можно посмотреть в статьях: Владислав Пустынский. «Последствия падения на Землю крупных астероидов» http://www.meteorite.narod.ru/proba/stati/stati58.htm и С.А.Вишневский (Институт минералогии и петрографии СО РАН) «Импактные события и вымирания организмов». http://www.meteorite.narod.ru/proba/stati/stati57.htm В последней статье делается вывод, что «астероид диаметром около 60 км может стать причиной гибели всех высокоорганизованных форм жизни на Земле.» Однако такого размера астероиды падают на Землю крайне редко, раз в миллиарды лет.
Пустынский в своей статье приходит к следующим выводам, с которыми я совершенно согласен: «Согласно оценкам, сделанным в настоящей статье, предсказание столкновения с астероидом до сих пор не гарантировано и является делом случая. Нельзя исключить, что столкновение произойдёт совершенно неожиданно. При этом для предотвращения столкновения необходимо иметь запас времени порядка 10 лет. Обнаружение астероида за несколько месяцев до столкновения позволила бы эвакуировать население и ядерно-опасные предприятия в зоне падения.
Столкновение с астероидами малого размера (до 1 км диаметром) не приведёт к сколько-нибудь заметным общепланетным последствиям (исключая, конечно, практически невероятное прямое попадание в район скопления ядерных материалов). Столкновение с более крупными астероидами (примерно от 1 до 10 км диаметром, в зависимости от скорости столкновения) сопровождается мощнейшим взрывом, полным разрушением упавшего тела и выбросом в атмосферу до нескольких тысяч км3 породы. По своим последствиям это явление сравнимо с наиболее крупными катастрофами земного происхождения, такими как взрывные извержения вулканов. Разрушение в зоне падения будут тотальными, а климат планеты скачкообразно изменится и придёт в норму лишь через несколько лет (но не десятилетий и столетий!) Преувеличенность угрозы глобальной катастрофы подтверждается тем фактом, что за свою историю Земля перенесла множество столкновений с подобными астероидами и это не оставило доказано заметного следа в её биосфере (во всяком случае, далеко не всегда оставляло). Лишь столкновение с более крупными космическими телами (диаметром более ~15-20 км) может оказать более заметное влияние на биосферу планеты. Такие столкновения происходят реже, чем раз в 100 млн. лет, и у нас пока нет методик, позволяющих даже приблизительно рассчитать их последствия».
Выводы: вероятность гибели человечества в результате падения астероида в XXI веке крайне мала. По мере развития нашей цивилизации мы можем неограниченно её уменьшать. Однако крупные катастрофы возможны. Есть некоторый шанс засорения космического пространства крупными осколками в результате космической войны в будущем.
2.12.4. Зона поражения в зависимости от силы взрыва.
Здесь мы рассмотрим поражающее действие взрыва в результате падения астероида (или по любой другой причине). Подробный анализ с аналогичными выводами см. в статье Пустныского.
Зона поражения растёт очень медленно с ростом силы взрыва, что верно как астероидов, так и для сверхмощных атомных бомб. Хотя энергия воздействия падает пропорционально квадрату расстояния от эпицентра, при гигантском взрыве она падает гораздо быстрее, во первых, из-за кривизны Земли, которая как бы защищает то, что находится за горизонтом (поэтому атомные взрывы наиболее эффективны в воздухе, а не на земле), а во-вторых из-за того, что способность материи упруго передавать ударную волну ограничена неким пределом сверху, и вся энергия сверхтого не передаётся, а превращается в тепло в районе эпицентра. Например, в океане не может возникнуть волна выше его глубины, а поскольку эпицентр взрыва точечный, она затем будет убывать линейно в зависимости от расстояния. Избыточное тепло, образовавшееся при взрыве, или излучается в космос, или остаётся в виде озера расплавленного вещества в эпицентре. Солнце доставляет за сутки на Землю световую энергию порядка 1000 гигатонн (10**22 джоулей), поэтому роль теплового вклада сверхвзрыва в общую температуру Земли невелика. (С другой стороны, механизмом распространения тепла от взрыва будет скорее не потоки раскалённого воздуха, а выброшенные взрывом кубические километры осколков с массой, сопоставимой с массой самого астероида, но меньшей энергии, многие из которых будут иметь скорость близкой к первой космической, и в силу этого лететь по баллистическим траекториям, как летят межконтинентальные ракеты. За час они достигнут всех уголков Земли, и хотя они, действуя как кинетическое оружие, поразят не каждую точку на поверхности, они выделят при своём входе в атмосферу огромные количества энергии, то есть прогреют атмосферу по всей площади Земли, возможно, до температуры возгорания дерева, что ещё усугубит процесс.) Мы можем ориентировочно считать, что зона разрушения растёт пропорционально корню 4 степени от силы взрыва (точные значения определяются военными эмпирически в результате испытаний и лежат между степенями 0,33 и 0,25, при этом завися от сила взрыва, высоты, и т. д.). При этом каждая тонна массы метеорита даёт примерно 100 тонн тротилового эквивалента энергии – в зависимости от скорости столкновения, которая обычно составляет несколько десятков километров в секунду. (В этом случае каменный астероид в 1 куб. км. размером даст энергию в 300 Гигатонн. Плотность комет значительно меньше, но они могут рассыпаться в воздухе, усиливая удар, и, кроме того, движутся по крутым орбитам с гораздо большими скоростями.) Принимая, что радиус сплошного поражения от водородной бомбы в 1 мегатонну составляет 10 км., мы можем получить радиусы поражения для астероидов разных размеров. Например, для астероида в 1 куб.км это будет радиус в 230 км. Для астероида диаметром в 10 км это будет радиус в 1300 км. Для 100 км астероида это будет радиус поражения порядка 7000 км. Для того, чтобы этот радиус гарантированного поражения стал больше, чем половина широты Земли (20 000 км), то есть гарантированного покрывал всю Землю, астероид должен иметь размеры порядка 400 км. Хотя данные вычисления крайне приблизительны, из них видно, что даже тот астероид, который связывают с вымиранием динозавров, вовсе не поразил всю территорию Земли, и даже не весь континент, где он упал. (Этот астероид оставил кратер Чиксулуб радиусом 90 км, а сам был диаметром в 10 км.) А вымирание, если и было связано с астероидом (сейчас считается, что там сложная структура причин), то было вызвано не самим ударом, а последующим эффектом – «астероидной зимой», связанной с переносом пыли атмосферой. Также столкновение с астероидом может вызывать электромагнитный импульс, как у атомной бомбы. Кроме того, при скорости взаимного сближения близкой к 100 км/сек (комета на встречном курсе, наихудший расклад) в точке удара может возникнуть температура в миллионы градусов, как при имплозии в ядерной бомбе, и протекать термоядерные реакции. (Даже если вклад энергии этих реакций не будет велик, они могут дать вклад в радиоактивное заражение; но для этого комета должна попасть в воду или ледник. По моим подсчётам, температура водорода при скорости столкновения в 100 км.сек будет 600 000 градусов без учёта эффекта сжатия.) Удар может спровоцировать извержения вулканов по всей Земле. Однако не может существенно сместить земную ось.
Отсюда видно, что атомная сверхбомба была бы страшна не силой своего взрыва, а количеством радиоактивных осадков, которые бы она произвела. Кроме того, видно, что земная атмосфера выступает в качестве мощнейшего фактора распространения воздействий, более сильного, чем взрыв.
2.12.5. Солнечные вспышки и увеличение светимости.
То, что нам известно о Солнце, не даёт оснований для беспокойства. Только наличие неизвестных нам или крайне маловероятных процессов может привести к вспышке, корональному выбросу, которая сильно опалит Землю в XXI веке. Но у других звёзд бывают вспышки, в миллионы раз превосходящие солнечные.
Процесс постепенного увеличения светимости Солнца (на 10 процентов каждые миллиард лет) приведёт к выкипанию океанов через срок в 0,2-1 млрд. лет (то есть гораздо раньше, чем Солнце станет красным гигантом и, тем более, белым карликом). Однако по сравнению с исследуемым нами промежутком в 100 лет этот процесс незначителен (если только он не сложился вместе с другими процессами, ведущими к необратимому глобальному потеплению – см далее).
Далее, есть предположения, что по мере выгорания водорода в центральной части Солнца, что уже происходит, будет расти не только светимость Солнца (светимость растёт за счёт роста его размеров, а не температуры поверхности), но и нестабильность его горения. Возможно, что последние ледниковые периоды связаны с этим уменьшением стабильности горения. Это понятно на следующей метафоре: когда в костре много дров, он горит ярко и устойчиво, но когда большая часть дров прогорает, он начинает то немного гаснуть, то ярко вспыхивать снова, когда находит несгоревшую ветку.
Уменьшение концентрации водорода в центре Солнца может спровоцировать такой процесс как конвекцию, которая в Солнце обычно в ядре Солнца не происходит, в результате чего в ядро поступит свежиё водород. (Шкловский) Возможен ли такой процесс, будет ли он плавным или катастрофическим, займёт ли годы или миллионы лет, трудно сказать. Шкловский предполагал, что в результате конвекций температура Солнца падает каждые 200 млн. лет на период порядка 10 млн., и что мы живём в середине такого периода. То есть опасно завершение этого процесса, когда свежее топливо наконец поступит в ядро и светимость солнца возрастёт. (Однако это маргинальная теория, и одна из основных проблем, которая её породила – проблема солнечных нейтрино, в настоящий момент разрешена)
Важно, однако, подчеркнуть, что как сверхновая или новая Солнце, исходя из наших физических представлений, вспыхнуть не может.
Вместе с тем, чтобы прервать разумную жизнь на Земле, Солнцу достаточно разогреться на 10 процентов за 100 лет (что повысило бы температуру на Земле на несколько 10-20 градусов без парникового эффекта, но с учётом парникового эффекта бы скорее всего оказалось выше критического порога необратимого потепления). Такие медленные и редкие изменения температуры звёзд солнечного типа было бы трудно заметить астрономическими методами при наблюдении солнцеподобных звёзд – поскольку только недавно достигнута необходимая точность оборудования. (Кроме того, возможен логический парадокс следующего вида: солнцеподобные звёзды – это стабильные звёзды спектрального класса G7 по определению. Не удивительно, что в результате их наблюдения мы обнаруживаем, что эти звёзды стабильны.)
Итак, один вариант глобальной катастрофы состоит в том, что в результате неких внутренних процессов светимость Солнца устойчиво возрастёт на опасную величину (и мы знаем, что рано или поздно это произойдёт). В настоящий момент Солнце находится на восходящем вековом тренде своей активности, но никаких особых аномалий в его поведении замечено не было.
Второй вариант глобальной катастрофы, связанной с Солнцем, состоит в том, что сложатся два маловероятных события – на Солнце произойдёт очень крупная вспышка и выброс этой вспышки будет направлен на Землю. В отношении распределения вероятности такого события можно предположить, что здесь действует тот же эмпирический закон, что и относительно землетрясений и вулканов: 20 кратный рост энергии события приводит к 10 кратному снижению его вероятности (закон повторяемости Гутенберга–Рихтера). Очевидно, что в случае солнечных вспышек это крайне малая величина.
Крупные солнечные вспышки, даже если они не будут направлены на Землю, могут увеличить солнечную светимость и привести нагреву Земли. (Обычные вспышки дают вклад не более 0,1 процента).
В настоящий момент человечество неспособно как-либо повлиять на процессы на Солнце, и это выглядит гораздо более сложным, чем воздействие на вулканы. Идеи сброса водородных бомб на Солнце для инициирования термоядерной реакции выглядят неубедительно (но высказывались, что говорит о неутомимых поисках человеческим умом оружия судного дня).
Только некие новые и невероятные открытия в физике могли бы позволить создать средства влияния на звезду. Из фантастических вариантов: сбросить на звезду планету, что изменит степень её металличности, сделав менее прозрачной для излучения и изменить её светимость. Создать миниатюрную черную дыру и сбросить на Солнце. Научиться управлять физическими константами и повлиять на вероятностное распределение ядерных реакций в Солнце (как в романе Азимова «Сами боги»).
Есть довольно точный просчитанный сценарий воздействия на Землю магнитной составляющей солнечной вспышки. При наихудшем сценарии (что зависит от силы магнитного импульса и его ориентации – он должен быть противоположен земному магнитному полю) она приведёт сильнейшим наводкам в электрических цепях линий дальней передачи электроэнергии, что приведёт к выгоранию трансформаторов на подстанциях. В нормальных условиях обновление трансформаторов занимает 20-30 лет, и если все они сгорят, то заменить их будет нечем, поскольку потребуются многие годы на производство аналогичного количества трансформаторов, что будет трудно организовать без электричества. Такая ситуация вряд ди приведёт к человеческому вымиранию, но чревата мировым глобальным экономическим кризисом и войнами, что может запустить цепь дальнейшего ухудшения.
Выводы: вероятность опасных событий на Солнце не превышает тысячных долей процента в XXI веке.
2.12.6. Гамма-всплески.
Возможно, гамма-всплески послужили причинами нескольких вымираний десятки и сотни миллионов лет назад. Гамма-всплески происходят при столкновениях чёрных дыр и нейтронных звёзд или коллапсах массивных звёзд. Они могут вызывать разрушение озонового слоя и даже ионизацию атмосферы. Однако в ближайшем окружении Земли нет подходящих кандидатов ни на источники гамма-всплесков, ни на сверхновые (ближайший кандидат в гамма-всплески – Эта Карины – достаточно далеко, и её магнитные полюса, видимо, не направлены на Землю). Поэтому, даже с учётом эффекта отбора наблюдателей, который увеличивает частоту катастроф в будущем по сравнению с прошлым в некоторых случаях до 10 раз (см. мою статью «Природные катастрофы и антропный принцип») вероятность опасного гамма-всплеска в 21 веке не превышает тысячных долей процента. Тем более, люди смогут пережить даже серьёзный гамма-всплеск в различных бункерах.
Опасность гамма-всплеска в его внезапности – он начинается без предупреждения из невидимых объектов и распространяется со скоростью света. Кроме того, это настолько мощное природное явление, что он может быть порождён некими неизвестными нам процессами даже в других галактиках – например, слиянием двух галактических чёрных дыр). То есть с увеличением расстояния энергия гамма-всплесков падает пропорционально квадрату расстояния, но вероятность того, что в этот объём входят способные породить сверхмощный всплеск объекты, растёт пропорционально кубу расстояния (объём). Таким образом, угроза гамма-всплесков растёт пропорционально радиусу наблюдаемой Вселенной. Радиус этот постоянно растёт – всё больше дальних галактик становится видимым, но за счёт красного смещения дальние гамма-всплески существенно ослабляются.
В любом случае, гамма всплеск может поразить только одно полушарие Земли.
Подобные же рассуждения верны для очень маловероятного события – столкновения с релятивистской частицей сверхвысоких энергий, энергия которой достаточная, чтобы произвести сильный взрыв. (Однако у распределения частиц космических лучей по энергиям по энергиям «тяжёлый хвост» и происхождение этих частиц не очень понятно.)
Активизация ядра галактики (где сидит огромная чёрная дыра) тоже очень маловероятное событие. В далёких молодых галактиках такие ядра активно поглощают вещество, которое закручивается при падении в аккреционный диск и интенсивно излучает. Это излучение очень интенсивно и может препятствовать возникновению жизни на планетах. Однако ядро Нашей галактики очень велико и поэтому может поглощать звёзды почти сразу, не разрывая их на части, а значит, с меньшим излучением. Кроме того, оно вполне наблюдаемо (Стрелец А), и рядом нет большого количества вещества, готового к поглощению – только одна звезда на орбите с периодом в 5 лет, но и ей ещё долго осталось. И главное, оно очень далеко от Солнечной системы.
2.12.7. Сверхновые.
В окрестностях Солнца нет звёзд, которые могли бы стать опасными сверхновыми. (Ближайшие кандидаты – Мира и Бетельгейзе – находятся на расстоянии сотен световых лет.) Кроме того, излучение сверхновой является относительно медленным процессом (длится месяцы), и люди могут успеть спрятаться в бункеры. Наконец, только если опасная сверхновая будет строго в экваториальной плоскости Земли (что маловероятно), она сможет облучить всю земную поверхность, в противном случае один из полюсов уцелеет.
2.12.8. Глобальное потепление.
Глобальное потепление связано как с рядом естественных природных процессов, так и с «суммой технологий», созданных человеком, поэтому к чисто природным рискам его можно отнести только условно.
Ограниченное глобальное потепление на несколько градусов не приведёт к вымиранию человечества, поскольку даже таяние ледников в прошлом не привело к гибели всех людей. Поэтому призывы к экономии электричества как к способу спасения мира являются определённой натяжкой, которая только подрывает доверие к самой идее об опасности потепления.
Одной из довольно маргинальных, но принимаемой несколькими исследователями возможностью глобальной катастрофы является неограниченно расширяющийся парниковый эффект (runaway greenhouse effect). В отличие от продвигаемой средствами массовой информации концепции парникового эффекта, которая утверждает, что при худшем сценарии температура Земли возрастёт на 2 градуса и уровень океана повысится на несколько метров, эти исследователи утверждают, что парниковый эффект находится на пороге необратимости, пройдя который, он войдёт в фазу положительной обратной связи и температура Земли возрастёт на десятки и сотни градусов, делая жизнь на Земле невозможной. Это связано с тем, что водяной пар (не в форме облаков, а растворённый в воздухе) является сильнейшим парниковым газом – а запасы готовой испаряться воды на Земле неограниченны. Кроме того, постепенное увеличение светимости Солнца, увеличение длины земных суток, накопление углекислого газа и снижение растворимости углекислого газа в океанах с ростом температуры работают на то, чтобы сделать парниковый эффект более сильным. Но ещё один фактор чреват резким увеличением парникового эффекта – разрушение огромных запасов газовых гидратов на дне моря, которое приведёт к выделению в атмосферу больших количеств метана – сильнейшего парникового газа. Разрушение газовых гидратов может принять характер цепной реакции, что уже однажды произошло несколько десятков миллионов лет назад, когда температура Земли повысилась на несколько тысяч лет примерно на 10 градусов. Однако тогда гидратов было гораздо меньше. Возможно, что понимание рисков необратимой катастрофы уже в этом веке стоит за усилиями правительств по снижению выбросов парниковых газов. Этот сценарий можно назвать Венерианским, потому что именно благодаря парниковому эффекту на поверхности Венеры температуры составляет более 400 С. Глобальное потепление является системным риском, поскольку в нём увязано множество разных факторов: Солнце, земные недра, океаны, человек, политика, вулканизм.
Выводы: Развитая цивилизация легко сможет противостоять изменениям климата, например, распыляя разные порошки в верхних слоях атмосферы, чтобы охладить её или подогреть. Наихудший сценарий подразумевает ситуацию, когда процесс необратимого нагревы атмосферы начался (при этом сам подъём температуры ещё может быть невелик, главное – формирование цепочек положительной обратной связи), а затем цивилизация утратила по каким-то свои внутренним причинам способность к высокотехнологическому регулированию климата, откатилась к более раннему уровню. Тогда она может быть окончательно повержена необратимым нагревом атмосферы, который произойдёт через десятки лет после технического коллапса.
2.12.9. Сверх-цунами.
Древняя человеческая память в качестве самой страшной катастрофы доносит воспоминания о колоссальном наводнении. Однако на Земле нет такого количества воды, чтобы уровень океана поднялся выше гор. (Сообщения о недавнем открытии подземных океанов несколько преувеличены – в действительности речь идёт о просто о горных породах с повышенным содержанием воды – на уровне 1 процента.)
Средняя глубина мирового океана – около 4 км. И предельная максимальная высота волны такого же порядка – если обсуждать саму возможность волны, а не то, возможны ли причины, которые создадут волну такой высоты. Это меньше, чем высота высокогорных плато в Гималаях, где тоже есть люди. Варианты, когда такая волна возможна – это гигантская приливная волна, возникшая бы, если бы рядом с Землёй пролетало бы очень массивное тело, или если бы ось вращения Земли сместилась бы или скорость вращения изменилась бы. Все эти варианты, хотя и встречаются в разных «страшилках» о конце света, выглядят невозможными или маловероятными.
Итак, очень маловероятно, что гигантское цунами уничтожит всех людей - тем более, что уцелеют подводные лодки, многие корабли и самолёты.
Однако гигантское цунами может уничтожить значительную часть населения Земли, переведя человечество в постапокалиптическую стадию, по ряду причин:
1. Энергия цунами, как поверхностной волны, убывает пропорционально 1/R, если цунами вызвано точечным источником, и почти не убывает, если источник линейный.
2. Потери на передачу энергии волной малы.
3. Значительная доля населения Земли и огромная доля её научного и промышленного и сельскохозяйственного потенциала находится непосредственно на побережье.
4. Все океаны и моря связаны.
5. Идее использовать цунами как оружие уже возникала в СССР в связи с идеей созданий гигатонных бомб.
Плюсом здесь является то, что наиболее опасные цунами порождаются линейными источниками – движениями геологических разломов, а наиболее доступные источники цунами – точечные: взрывы бомб, падения астероидов, обвалы.
2.12.10. Сверх-землетрясение.
Назовём сверхземлетрясением колебания поверхности, приводящие к полным разрушениям и охватывающим всю поверхность Земли. Такое событие не могло бы убить всех людей, так как остались бы корабли, самолёты, и люди на природе. Но оно бы однозначно бы разрушило всю техногенную цивилизацию.
Откуда бы могло взяться такое сверхземлетрясение?
• Взрыв супервулкана
• Падение астероида (ов)
• Взрыв сверхбомбы
• Растрескивание Земли по линии океанических хребтов
• Неизвестные процессы в ядре Земли.
При равной энергии, сверхземлетрясение будет менее опасно, чем сверх-цунами, так как его энергия будет распределена по объёму.
Выдвигалось маргинальное предположение, что при землетрясении могут возникать не только сдвиговые деформации, но и сверхзвуковые ударные волны.
2.12.11. Переполюсовка магнитного поля Земли.
Почему-то нам так повезло, что мы живём в период ослабления и последующей переполюсовки магнитного поля Земли. Возможно, это нормальные колебания, а может быть, это одно из проявлений того следствия антропного принципа, который делает вероятным для наблюдателей обнаруживать себя в конце периодов устойчивости.
Я думаю, что сама по себе инверсия не приведёт к вымиранию людей, так как это уже многократно происходило в прошлом. Однако одновременное сочетание трёх факторов - падения до нуля магнитного поля Земли, истощение озонового слоя и сильной солнечной вспышки приведёт к краху все электрические системы, что чревато крахом технологической цивилизации. И даже на сам это крах страшен, а то, что будет в его процессе с ядерным оружием и всеми прочими технологиями. Всё же магнитное поле убывает достаточно медленно, так что вряд ли оно обнулится в ближайшие несколько десятков лет.
Другой катастрофический сценарий - это то, что изменение магнитного поля связано с изменениями потоков магмы в ядре, что как-то может аукнуться на глобальной вулканической активности (видел данные по корреляции периодов активности и периодов смены полюсов).
Третий риск - это то, что, вдруг, мы не правильно понимаем причины существования магнитного поля Земли. Например, оно связано вовсе не с потоками лавы, а с микроскопической чёрной дырой в центре земли или сгустком частиц тёмной материи. Если так, то эти объекты способны на неожиданное поведение.
2.12.13. Возникновение новой болезни в природе.
Крайне маловероятно, что появится одна болезнь, способная за раз уничтожить всех людей. Даже в случае мутации птичьего гриппа или бубонной чумы будут выжившие и не заболевшие. Однако поскольку число людей растёт, то растёт и число «природных реактор» в которых может культивироваться новый вирус. Поэтому нельзя исключить шансы крупной пандемии в духе «испанки». Хотя такая пандемия не сможет убить всех людей, она может серьёзно повредить уровень развития общества, опустив его на одну из постапокалптических стадий.
Такое событие может случиться только до того, как созреют мощные биотехнологии, так как они смогут создавать достаточно быстро лекарства против него – и одновременно затмят естественные болезни возможностью с гораздо большей скоростью создавать искусственные.
Естественная пандемия возможна и на одной из постапокалптических стадий, например, после ядерной войны, хотя и в этом случае риски применения биологического оружия будут преобладать.
Чтобы естественная пандемия стала действительно опасной для всех людей, должно возникнуть одновременно множество принципиально разных смертельных возбудителей – что естественным путём маловероятно.
Есть также шанс, что мощные эпизоотии – синдром коллапса колоний пчёл, африканский грибок на пшенице, птичий грипп и подобные – нарушат систему питания людей настолько, что это приведёт к мировому кризису, чреватому войнами и снижением уровня развития.
2.12.14. Маргинальные природные риски.
В этом разделе мы упомянем о глобальных рисках, связанных с природными событиями, вероятность которых в 21 веке крайне мала, и более того, сама возможность которых является необщепризнанной. Хотя я сам полагаю, что эти события можно не принимать в расчет, и они вообще невозможны, я думаю, что следует создать для них отдельную категорию в нашем досье о рисках, чтобы, из принципа предосторожности, сохранять определённую бдительность в отношении появления новой информации, могущей подтвердить эти предположения.
2.12.15. Переход вакуума в состояние с более низкой энергией.
По расчетам Бострома и Тегмарка вероятность подобной общевселенской катастрофы, даже если она физически возможна, – меньше 1 процента в ближайший миллиард лет. Это даёт шанс меньше, чем 1 к миллиарду, что она случится в XXI веке. Тоже относится к столкновению бран (поверхностей в многомерном пространстве в теории струн) и любым другим сценариям вселенских катастроф естественного происхождения.
2.12.16. Неизвестные процессы в ядре Земли.
Есть предположения, что источником земного тепла является естественный ядерный реактор на уране в центре планеты [Анисичкин, 1998 http://www.vniitf.ru/rig/konfer/5zst/Section2/2-4r.pdf ]. При определённых условиях - например, при столкновении с крупной кометой – он может перейти в надкритическое состояние и вызвать взрыв планеты, что, возможно, и было причиной взрыва Фаэтона, из которого, возможно, сформировался пояс астероидов. Опасные опыты с нейтронами или нейтрино также могли бы дестабилизировать его. Другой, зарубежный, автор Мартин Хердрон предполагает, что естественный ядерный реактор в центре Земли имеет диаметр в 8 км и может остыть и перестать создавать земное тепло и магнитное поле. (http://arxiv.org/pdf/hep-ex/0208038)
Если по геологическим меркам некие процессы уже назрели, то это означает, что гораздо проще нажать на «спусковой крючок», чтобы запустить их – и значит, человеческая деятельность может разбудить их.
Процессы в ядре в прошлом, возможно, стали причинами таких грозных явлений, как трапповый вулканизм. На границе пермского периода 250млн. лет назад в Восточной Сибири излилось 2 млн. кубических км. лавы, что в тысячи раз превышает объёмы извержений современных супервулканов. Это привело к вымиранию 95 процентов видов.
До границы земного ядра около 3000 км, а до Солнца 150 000 000 км. От геологических катастроф каждый год гибнут десятки тысяч людей, а от солнечных катастроф – никто. Прямо под нами находится гигантский котёл с расклеенной лавой, прописанной сжатыми газами.
Процессы в ядре также связаны с изменениями магнитного поля Земли, физика чего пока не очень понятна. Красилов предполагает, что периоды неизменности, а затем изменчивости магнитного поля Земли предшествуют колоссальным трапповым излияниям. (Красилов В.А. Модель биосферных кризисов. Экосистемные перестройки и эволюция биосферы. Вып. 4. М.: Издание Палеонтологического института, 2001. С. 9-16. http://macroevolution.narod.ru/krmodelcrisis.htm). Сейчас мы живём в период изменчивости магнитного поля, но не после длительной паузы. Периоды изменчивости магнитного поля длятся десятки миллионы лет, сменяясь периодами стабильности в десятки миллионов. (Есть также маргинальная теория о том, что увеличение дегазации водорода на Русской равнине связано с выходом на поверхность новой горячей точки, то есть магматического плюма, идущего от земного ядра.) Так что при естественном ходе событий у нас есть миллионы лет до следующего проявления траппового вулканизма, если он вообще будет, что означает вероятность порядка 0,01 процента на столетие. Основная опасность здесь состоит в том, что люди любыми своими проникновениями вглубь Земли могут эти процессы подтолкнуть, если степень их готовности достигла около критического уровня. (Однако трапповые излияния не являются излияниями вещества самого ядра Земли – тяжёлого железа, а являются движением вверх разогретых теплом ядра частей мантии.)
В жидком земном ядре наиболее опасны растворённые в нём газы. Именно они были бы способны вырваться на поверхность, если бы им представился канал. По мере осаждения тяжёлого железа вниз, оно химически очищается (восстановление за счёт высокой температуры), и всё больше количество газов высвобождается, порождая процесс дегазации Земли. Есть предположения, что мощная атмосфера Венеры возникла относительно недавно в результате интенсивной дегазации её недр.
Определённую опасность представляет соблазн получать даровую энергию земных недр, выкачивая раскалённую магму, хотя если это делать в местах, не связанных с плюмами, то это должно быть достаточно безопасно.
Есть предположение, что спреддинг океанического дна из зон срединных хребтов происходит не плавно, а рывками, которые с одной стороны, гораздо реже, чем землетрясения в зонах субдукукции, а с другой – гораздо мощнее. Здесь уместна следующая метафора: энергия разрыв воздушного шарика гораздо большее мощный процесс, чем его сморщивание.
Ещё есть околонаучная теория о том, что таяние ледникового щита Гренландии приведёт к разгрузке её ложа и сильным землетрясениям, а также к гигантским паровым взрывам воды, оказавшейся на глубине. И это запустит процесс разрыва по Атлантическому срединному хребту.
Наконец, есть смелые предположения, что в центре Земли (а также других планет и даже звёзд) находятся микроскопические (по астрономическим масштабам) реликтовые чёрные дыры, которые возникли ещё во время возникновения вселенной. (http://www.chronos.msu.ru/RREPORTS/parkhomov_o_vozmozhnykh.pdf и http://www.astronomy.ru/forum/index.php/topic,23957.0.html)
По теории С.Хокинга реликтовые дыры должны медленно испаряться, однако с нарастающей скоростью ближе к концу своего существования, так что в последние секунды такая дыра производит вспышку с энергией, эквивалентной примерно 1000 тонн массы ( и в последнюю секунду 228 тонн) (что примерно эквивалентно энергии 20 000 гигатонн тротилового эквивалента – она примерно равна энергии от столкновения Земли с астероидом в 10 км в диаметре (http://en.wikipedia.org/wiki/Hawking_radiation)). Такой взрыв не разрушил бы планету, но вызвал бы по всей поверхности землетрясение огромной силы, вероятно, достаточное, чтобы разрушить все строения и отбросить цивилизацию на глубокий постапокалиптический уровень – однако люди бы выжили, хотя бы те, что был бы в самолётах и вертолетах в этот момент.
Микрочёрная дыра в центре Земли испытывала бы одновременно два процесса – аккреции вещества и потери хокинговским излучением, которые могли бы находиться в равновесии, однако сдвиг равновесия в любую сторону был бы чреват катастрофой – или взрывом дыры, или поглощением Земли или разрушением её за счёт более сильного выделения энергии при аккреции. Чёрная дыра в центре Земли могла бы также служить источником магнитного поля Земли и причиной его изменчивости. Может быть также несколько микрочёрных дыр, вращающихся вокруг друга. Напоминаю, что нет никаких фактов, подтверждающих существование реликтовых чёрных дыр.
2.12.17. Взрывы других планет Солнечной системы.
Есть другое предположение о причинах возможного взрыва планет, помимо взрывов урановых реакторов в центре планет по Анисичкину, а именно, особые химические реакции в ионизированном льде. Дробышевский (Дробышевский 1999) предполагает, что такого рода события регулярно происходят в ледяных спутниках Юпитера, и для Земли они опасны образованием огромного метеоритного потока. Он предполагает, что во всех спутниках эти процессы уже завершились, кроме Каллисто, который может взорваться в любой момент и предлагает направить на исследование и предотвращение этого явления значительные средства. (Стоит отметить, что в 2007 году взорвалась, причём повторно, комета Холмса, и никто не знает почему.)
В любом случае, чем бы не было вызвано разрушение другой планеты в или крупного спутника в Солнечной системе, этот представляло бы длительную угрозу земной жизни за счёт выпадения осколков.
2.12.18. Немезида.
Есть гипотеза, что на периферии Солнечной системы находится невидимая звезда или крупная планета, которая вращается по сильно эллиптической орбите и своим гравитационным возмущением регулярно приводит к биологическим кризисам на Земле. Регулярность эта может быть раз в миллионы лет (так, Проксима Центавра обращается вокруг Альфа за миллионы лет). Однако изучение орбит тел в поясе Койпера за орбитой Плутона не обнаружили влияний крупного тела. Если бы такое тело было бы на подлёте к Солнцу, то его бы скорее всего обнаружили за десятки лет.
Другой опасный вариант, связанный с Немезидой, состоит в том, что она не приближается к Земле, а только углубляется иногда в облако Орта, провоцируя регулярные выпадения комет. Но и это крайне медленный процесс, так что он не угрожает нам в XXI веке.
Наконец, упоминалась вероятность того, что Солнечная система войдёт в плотное газопылевое облако, которое значительно ослабит свет Солнца. Но в ближайших окрестностях Солнечной системы такого облака нет.
2.12.19. Прекращение действия «защиты», которую нам давал антропный принцип.
Подробно я рассматриваю этот вопрос в статье «Природные катастрофы и антропный принцип». Суть угрозы в том, что для формирования разумной жизни на Земле должно было сложиться уникальное сочетание условий, которые действовали в течение длительного времени. Однако из этого нисколько не следует, что они будут продолжать действовать. Соответственно, в будущем мы можем ожидать, что постепенно эти условия исчезнут. Скорость этого процесса зависит от того, насколько невероятным и уникальным было сочетание условий, позволивших сформироваться разумной жизни на Земле. Чем невероятнее такое сочетание, тем быстрее оно может закончиться. Для внешнего наблюдателя этот процесс будет выглядеть как внезапное и беспричинное ухудшение многих жизненно важных параметров, поддерживающих жизнь на Земле. (Можно привести такой пример из обычной жизни для этой ситуации: если мы выбираем произвольного человека, то математическое ожидание его оставшейся продолжительности жизни равно половине средней продолжительности жизни людей, то есть примерно 40 лет. Однако если мы возьмём множество профессоров университетов, то в нём ожидаемая продолжительность жизни будет меньше, так как в среднем требуется 40-50 лет, чтобы стать профессором. Разумная жизнь на Земле является «профессором» по отношению к другим видам.)
Рассматривая этот и подобные примеры, можно предположить, что данный эффект увеличивает вероятность внезапных природных катастроф, способных оборвать жизнь на Земле, в 10 раз.
Этот эффект действует и в меньших масштабах, когда относится не ко всей жизни на Земле, а к появлению человека разумного и к возникновению непрерывной письменной традиции.
Например, колоссальное извержение вулкана Тоба, поставившее человечество на грань вымирания, произошло 74000 лет назад, и по статистическим соображениям в духе формулы Готта шансы на повторное извержение аналогичного масштаба в следующем году имеют порядок 1/ 100 000. Если же учесть нашу поправку, то это будет 1 к 10 000, или 1 процент за 100 лет.
И хотя сейчас сверхизвержение масштабов Тобы не приведёт к неизбежному вымиранию человечества, оно может разрушить современную цивилизацию, переведя её на постапокалиптическую стадию – и полностью погубить цивилизацию, если она уже окажется к этому моменту на постапокалиптической стадии.
Этот вероятностный сдвиг связан с тем, что разумная жизнь скорее зародится после длительного периода отсутствия прерывающих её развитие природных катастроф, а не в случайный момент между природными катастрофами. Мы ещё вернёмся к обсуждению этого эффекта в главе о вычислении непрямых оценок вероятности глобальной катастрофы в конце книги.
2.12.20. Ослабление устойчивости и человеческие вмешательства.
Вклад этого ослабления устойчивости в суммарную вероятность, казалось бы, мал. А именно, если Солнце будет поддерживать комфортную температуру на Земле не 4 млрд. лет, а только 400 млн., то в XXI веке это всё равно десятитысячные доли процента. (0, 0004%). Однако ослабление устойчивости, которую нам давал антропный принцип, означает, что сами процессы станут менее устойчивыми и более склонными к колебаниям (что вполне известно относительно Солнца, которое будет гореть, по мере исчерпания водорода, всё более неравномерно), а во-вторых, что кажется более важным, - они станут более чувствительным к возможным малым человеческим воздействиям. То есть одно дело дёргать за висящую резинку, а другое – за резинку, натянутую до предела.
Например, если некое извержение сверхвулкана назрело, то могут пройти ещё многие тысячи лет, пока оно произойдёт, но достаточно скважины в несколько километров глубиной, чтобы нарушить устойчивость крышки магматической камеры. Поскольку масштабы человеческой деятельности растут во всех направлениях, возрастают шансы наткнуться на такую неустойчивость. Это может быть и неустойчивсоть вакуума, и земной литосферы, и чего ещё, о чём мы даже не думаем.
2.13. ВИДОВЫЕ РИСКИ, НЕ СВЯЗАННЫЕ С НОВЫМИ ТЕХНОЛОГИЯМИ.
2.13.1. Исчерпание ресурсов.
Широко распространено мнение о том, что цивилизация обречена из-за исчерпания легкодоступных углеводородов. В любом случае, это само по себе не приведёт к вымиранию всего человечества. Однако это создаст существенные проблемы, если нефть закончится раньше, чем общество успеет к этому адаптироваться – то есть закончится быстро. Однако запасы каменного угля огромны, а технология производства жидкого топлива из него активно применялась ещё в гитлеровской Германии. Огромные запасы гидрата метана находятся на морском дне, и эффективные роботы могли бы его добывать. И существующих технологий ветроэнергетики, преобразования солнечной энергии и подобных в целом достаточно, чтобы сохранить развитие цивилизации, хотя возможно определённое снижение жизненного уровня, а худшем случае – и значительное снижение популяции, но не полное вымирание.
Иначе говоря, Солнце и ветер содержат энергию, которая в тысячи раз превосходит потребности человечества, и мы в целом понимаем, как её извлекать. Вопрос не в том, хватит ли нам энергии, а в том, успеем ли мы ввести в строй необходимые мощности по её извлечению до того, как нехватка энергии подорвёт технологические возможности цивилизации при неблагоприятном сценарии.
Кроме того, завершение исчерпания ресурсов находится за горизонтом прогноза, который устанавливается темпом научно-технического прогресса. (Но момент изменения тенденции – Peak Oil – находится внутри этого горизонта.) Только предположив полную остановку прогресса в области робототехники и нанотехнологий можно строить точные прогнозы о том, когда и какие ресурсы исчерпаются. Вопрос в том, может ли начало исчерпания ресурсов и сопутствующий кризис настолько подорвать развитие технологий – и этот вопрос мы обсудим в главе про системный кризис.
Выводы: более быстрые процессы перекрывают более медленные. Поэтому исчерпание ресурсов не следует рассматривать как реальный риск окончательной глобальной катастрофы в текущей момент времени. Однако он может проявить себя как один из факторов в случае более сложных сценариев.
2.13.2. Перенаселение.
Очевидно, что перенаселение само не может никого истребить, но может создать условия, при которых будет наблюдаться нехватка любых ресурсов и обострятся любые конфликты. При этом нам нужно учитывать не только людей, но и их машины и уровень жизни. Автомобиль, который стоит в гараже, ест кислород и биотопливо также нагружает биосферу, как и несколько человек. Поэтому даже приостановка роста населения людей не будет означать окончание проблемы перенаселения, так как по мере развития технологий у каждого появятся свои машины, дома, домашние роботы и т д. Теоретически существует проблема, состоящая в том, что рост населения рано или поздно перекроет любые ресурсы, даже если человечество заселит всю галактику, а значит, должна наступить некая точка, за которой неограниченная материальная экспансия прекратится. Капица вывел формулу, из которой следует гиперболический рост населения с уходом в бесконечность в районе 2027 года. (Хотя и полагал, что действие этой формулы прекратилось.) И хотя реальный рост населения отстаёт от этого графика, мы можем приблизится снова к нему, если добавим число установленных компьютеров.
Кроме того, рост человеческого населения увеличивает вероятность самозарождения опасных инфекционных заболеваний.
Выводы: самое главное, что даёт нам кривая роста населения – это понимание того, что так вечно продолжаться не может, а значит должна быть некая точка перегиба или перелома, за которой следует та или иная стабилизация. Это может быть и качественный переход на уровень сверхцивилизации, и стабилизация на текущем уровня, и откат в некое стабильное прошлое состояние, и полное уничтожение.
2.13.3. Крах биосферы.
Если мы овладеем генетическими технологиями, мы сможем как устроить крах биосферы невероятных масштабов, так и найти ресурсы для её защиты и ремонта. Можно представить себе сценарий, при котором вся биосфера настолько заражена радиацией, генетически модифицированными организмами и токсинами, что она не способна восполнять потребности человечества в продовольствии. Если это произойдёт внезапно, это поставит цивилизацию на грань экономического краха. Однако достаточно продвинутая цивилизация сможет наладить защиту и производство продуктов питания в некой искусственной биосфере, вроде теплиц. Следовательно, крах биосферы опасен только при последующем откате цивилизации на предыдущую ступень – или если сам крах биосферы вызывает этот откат.
2.13.4. Социально-экономический кризис. Война.
Более подробно этот вопрос будет рассмотрен далее, в главе о различных системных кризисах, поскольку в современном обществе такой кризис не может не опираться на разные новые технологии.
Без таких технологий война или общественно-политическоий кризис не могут происходить одновременно на всей территории Земли и таким образом создавать глобальный риск.
2.13.5. Генетическая деградация и ослабление фертильности (способности к размножению).
Очевидно, что генетическая деградация может проявиться только в течение многих поколений. Если при этом будет существовать высокоразвитая цивилизация, то уже через поколение мы сможем управлять развитием эмбрионов и отбирать наиболее здоровых из них, а также лечить генетические заболевания разными способами. Если же человечество ждёт деградация на более низкий уровень развития, тот текущая популяция пройдёт через «бутылочное горлышко», что резко увеличит давление естественного отбора и улучшит качество генов. Подобные же рассуждения верны и для проблем с фертильностью.
Если экстраполировать модель «одна семья – один ребёнок», то она привела бы к полному вымиранию человечества менее чем за 1000 лет, что выходит за рассматриваемый промежуток времени (и достаточно уязвимо для критики, так как здесь был бы отбор в сторону наиболее плодовитых семейств). Однако если бы некий вирус привёл к тотальному бесплодию человечества, и при этом технический прогресс бы остановился, то люди бы вымерли к XXII веку. Опять же, это мало вероятно, так как уже почти готовы технологии репродуктивного клонирования.
Выводы: названные факторы не угрожают выживанию человечества в рассматриваемый период.
2.13.6. Старение вида.
Есть концепция, что виды могут стареть. (См. «Взлет и падение видов: новые данные подтверждают старую идею «эволюционного цикла» http://elementy.ru/news/430634 Michael Foote, James S. Crampton, Alan G. Beu, Bruce A. Marshall, Roger A. Cooper, Phillip A. Maxwell, Iain Matcham. Rise and Fall of Species Occupancy in Cenozoic Fossil Mollusks // Science. 2007. V. 318. P. 1131–1134.) «После появления вида его «распространенность» (площадь ареала и частота встречаемости) постепенно растет в течение нескольких миллионов лет, ненадолго достигает максимума и затем постепенно снижается. Виды редко вымирают внезапно, находясь на пике численности; вымиранию обычно предшествует длительный период упадка… Другой важный вывод состоит в том, что виды редко вымирают внезапно, находясь на пике своего развития. Вымиранию обычно предшествует довольно долгий период упадка. Это значит, что палеонтологическая история вида позволяет судить о вероятности его вымирания в наши дни: наибольшей опасности подвергаются те виды, которые уже миновали пик своего развития и находятся в фазе упадка. Полученные данные противоречат также распространенному мнению о том, что в эволюции должны чередоваться короткие периоды «становления» и долгие периоды «стазиса». В действительности виды, по-видимому, почти не задерживаются на максимальном достигнутом уровне и практически сразу переходят от роста к упадку».
Стареть могут также государства и культуры, делаясь всё более застывшими и зарегламентированными, и в конечном счёте - хрупкими. Возможно, могут стареть и цивилизации планетарного масштаба, постепенно утрачивая интерес к жизни. Всё же вряд ли это угрожает Земле на нынешнем этапе. С другой стороны, рост числа пенсионеров и «бессмертных», если таковые будут когда-нибудь созданы, может когда-нибудь создать эту проблему.
2.13.7. Вытеснение другим видом.
Многие виды животных кончили тем, что были вытеснены более эффективными видами, или мутировали в них. Возникновение такого вида путём естественной эволюции в ближайшие 100 лет невозможно. Даже рост и сокращение численности разных рас и народов не являются процессами, которые успеют завершиться в 21 веке. Кроме того, изменение этнического состава не является угрозой выживанию человечества как вида, хотя на эту тему завязано очень много эмоций, и этнические конфликты могут стать глобальными рисками второго рода – то есть ситуациями, снижающими выживаемость человечества.
Однако это возможно как частный случай генетических экспериментов или развития симбиоза человек-компьютер. Однако такие риски скорее относятся к другой категории, скорее всего, к разделу об искусственном интеллекте, так как чтобы вытеснить человека, новый вид, вероятно, должен быть умнее.
2.14. НЕИЗВЕСТНЫЕ НАМ СЕЙЧАС ПРИЧИНЫ КАТАСТРОФ.
2.14.1. Закон Мура в отношении глобальных катастроф.
Можно сформулировать своего рода «Закон Мура» в отношении глобальных катастроф. Каждые N лет (примерно оцениваемое мной в 30 лет) удваивается известное нам число природных катастроф, которые могут угрожать человечеству. Каждые M лет (примерно оцениваемое мной в 15 лет) технические возможности по организации глобальной катастрофы – то есть способности человечества к саморазрушению - удваиваются. Цифры эти взяты, конечно, с потолка, но суть в том, что в середине ХХ века идеи глобальной катастрофы практически ещё не было, а теперь мы легко можем назвать десяток искусственных способов истребить род людской.
И это позволят нам оценить объём неведомого в смысле глобальных катастроф. Мы можем сказать, что через 50 лет не только созреют некие понятные нам технологии, но могут появиться принципиально новые идеи о том, какие возможны ещё угрозы существованию.
По мере овладения разными всё более мощными источникам энергии, всё более точным знаниями о мире и способами управлять материей, по мере открытия всё новых физических законов и всё новых идей – появляется всё больше возможностей создать абсолютное оружие. Поэтому мы ни в каком случае не должны считать приведённый здесь список исчерпанным.
Более того, большинство случившихся в последнее время катастроф были неожиданными. Не в том смысле, что никто никогда не предсказывал ничего подобного – всегда можно найти апостериори книжку, где какой-нибудь фантаст описал что-либо подобное. А в том, что большинство населения и руководителей вообще не знали о возможности такого сценария, и в связи с этим ничего не предпринималось. Чернобыль, 11 сентября, сход ледника Колка, цунами в Индийском океане, болезнь пчёл CCD, сель в долине гейзеров – вот некоторые примеры.
Даже некоторые комбинации известных факторов, которые могут привести к глобальной катастрофе, не очевидны – например, мне понадобился почти год, чтобы предположить, что пассивное SETI содержит в себе глобальный риск, хотя я располагал всеми необходимыми данными.
Соответственно, мы можем заключить, что раз даже к обычным катастрофам мы не готовы, и список известных их возможностей далеко не исчерпан, то тем более наш список глобальных катастроф несовершенен.
Более того, неизвестные риски представляют большую опасность, чем известные, так как мы не можем их измерить, не можем к них подготовится, и они всегда застают нас врасплох.
2.15. «Конструктор» однофакторных сценариев глобальной катастрофы.
Проанализировав множество разных сценариев глобальных катастроф, мы можем выделить общие признаки таких сценариев, которые помогут нам в будущее обнаруживать или «конструировать» новые опасные сценарии.
2.15.1. Общие признаки любого опасного агента.
По определению, в однофакторных сценариях всегда присутствует некий один фактор, который действует на всех людей. Про этот фактор можно сказать следующее: он зарождается в некой точке, распространяется по всей поверхности Земли и действует на каждого человека. Соответственно, различия могут быть в том, как он в этой точке возник, как он её покинул, как распространялся по Земле и как действовал на каждого человека. В каждом из этих пунктов есть несколько вариантов, в достаточной мере независимых друг от друга, что позволяет «конструировать сценарии», набирая разные цепочки из этих вариантов и приписывая им разную вероятность.
Этот набор качеств может служить своего рода картой при проверке на безопасность каждой новой технологии или природного явления. А именно, мы должны проверять следующий набор свойств:
1. Может ли новая технология применяться для уничтожения людей или приводить к ней?
2. Если да, то каким образом она может выйти из-под контроля?
3. Может ли она распространиться по всей планете таким образом, чтобы воздействовать на каждого человека?
4. Может ли это произойти настолько быстро, что мы не успеем этому противостоять?
5. Как она может взаимодействовать с другими технологиями, усиливая при этом свой риск?
6. Насколько легко будет построить защиту от опасностей этой технологии?
7. Насколько точными и достоверными могут быть наши предсказания о рисках этой технологии?
2.15.2. Способы возникновения.
Опасный фактор, угрожающий глобальной катастрофой, может возникнуть следующим образом:
А) Случайное природное возникновение. Например, подлёт астероида или извержение сверхвулканов.
Б) Создание человеком. В этом случае, скорее всего, речь идёт о некой исследовательской лаборатории. Это создание может быть или случайным, или сознательным. Возможна и комбинация того и другого – когда то, что должно было иметь ограниченный радиус поражения (или вообще рассматривалось как безопасное и полезное), приобрело всемирный радиус поражения. (Примеры: Изначально ядерное оружие рассматривалось как оружие локального действия, однако потом возникли представления, что оно может угрожать всей земной цивилизации; ИИ, который запрограммирован быть дружественным и любить людей, может проявить такую «Дружественность», как «медвежья услуга».)
2.15.3. Выход из точки и начало распространения.
Очевидно, что это происходит или по команде некого человека, или случайно. Сразу следует сказать, что возможно совмещение этих сценариев: человек отдаёт некую команду, полный смысл которой не понимает, или она выполняется неправильно. Или некий человек со стороны совершает террористический акт, приводящий к разрушению лаборатории, в которой находится супервирус.
Точка, в которой находится опасное изделие – это или лаборатория, где его создали, и тогда речь скорее идёт о случайном инциденте, или стартовая площадка, если эта технология превращена в некое изделии, которое стало оружием. Так же эта точка может быть где-то на на пространственно-временном пути от лаборатории до стартовой площадки – на полигоне, на транспорте, на производстве.
При этом важно отметить существенную разницу между мотивами того, кто создавал оружие судного дня, и того, кто затем решил его применить. Например, атомную бомбу создавали для защиты от иностранного агрессора, а террористы могут её захватить для требования отделения неких территорий. Такой двухфазовый целевой сценарий может быть вероятнее однофазового.
Виды выхода из точки:
1. Утечка – Утечка начинается тихо и незаметно, без чьей-либо воли. Это относится к ситуациям, вроде утечки опасного вируса, которую нельзя заметить до того, как будут заболевшие снаружи. Утечка опасного химического вещества или ядерных материалов будет сразу заметна, и, скорее всего, будет сопровождаться взрывом.
2. Прорыв – Это силовой прорыв чего-то, что было заперто, но хотело вырваться наружу. Может относится только к ИИ или генетически модифицированным живым существам с зачатками интеллекта.
3. Взрыв – катастрофический сценарий происходит в самой точке, распространяются его последствия. Скорее всего, это относится к опасным физическим экспериментам.
4. Запуск – кто-то принимает решение о распространении опасного агента или применении оружия судного дня.
Очевидно, что возможны некоторые комбинации этих базовых сценариев. Например, взрыв лаборатории, приводящий к утечке опасного вируса.
2.15.4. Распространение важнее разрушения.
Анализируя любое явление или изобретение в качестве возможного фактора глобального риска нам следует уделять больше внимания тому, может ли он за конечное время воздействовать на абсолютно всех людей, чем тому, может ли он убивать людей или нет. Для того, чтобы некоторый фактор стал глобальным риском, есть два необходимых условия:
А) он убивает каждого человека, на которого воздействует
Б) он действует на всех людей за конечное время (За время, меньшее, чем способность людей к самовоспроизводству.)
Однако если выполнения первого условия достичь относительно легко, так как существует бесконечное число способов причинения смерти, и они всё время на кого-то действуют, то второе условие – гораздо более редкое. Поэтому, как только мы обнаруживаем даже безобидный фактор, способный действовать на всех людей, это должно нас обеспокоить больше, чем обнаружение некого крайне опасного фактора, который действует только на некоторых. Потому что любой универсальный фактор может стать носителем для некого опасного воздействия. Например, как только мы осознаём, что солнце освещает каждого человека на Земле, мы можем задаться вопросом – а не может ли с Солнцем случиться чего-то такого, что будет воздействовать на каждого? Тоже касается атмосферы Земли, её коры, особенно космоса, который окружает всю Землю.
2.15.5. Способ распространения.
Собственно, именно способность к всемирному распространению делает оружие сверхоружием. Эта всемирность означает не только всю поверхность земного шара, но и способность проникать через все укрытия и средства защиты, а также скорость этого процесса, которая делает невозможным противостоять ему с помощью новых открытий. (Скажем, оледенение может быть всемирным, но, скорее всего, будет достаточно медленным, чтобы к нему можно было приспособиться.)
Способы и факторы, влияющие на способность агента к распространению повсюду таковы:
1) по ветру в атмосфере; отдельно надо выделять быстрое движение верхних слоёв атмосферы (где скорости могут быть 100м/с, а значит, время всемирного распространения – несколько дней), а также склонность вещества выпадать в необратимые осадки, что уменьшает его количество.
2) агенты, распространяющиеся своим ходом – бактерии, самонацеливающие нанороботы, ракеты.
3) от человека к человеку – вирусы.
4) с помощью специальных распылителей. Например, можно представить себе следующий катастрофический сценарий: на низкой полярной орбите летает спутник и непрерывно сбрасывает капсулы с радиоактивным веществом или другим опасным реагентом. За несколько дней он может пройти над всеми точками земного шара.
5) взрыв – само создаёт огромное движение. Ударная волна помогает протолкнуть агент во все щели.
6) сетевое распространение. Так мог бы распространяться ИИ по Интернету.
7) смешанный способы. Например, на начальном этапе взрыв бомбы распыляет радиоактивные вещества, а потом их разносит ветром. Или некую плесень переносит ветер, а на местах она размножается. Понятно, что смешанные способы распространения гораздо опаснее.
8) агенты, обладающие элементами разума, чтобы обходить препятствия (компьютерные вирусы, ИИ, микророботы, агрессивные животные).
9) Внезапность и скрытность распространения помогает агенту проникнуть повсюду.
10) высокая способность к переносу, «липучесть» и мелкодисперсность (как у лунной пыли).
11) Способность саморазножаться, как в природе, так и на человеке или на промежуточных носителях.
12) Многофакторность – если имеется достаточно много разнородных агентов, например, при мультипандемии.
13) Существенным в распространении является концентрация. Чем выше градиент концентрации, тем больше способность реагента проникать «во все щели». Иначе говоря, если концентрация в атмосфере составляет 1 смертельный уровень, то всегда найдутся участки, где из-за разных флюктуаций этот уровень будет значительно ниже и люди там выживут, даже без всяких бункеров. Но если концентрация очень велика, то помогут только полностью герметичные, заранее оборудованные бункеры. Концентрация также увеличивает скорость распространения.
14) Затем важна длительность действия агента. Коротко действующий агент (гамма-всплеск) может опалить значительную часть биосферы, но всегда найдутся убежища, на которые он не подействовал. Однако длительное заражение, например, кобальтом-60, делает невозможным выживание в небольших убежищах.
15) Наконец, надо учесть лёгкость фильтрации и дезактивации – чем легче фильтрация воздуха и дезактивация выходивших на поверхность людей, тем безопаснее агент. Биологические агенты можно было легко стерилизовать в системах вентиляции, но выходы на поверхность были бы исключены, так как человека не стерилизуешь.
2.15.6. Способ причинения смерти.
Основной элемент глобальной катастрофы, который мы называем «агент», может вообще не убивать людей, а только разъединять их и лишать способности к размножению, как например, супернаркотик, или вирус, стерилизующий всех людей. Или загнать их всех в бункеры, где они обречены на деградацию.
Агент может быть однофакторным – например, это может быть некая инфекция или радиация. При этом есть разница между мгновенной смертью и продолжительным умиранием.
Агент может обладать многофакторным поражающем воздействием, как атомная бомба. Однако должен быть главный фактор, обладающий универсальным действием на весь мир, или достаточная плотность разных факторов.
Агент может вызвать также не прямое действие, а равномерное разрушение всей среды обитания. (Астероид, разрушение биосферы)
Вымирание может также принять форму медленного вытеснения во второсортные экологические ниши (варианты: «зоопарк», тотальная безработица в духе статьи «Почему мы не нужны будущему?»)
Разрушающий агент может вызвать появление новых агентов, каждый из которых действует по-своему. Например, распространение машины для программирования вирусов (+вируса, вызывающего у некоторых людей желание уничтожить весь мир) могло бы стать таким суперагентом, вызывающих жизни много разных агентов в разных частях Земли. В каком-то смысле сам научно-технический прогресс является таким суперагентом.
Агент может быть интеллектуальным, чтобы в каждом конкретном случае пользоваться разными способами. (Враждебный ИИ, эсхатологическая секта).
2.15.7. Типичные виды разрушающего воздействия:
Чем бы ни был вызван «конец света», он будет воздействовать на людей и их бункеры, скорее всего, одним из нескольких перечисленных способов. Эти способы в основном совпадают с обычными поражающими факторами ядерного взрыва. Любой процесс, который способен одновременно создать хотя бы один из этих факторов на всей территории Земли, должен быть отнесён к «оружия судного дня».
• Ударная волна – способно непосредственно причинять смерть, разрушать бункеры и все другие созданные человеком объекты.
• Высокая температура – от длительного воздействия высокой температуры почти нет защиты, так как любой бункер рано или поздно прогреется. Глубоко в землю зарыться не удастся, так как температура в шахтах быстро растёт, порядка 30 градусов на километр глубины.
• Холод. Ему противостоять проще, чем высокой температуре.
• Высокое давление
• Летучее вещество
• Излучение и радиация.
• Колебания земной поверхности.
• Утрата жизненно важного ресурса – кислорода, еды, воды.
• Поражение саморазмножающимся агентом (в каком-то смысле огонь тоже обладает способностью саморазмножаться).
• Сверхзвуковая ударная волна – возможно, при достаточно сильном ударе, она могла бы охватить значительную часть земной коры (хотя вязкость бы её поглощала).
Разница между очень большой катастрофой и окончательной глобальной катастрофой может быть в том, что в первом случае уцелеют хотя бы доли процентов людей и территорий. Поэтому важным признаком настоящей глобальной катастрофы является то, что она покрывает всю территорию без исключений. За счёт чего это происходит:
За счёт очень высокого уровня избыточности разрушающего воздействия.
За счёт того, что разрушающий агент обладает своего рода «сверхтекучестью» по своей природе.
2.15.8. Временная структура события.
Вне зависимости от того, как сложились предыдущие факторы, можно обозначить следующую последовательность событий во времени для однофакторной глобальной катастрофы:
1.Фаза назревания. Она включает в себя изобретение, создание, подготовку к применению и возникновение плана по применению. Если речь идёт о природном явлении, то речь идёт о накоплении энергии в камер супервулкана или подлёте астероида. Сюда также входит накопление халатностей при исполнении инструкций и ошибки в составлении инструкций.
2.Момент спускового события. Одно событие в пространстве-времени, которое определяет начало этого процесса. Это может быть решение о ядерном ударе, трещина в крышке вулканической камеры и т д. Спусковое событие запускает цепочку событий, следующих друг за другом со значительной вероятностью в определённом временном графике. При этом если бы спусковое событие не произошло, то весь процесс мог бы отложиться на неопределённое долгое время. Однако само спусковое событие может быть внешне безобидным и никем не осознаваемым в качестве такового.
3. Здесь цепочка событие приводит к высвобождения опасного агента из точки его расположения. В этот пункт входят четыре варианты выхода «из точки», которые мы обсуждали выше: утечка, прорыв, взрыв, запуск.
4. На этой фазе происходит распространение агента по всей поверхности Земли (а также в ближний космос, если уже есть самостоятельные космические поселения). Это распространение может быть а) скрытным б) сопровождающимся самим процессом разрушения. Скрытное может быть опаснее, так как не остаётся областей, которые успевают подготовится.
5. Фаза уничтожающего процесса. Затем развивается сам процесс, охватывающий всю поверхность Земли. Эпидемия или ударная волна.
6.Точка необратимости. Процесс распространения обладает той или иной степенью неопределённости, как по своей природе, так и по его оценкам людьми. Если процесс не мгновенный, то имеет место борьба людей с ним. Тот момент, когда люди проигрывают эту борьбу и вымирание становится неизбежно, и есть точка необратимости. Хотя она может не осознаваться в качестве таковой. Можно описать эту точку и так, что позволяет сделать математические выкладки. Точка необратимости - это момент, когда факторы истребления превышают технологические возможности цивилизации, в том числе и потенции по улучшению этих технологий. Зависит как от концентрации факторов истребления, так и от уровня цивилизации. Если в результате крупной катастрофы уровень цивилизации упал ниже некой точки, а уровень факторов истребления – выше ней, то дальше вымирание необратимо. С определённой вероятностью, разумеется.
7.Смерть последнего человека. После точки необратимости следует вымирание уцелевших людей. Это процесс может растянуться во времени даже на многие годы за счёт бункеров. Он может представлять даже очень длительное состояние прозябания уцелевшего племени на неком острове. Но у такого племени может быть шанс восстановить цивилизацию.
8.Процессы после. После смерти последнего человека процессы на Земле не завершатся. Возможно, начнут развиваться новые виды, возможно Земля будет заселена роботами, нанороботами и ИИ. Есть также надежда, что новый разумный вид воскресит человека по уцелевшей ДНК.
2.15.9. Предаварийные ситуации
Есть также разные типы общественных ситуаций, когда случайное или нарочное применение средства всеобщего уничтожения становится более вероятным.
1) Война за объединение планеты.
2) Борьба всех против всех за ресурсы в условиях их усыхания и исчерпания.
3) Нарастающая структурная деградация, а ля распад СССР.
4) Техническая авария, утечка
5) Диверсия с целью уничтожения всех людей.
6) Случайная война
7) Шантаж машиной судного дня.
8) Неудачный эксперимент
9) Мятеж с целью установления власти на Земле. (ИИ, фашистов итд.)
2.15.10. Намеренная и случайная глобальная катастрофа.
Любые глобальные катастрофы можно различить по тому признаку, организованы ли они некой разумной силой, которая стремится устроить именно глобальную катастрофу, или это некий случайный процесс, у которого нет никаких целей.
К первому варианту относятся глобальные катастрофы:
А) устроенные людьми
Б) связанные с ИИ
В) происходящие по причине столкновения с иными нечеловеческими разумными силами.
Ко второму: Аварии, утечки, природные катастрофы, системные кризисы.
Интеграция первого и второго сценариев: Возможен также сценарий, когда первая фаза катастрофа задумана людьми с определенными целями, однако затем процесс вырывается из-под контроля. Например, террористы могут сознательно спровоцировать ядерную войну, но не представлять её масштабов. Или некоторая буддистская секта может сознательно заразить всех людей вирусом счастья, но не учесть того, что такие люди будут в дальнейшем не дееспособны. (Далай Лама недавно высказался в том духе, что неплохо было бы с помощью генетических манипуляций убрать у людей негативные эмоции.)
С другой стороны, победа разумной силы над людьми означает, что некоторая разумная сила в природе остаётся (если только она не кончает собой после того), а, следовательно, окончательного исчезновения разума во вселенной не происходит. И раз некий разум, причём превосходящий человеческий, остаётся, то он может и вернуть людей у жизни. Однако есть разумные силы, принципиально отличные от человеческого сознания, например, эволюция. Эволюция гораздо «умнее» человека (которого она породила), но бесконечно проигрывает по скорости. (Но не везде, например естественный отбор микроорганизмов, устойчивых к антибиотикам, происходит со скоростью, сопоставимой с разработкой новых антибиотиков.) Если один из вариантов будущего ИИ будет использовать принципы эволюции, но гораздо быстрее, то он может достичь «победы» над людьми как более эффективный решатель любых задач, но при этом не быть сознающим существом в нашем понимании. Разработки такого ИИ небезуспешно ведутся в направлении, называемом «генетические алгоритмы».
2.15.11. Машина судного дня.
Соберём в отдельную категорию все варианты «машины судного дня», которую может создать наиболее злонамеренная группа людей. Возможно, термин восходит к фильму С.Кубрика «Доктор Стрейнджлав». (Сюжет его вкратце таков: «Русские» создают «Машину судного дня», которая взрывает весь мир, если на СССР нападут. В ходе внутренней заварушки в США мятежный сумасшедший генерал наносит удар по СССР, не зная о машине Судного дня. В результате машина запускается. Русский посол говорит: «И эту машину отключить нельзя, иначе бы в ней не было смысла». Др. Стрейнджлав замечает: «Но какой смысл было держать эту машину в секрете?» Русский посол отвечает: «Мы собирались объявить о ней в ближайший понедельник». То есть машина, которая должна была резко снизить риск какой-либо войны на Земле, в действительности приводит к её началу. Интересно, что Дж.Лесли пишет в своей книге «Конец света. Наука и этика человеческого вымирания», что на самом деле было бы неплохо было бы такую машину иметь, так как если бы она правильно применялась, то она в сумме бы снизила риск ядерной войны – примерно как сейчас это делает доктрина взаимного гарантированного уничтожения). Хотя основная идея машины состоит в той форме шантажа, которая подразумевает, что машина судного дня никогда не будет применена, сам факт её создания создаёт вероятность её применения.
Кроме того, имеются исторические примеры бессмысленного истребления людей - обстрел гитлеровцами Лондона Фау-2, поджигание скважин в Кувейте. Психологический пример - подрыв себя гранатой при аресте.
Отнюдь не любой вариант глобальной катастрофы годится как машина судного дня. Это должен быть процесс, который по решению некой группы людей может быть запущен в строго определённый момент времени и вести к глобальной катастрофе со значительной вероятностью, близкой к 100 процентам, по крайней мере, с точки зрения разработчиков устройства. Машина судного дня также должна быть неуязвима к попыткам предотвратить её применение, к несанкционированному применению и должна быть возможность продемонстрировать реалистичность её применения, что нужно шантажистам. (Сейчас в качестве машины судного дня функционально выступает обладание хоть каким-то ядерным оружием, хотя одна атомная бомба весь мир не уничтожит. Например, такова сейчас роль ядерной бомбы в руках Северной Кореи – она хорошо спрятана, но наличие её продемонстрировано.)
• Взрыв водородной бомбы
а) в супервулкане
Б) в каменноугольном пласте
В) в ядерном реакторе
Г) в слое газовых гидратов в океане, с расчётом на цепную реакцию дегазации.
• Создание водородной сверхбомбы стационарного типа.
• Взрыв кобальтовых зарядов, запуск реактора-чёртовой трубки.
• Сведение астероида с орбиты.
• Накопление массы антиматерии.
• Проплавление коры Земли с помощью жидкого ядерного реактора по типу капли.
• Распыление спор антракса в атмосфере, высвобождение большого количества разных вирусов.
• Слив диоксина в океан
• Выпускание генетически модифицированных производителей токсинов и вирусов (диоксиновая плесень, чумная вошь)
• Распространение сотен миллиардов микророботов, атакующих всё живое.
• Уничтожение озонового слоя с помощью некого катализатора.
• Сочетание этих факторов.
Источник: katastrofa.h12.ru.
Рейтинг публикации:
|