Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Будущее в прошлом?

Будущее в прошлом?


21-12-2012, 10:19 | Наука и техника / Размышления о науке | разместил: VP | комментариев: (1) | просмотров: (2 157)

Алексей Левин
«Популярная механика» №10, 2012

 

Принцип причинности в самой простой формулировке гласит, что событие в прошлом может повлиять на событие в будущем. Однако некоторые физики считают, что в квантовом мире будущее может влиять на прошлое.


Группа физиков под руководством президента Израильского фонда фундаментальных исследований Якира Ааронова опубликовала в интернете препринт статьи под интригующим заголовком “Can a Future Choice Affect a Past Measurement’s Outcome?”. Авторы утверждают, что состояние квантовой системы в данный момент времени влияет на состояние этой системы в прошлом, из чего следует, что на квантовом уровне закон причинности действует как в прямом направлении от прошлого к будущему, так и в обратном!

Эффект Ааронова–Бома

Поместим по одну сторону от экрана с двумя параллельными щелями источник моноэнергетических электронов, а по другую сторону установим детектор, который будет регистрировать периодические колебания плотности электронов, вызванные их интерференцией.

Усложним опыт — между экраном и детектором параллельно щелям поместим длинный тонкий соленоид с током. Магнитное поле замкнуто внутри соленоида, наружу оно не проникает. Казалось бы, электроны не могут никак его почувствовать, ведь на их пути от щелей к детектору его напряженность равна нулю. Однако Ааронов и Бом показали, что при включении тока интерференционные полосы сдвигаются, что и подтвердил Чамберс. Все дело в том, что на разность фаз волновых функций электронов, приходящих к детектору от обеих щелей, влияет векторный потенциал электромагнитного поля, а вот он вне соленоида отличен от нуля. То есть электроны чувствуют присутствие электромагнитного поля даже тогда, когда его не способен обнаружить ни единый классический прибор!

<!-- Блок иллюстрации -->
Квантовая легенда. Почетный профессор Тель-Авивского университета, профессор калифорнийского Университета Чапмена и канадского Института теоретической физики «Периметр», Якир Ааронов более полувека занимается фундаментальными проблемами квантовой механики. В 1959 году он и его научный руководитель Дэвид Бом теоретически предсказали столь же красивый, сколь и парадоксальный квантовомеханический эффект, а год спустя английский физик Роберт Чамберс обнаружил его в эксперименте

Квантовая легенда
Почетный профессор Тель-Авивского университета, профессор калифорнийского Университета Чапмена и канадского Института теоретической физики «Периметр», Якир Ааронов более полувека занимается фундаментальными проблемами квантовой механики. В 1959 году он и его научный руководитель Дэвид Бом теоретически предсказали столь же красивый, сколь и парадоксальный квантовомеханический эффект, а год спустя английский физик Роберт Чамберс обнаружил его в эксперименте

Слабые и сильные

Новая работа основана на утверждении Ааронова и его единомышленников, что квантовой системе соответствует не одна, как в стандартной версии, а пара волновых функций. Одна из них описывает эволюцию системы в прямом направлении по стреле времени, другая — в противоположном. Измерение, проведенное в настоящий момент, меняет значение этой функции в прошлом, что можно выявить предшествующими измерениями. Однако их необходимо вести, почти не возмущая состояния системы (скажем, используя очень слабые магнитные поля, если речь идет об ориентации спина электронов).

Но главное состоит в том, что каждый из результатов этих слабых измерений будет малоинформативен и практической пользы не принесет. А вот если провести множество таких измерений, ошибки скомпенсируют друг друга и в сухом остатке окажется реальная информация. Однако расшифровать ее можно лишь после выполнения нормального, сильного измерения (которое, если вернуться к примеру с электронными спинами, однозначно определит проекцию спина на направление магнитного поля).

А как обстоит дело с причинностью, коль скоро в заключительном опыте это направление можно выбрать произвольно? Дело в том, что такой выбор скажется на результатах сильного измерения, и, соответственно, на результатах дешифровки слабых измерений. Квантовая частица на пути от слабого измерения к сильному пребывает в суперпозиции различных состояний, одно из которых несет отпечаток проведенного слабого измерения, а второе будет выявлено в сильном измерении. Полученные в финале данные повлияют на информацию, которую можно извлечь из предшествующей работы. Таким образом, причинность всё же сохраняется, хотя и в более ограниченном смысле, нежели в стандартной версии квантовой механики.

Сложный квантовый мир

Ааронов и его коллега по Тель-Авивскому университету Лев Вайдман обнародовали теорию слабых квантовых измерений в 1988 году. Она долгое время считалась чисто формальной конструкцией, однако в последние годы ее с успехом использовали в ряде лабораторий. Так, в 2007 году американские физики зарегистрировали ничтожную разницу в углах преломления входящих из воздуха в стекло световых пучков разной поляризации (оптический спиновый эффект Холла). Еще через два года другие исследователи этим же методом измерили поворот плоского зеркала на 23 триллионных доли градуса (если б оно отражало лазерный луч, пятно от него сдвинулось бы на лунной поверхности примерно на миллиметр). Так что физическая ценность слабых измерений уже доказана. Проблема в другом — можно ли с их помощью обосновать концепцию обратной причинности?

Сам Якир Ааронов, отвечая на этот вопрос «ПМ», подчеркнул, что модель двух волновых функций с разными направлениями времени не противоречит ни логической структуре квантовой механики, ни вытекающим из этой структуры соотношениям неопределенностей: «Квантовые процессы содержат специфические шумы, которые в принципе невозможно полностью подавить. Слабые измерения очень мягко прощупывают эти шумы и дают возможность снизить их уровень. Именно так был выявлен целый ряд квантовых явлений, которые ранее не удавалось зарегистрировать. В этом нет никакой мистики, просто мы еще раз убедились, что квантовый мир устроен даже сложнее, чем думали Нильс Бор, Вернер Гейзенберг и остальные создатели квантовой механики». Правда, с мнением Ааронова многие физики решительно не согласны. Слово за экспериментаторами.

В слабости сила

<!-- Блок иллюстрации -->
Фотон в клетке. На схеме изображен эксперимент с интерференцией одиночного фотона. Слабые детекторы показаны серым цветом, а их измерения — подчеркиванием. Черным обозначены сильные детекторы. Различные шрифты соответствуют траекториям фотона
Фотон в клетке.
На схеме изображен эксперимент с интерференцией одиночного фотона. Слабые детекторы показаны серым цветом, а их измерения — подчеркиванием. Черным обозначены сильные детекторы. Различные шрифты соответствуют траекториям фотона

Для того чтобы получить осмысленный результат, требуется большое количество слабых измерений. Причем это могут быть измерения одной и той же частицы, скажем, одиночного фотона — если заставить его циркулировать в системе, состоящей из двух интерферометров Маха–Цендера, оснащенной сильными детекторами на начальных и конечных зеркалах. Благодаря этому имеется одинаковая вероятность выбора левого и правого плеча либо на начальном, либо на конечном этапе. Во всех случаях, когда фотон начинает путь как L0/R0 и заканчивает Lf/Rf (или наоборот), слабые измерения на зеркалах интерферометров с равной вероятностью подтверждают прошлые и будущие сильные измерения R1–Lf, L1–Rf, R2–L0, L2–R0. В отличие от сильных измерений, слабые не влияют на момент фотона и потому не «портят» интерференционную картину.



Источник: elementy.ru.

Рейтинг публикации:

Нравится7



Комментарии (1) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.

  1. » #1 написал: Мимолетный прохожий (21 декабря 2012 11:29)
    Статус: Пользователь offline |



    Группа: Посетители
    публикаций 0
    комментария 44
    Рейтинг поста:
    0
    другими словами, человек может изменить своё прошлое, изменив своё отношение к нему. это и так давно известно. гении, блин.

       
     






» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Ноябрь 2024    »
ПнВтСрЧтПтСбВс
 123
45678910
11121314151617
18192021222324
252627282930 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map