Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Российские ученые разработали новую технологию создания быстродействующих интегральных схем

Российские ученые разработали новую технологию создания быстродействующих интегральных схем


17-11-2011, 07:30 | Наука и техника / Новости науки и техники | разместил: Swarm | комментариев: (0) | просмотров: (1 978)

 Источник фото: canalblog.com




Сотрудники НОЦ «Квантовые приборы и нанотехнологии» ФИАН и МИЭТ разработали технологию получения быстродействующей электронной компонентной базы нового поколения на основе квантовых эффектов резонансного туннелирования. Речь идет о технологии монолитной планарной интеграции резонансно-туннельных диодов, полевых транзисторов и диодов Шоттки. Она позволяет существенно увеличить быстродействие, снизить количество активных элементов цифровых интегральных схем и полностью совместима со стандартной технологией арсенид-галлиевых интегральных схем.

История твердотельной электроники началась с изобретения транзистора в 1947 году. С тех пор развитие электроники идёт по пути повышения быстродействия и увеличения плотности компоновки активных приборов в интегральной схеме, что достигается уменьшением их характерных размеров. На этом, более чем полувековом пути решались в основном технологические проблемы, однако уже в ближайшие годы ожидается появление трудностей фундаментального характера, которые обусловлены тем, что размеры приборов уменьшились настолько, что достигли значений длины волны электрона в полупроводниках, то есть нескольких десятков нанометров.

«Если длина волны электрона становится сравнимой с характерным размером прибора, например, с размером затвора полевого транзистора, то электрон ведёт себя как волна — возникают явления интерференции и дифракции. Поток электронов в таком приборе уже не описывается простой гидродинамической моделью, подобно потоку воды в трубе с краном, роль которого в транзисторе выполняет затвор. Тут уместны уже другие аналогии, например, распространение волн по поверхности воды. Если поперёк направления распространения волн поместить плоскую пластинку — аналог затвора в полевом транзисторе, то волны будут частично отражаться от пластинки и складываться с падающими волнами — явление интерференции, а частично огибать пластинку и проходить дальше — явление дифракции. И возникает большой вопрос — а будет ли вообще это устройство работать как транзистор? Или все выльется в „игрушку“ для нескольких продвинутых физиков, не имеющую никакого прикладного значения?», — говорит заведующий лабораторией молекулярно-пучковой эпитаксии ФИАН, кандидат физ.-мат. наук Игорь Казаков.

Для выхода из сложившейся ситуации необходим переход к новым физическим принципам и трёхмерной интеграции приборов в интегральной схеме. Сотрудники научно-образовательного центра «Квантовые приборы и нанотехнологии» ФИАН-МИЭТ под руководством академика Юрия Васильевича Копаева и члена-корреспондента Александра Алексеевича Горбацевича развивают направление квантово-классических интегральных схем. Это направление подразумевает, что электронные приборы, работающие на классических физических принципах, — например, транзистры и диоды — будут монолитно интегрированы с приборами, построенными на квантовых принципах резонансного туннелирования, — резонансно-туннельными диодами, сверхрешётками.

«Интегрированы» — означает «расположены в одной интегральной схеме», а «монолитно» — то есть «изготовлены в объёме одного полупроводникового кристалла». В отличие от гибридной технологии, где отдельные готовые приборы «приклеиваются» на интегральную схему, монолитные интегрированные структуры, которые получаются в процессе эпитаксиального роста, более перспективны. Они обеспечивают более высокую плотность компоновки приборов, позволяют избавиться от мелких структурных элементов, межсоединений и применять наиболее производительные групповые методы изготовления интегральных схем", — поясняет Игорь Петрович.

Одним из наиболее перспективных направлений в функционально интегрированной электронике является использование эффекта резонансного туннелирования. Именно в этом направлении в твердотельной электронике достигнуты мировые рекорды по быстродействию, сравнимые с быстродействием сверхпроводящих устройств. Простейшим электронным прибором такого типа является резонансно-туннельный диод (РТД), обладающий способностью мгновенно (за время порядка 1 пс) переключаться из одного устойчивого состояние в другое благодаря своеобразной вольт-амперной характеристике (ВАХ), имеющей N-образный вид.


 Источник фото: fian-inform.ru



Вольт-амперная характеристика резонансно-туннельного диода

Важно, что достижение такого высокого быстродействия возможно в РТД, латеральные размеры которого порядка 0,1 мкм, а не десятки нанометров, как затворы современных полевых транзисторов. Это позволяет создавать приборы с высоким быстродействием даже на оборудовании 20-летней давности.

«Для России это в какой-то мере шанс проявить себя в области мировых передовых разработок элементной базы электроники, где наши позиции 60-70-х годов, как страны-производителя абсолютно всей номенклатуры электроники гражданского и военного назначения, были утеряны. За всю историю таких самодостаточных „электронных империй“ было только две — СССР и США, даже Япония в военной электронике им уступала. И если в технологическом плане мы сейчас настолько отстали, что просто экономически не выгодно „поднимать всё с нуля“, рассчитывая только на свои разработки, то физические школы у нас ещё сохранились на очень высоком уровне», — говорит Казаков.

Итак, схемы на функционально интегрированных элементах РТД/транзистор могут быть спроектированы с меньшим количеством компонентов, обладать более высоким быстродействием и меньшей потребляемой мощностью, чем схемы на транзисторах. Исследования по функциональной интеграции резонансно-туннельных диодов, полевых транзисторов и диодов Шоттки требуют разработки всего комплекса технологических и метрологических методов и устройств, обеспечивающих выращивание гетероструктур на основе GaAs высокого качества с непрерывным контролем поверхности роста и последующее изготовление интегральных схем на их основе. В НОЦ ФИАН-МИЭТ такой комплекс был создан, также уже созданы первые опытные образцы базовых элементов цифровых интегральных схем — инвертора и компаратора. Одним из важнейших результатов этой работы является разработка методики оптического мониторинга процесса выращивания полупроводниковых гетероструктур с толщиной отдельных слоёв менее 5 нм методом анизотропного отражения, позволяющая контролировать толщину с разрешением в 1 монослой в реальном масштабе времени, что крайне важно для изготовления РТД. Эта работа ФИАНовских физиков была отмечена в числе наиболее значимых достижений, полученных в мире с использованием оборудования производства компании LayTec (для этого использовался спектрометр EpiRAS IR TT фирмы LayTec, смонтированный на ФИАНовской установке молекулярно-пучковой эпитаксии).
В настоящее время в Физическом институте им. П.Н.Лебедева РАН заканчивается строительство нового помещения для лаборатории молекулярно-пучковой эпитаксии с самым современным технологическим оснащением и необходимым уровнем чистоты (класса 1000 с локальными зонами класса 100). В этом особо чистом помещении будут размещены две современные установки молекулярно-пучковой эпитаксии фирмы RIBER для выращивания полупроводниковых гетероструктур и установка для производства жидкого азота.

По совокупности технического оснащения и уровню чистоты производственных помещений аналогов такой лаборатории в России нет.

/15.11.2011/ По материалам АНИ " ФИАН-информ "



Источник: sdelanounas.ru.

Рейтинг публикации:

Нравится5



Комментарии (0) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.





» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Апрель 2024    »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map