Толщина магнита составляет всего один атом, и, в отличие от аналогичных материалов, он может работать при комнатной температуре – это позволит позволить хранить данные с гораздо более высокой плотностью
Поиск двумерных материалов с магнитными свойствами — это одна из перспективных областей современной науки. В 2017 году ученые уже публиковали исследование ферромагнитного материала под названием трииодид хрома, который, как выяснилось, можно измельчить до монослоя толщиной в один атом, сохранив при этом магнетизм.
Ученые из Национальной лаборатории Лоуренса Беркли и Калифорнийского университета в Беркли работают над устранением одного из недостатков таких 2D-магнитов, а именно нестабильности при комнатной температуре, из-за которой они теряют свои магнитные свойства.
До сих пор это ограничивало практичность технологии, но теперь исследователи нашли многообещающий способ решения проблемы.
«Современные двумерные магниты нуждаются в очень низких температурах, — объясняет старший автор Цзе Яо. — Но по практическим соображениям центр обработки данных должен работать при комнатной температуре. Наш 2D-магнит — это не только первый магнит, работающий при таких условиях, но и первый магнит, достигший истинной двухмерности: его толщина составляет всего лишь один атом!»
Ученые начали со смеси оксида графена, цинка и кобальта, которая была запечена в лаборатории и преобразована в слой оксида цинка, по которому были хаотично разбросаны атомы кобальта. Толщина этого слоя составляла всего один атом. Этот слой был зажат между двумя слоями графена, которые полностью сгорели в процессе, оставив после себя магнитную 2D-пленку.
В ходе последующих экспериментов команда обнаружила, что магнетизмом можно управлять, изменив количество кобальта в материале. Концентрация в размере 5-6% процентов атомов кобальта приводила к относительно слабому магниту, а повышение концентрации до 12% процентов создавало очень сильный магнит. Увеличение количества кобальта до 15% привело к тому, что ученые называют квантовым состоянием «разочарования», когда конфликтующие магнитные состояния в материале конкурируют друг с другом.
Важно отметить, что команда обнаружила, что в отличие от предыдущих версий 2D-магнитов, новый материал сохранял свои магнитные свойства при температурах до 100 °C – случай совершенно беспрецедентный.
Двухмерный магнит в миллион раз тоньше листа бумаги, а потому может быть согнут практически в любую форму. Одно из многообещающих приложений этой технологии — хранение данных. Устройства памяти, используемые сегодня, основаны на очень тонких магнитных пленках, которые остаются трехмерными и имеют толщину в сотни или тысячи атомов. Более тонкие магниты, особенно магниты толщиной всего в один атом, позволят хранить данные с гораздо большей плотностью.
Этот материал также открывает новые возможности для изучения мира квантовой физики, позволяя наблюдать отдельные магнитные атомы и взаимодействия между ними. Другая возможность касается области спинтроники, где уже спин электронов, а не их заряд будет использоваться для хранения и обработки данных. Ученые предполагают, что 2D-магнит может стать частью компактного устройства, которое облегчает эти процессы.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.
» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам. Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+