Тонкий слой материала, состоящего из небольших взаимосвязанных треугольников, сам складывается в самолетик или кораблик. Как раз тот случай, когда тяжело верится даже собственным глазам.
Робот-оригами состоит из 32-х складывающихся поверхностей, позволяющих ему перейти к двум формам, заимствованным у бумажного кораблика и самолетика. Складывание обеспечивают приводы (А и В), расположенные как на верхней, так и на нижней поверхностях. Места сгибов оснащаются гибкими сочленениями (С и D) и кремниевыми склейками (E и F)
Паттерны складывания в форму бумажного кораблика. Слева – компьютерная симуляция, справа – фотография реального процесса
В идеале, по мнению авторов работы, группы под руководством профессора Роберта Вуда (Robert Wood), они должны прийти к созданию «умных» материалов, меняющих форму в зависимости от внешних условий – а возможно, даже к созданию своего рода «швейцарского армейского ножа» для роботов, универсального манипулятора, в нужны момент способного превратиться именно в нужный инструмент. Пока, конечно, достижения их не столь велики, но уже первые шаги привлекают серьезное внимание.
«Процесс начинается с разработки алгоритма складывания, - поясняет профессор Вуд, - Примерно такого же, как набор инструкций в книге по оригами. Отталкиваясь от желаемой конечной формы, мы определяем места и порядок сгибов материи».
Сама материя представляет собой композит, включающий жесткий каркас из сочлененных треугольников и подвижные гибкие соединения между ними. В движение они приходят благодаря тонким – не толще листа фольги – силовым приводам, команды на которые подает встроенные гибкие электронные компоненты. В прототипе использовались 25 таких приводов, организованных в 5 согласованно действующих групп: приводя в движение одну за другой, материя сама складывается в нужную форму.
В принципе, это робот, только робот-оригами, способный принимать форму в зависимости от команды оператора. Так что главным достижением разработчиков по праву можно назвать создание теоретических основ для подобных роботов, обоснование универсальных алгоритмов планирования для складывания нужных форм.
И если пока что прототипы способны образовывать лишь две (известные каждому еще со школы) формы – самолетика и кораблика – сама концепция куда более многообещающа. Вплоть до того же универсального инструмента, превращающегося, при необходимости, то в молоток, то в совок.
Читайте также популярно о настоящем древнем оригами, японском искусстве складывания бумаги, с точки зрения науки: «Перегибы на местах».
По пресс-релизу Harvard School of Engineering and Applied Sciences
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.
» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам. Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+