Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторам
Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Тендеры и госзакупки Маркетинговые исследования Бизнес планы
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Дед, я тебя помню…


Навигация

Реклама


Загрузка...

Важные темы
Работа Дмитрия Медведева над «ошибками» страны...
Управление, как реальность: кое-что о Фурсенко, образовании...
Новые реалии методологии управления
Алекс Зес: Тезисы управления
США:У нас мало времени! Час расплаты близок!
Л.Ларуш: Америка рухнет первой. "Мы входим в период бунтов"
Теоретическая география


Реклама
» » » Российский математик доказал теорему, которую не могли решить 40 лет

» Российский математик доказал теорему, которую не могли решить 40 лет
6-12-2017, 11:31 | Наука и техника / Новости науки и техники | разместил: Редакция ОКО ПЛАНЕТЫ | комментариев: (0) | просмотров: (3 215)

Российский математик доказал теорему, которую не могли решить 40 лет

МОСКВА, 5 дек – РИА Новости. Российский математик и его израильский коллега доказали многомерную версию "теоремы о дощечках", постулирующей, что круг можно полностью покрыть полосками, совокупная ширина которых не превышает длины его окружности. Доказательство было опубликовано в журнале Geometric and Functional Analysis.

"Задача Ласло Фейеша Тота привлекала внимание математиков, занимающихся дискретной геометрией, уже более 40 лет. У этой задачи оказалось изящное решение, и нам посчастливилось его найти. Она навела нас на мысль о другой, более сильной гипотезе о покрытии сферы смещенными зонами, полученными пересечением единичной сферы с трехмерными полосками-дощечками, не обязательно симметричными относительно центра", — рассказывает Александр Полянский, математик из Московского физтеха в Долгопрудном.

Эта теорема, как отмечает ученый, является важнейшей частью так называемой дискретной геометрии – особого раздела математики, который изучает, как соотносятся друг с другом геометрические фигуры. К примеру, она позволяет ответить, какое наибольшее число шаров одинакового размера можно разместить вокруг одного такого же шара. Многие подобные задачи имеют важное практическое значение, так как напрямую связаны с проблемами в IT, физике и химии.

Одна из главных задач, которую изучают представители этой области математики, — так называемая "теорема о дощечках", сформулированная еще в начале XX века. В самом простом виде она гласит, что круг любых размеров невозможно покрыть дощечками, чья общая ширина меньше диаметра самой окружности. Простые варианты этой задачи, как пишут Полянский и его коллега Цзылинь Цзян, более 50 лет назад решили Альфред Тарский и Трегер Банг.

Более сложную версию теоремы выдвинул в 1973 году венгерский математик Ласло Фейеш Тот, который предположил, что сферическую поверхность любых размеров можно покрыть произвольным набором трехмерных "дощечек", чья общая толщина не превысит длину окружности.

Авторам статьи, опиравшимся на идеи, которые использовал Трегер Банг для доказательства первой многомерной версии "теоремы о дощечках", удалось не только решить задачу Фейеша Тота, но и показать, что она будет работать и в многомерном пространстве.  

Российский и израильский математики, как и Банг, шли в своем доказательстве от противного: они предположили, что суммарная ширина "дощечек", полностью покрывающих сферу, будет меньше длины окружности, и хотели получить противоречие в виде точки, которая лежала бы на сфере, но не была покрыта зонами.

Подобные противоречия были найдены, что доказало справедливость идей венгерского математика. Как считают исследователи, их доказательство ускорит развитие дискретной геометрии и позволит сформулировать ряд новых математических и практических задач, связанных с "теоремой о дощечках".



Источник: cont.ws.

Рейтинг публикации:

Не нравится +45 Нравится





Комментарии (0) | Распечатать

Добавить новость в:
    

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

 


Загрузка...






» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
 


Новости по дням
«    Декабрь 2017    »
ПнВтСрЧтПтСбВс
 123
45678910
11121314151617
18192021222324
25262728293031

Погода
Яндекс.Погода


Реклама


Загрузка...

Опрос
Измненится ли мировая система после выбора Трампа в США?




Реклама
Загрузка...

Облако тегов
Аварии и ЧП на АЭС, Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Дед я тебя помню, Единая Россия, импортозамещение, ИнфоФронт, Калита-Финанс, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис в России, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Лекарственные растения, Любимая Россия, Наука России, Наши берут Америку, Неизвестный Путин, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Простонародный лечебник, Сделано в России, Сильные землетрясения, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония

Показать все теги
Реклама


Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2017 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map