Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Случайное изображение


Навигация

Реклама

Важные темы


Анализ системной информации

» » » «Квантовая левитация» поможет наноэлектромеханическим устройствам

«Квантовая левитация» поможет наноэлектромеханическим устройствам


4-07-2012, 09:52 | Наука и техника / Новости науки и техники | разместил: Редакция ОКО ПЛАНЕТЫ | комментариев: (0) | просмотров: (1 146)

Физики из Швеции, Норвегии и Австралии выяснили, как наноэлектромеханические устройства могут противостоять нежелательному эффекту слипания их компонентов, вызванному действием сил Казимира — Лифшица.

Обычно возникновение этих сил связывают с квантовыми флуктуациями электромагнитного поля в вакууме — не абсолютной пустоте, а «океане» постоянно рождающихся и исчезающих виртуальных частиц, в число которых входят и фотоны. Если рассмотреть, к примеру, две проводящие незаряженные параллельные пластины, расположенные рядом, то в зазоре между ними рождение виртуальных фотонов будет ограничиваться. В результате внешнее давление, создаваемое фотонами, превысит давление в зазоре, и пластины, как показал голландский теоретик Хендрик Казимир, начнут притягиваться.

Известна и другая формулировка, в которой сила, заставляющая пластины сближаться, выводится без привлечения квантовых флуктуаций и считается аналогом давно известного ван-дер-ваальсова взаимодействия. Согласно этому определению, силы Казимира — Лифшица действуют на тех расстояниях, где эффекты запаздывания электромагнитного взаимодействия становятся существенными. Если же расстояние между телами невелико (~10 нм), а эффекты запаздывания роли не играют, специалисты говорят о силах Ван-дер-Ваальса.

Модельная несимметричная система для изучения взаимодействия Казимира — Лифшица (иллюстрация из журнала Applied Physics Letters).
Модельная несимметричная система для изучения взаимодействия Казимира — Лифшица (иллюстрация из журнала Applied Physics Letters).

До сих пор мы обсуждали только притягивающие силы, но это не значит, что их нельзя сделать отталкивательными. Возможность такого превращения доказал советский учёный Евгений Лифшиц, который рассмотрел не конкретный пример металлических тел и разделяющего их вакуума, а более общий случай объектов и среды с произвольными значениями диэлектрической проницаемости ε1, ε2 и ε3. При корректном подборе параметров (скажем, ε1 > ε3 > ε2) вычисляемая сила Казимира — Лифшица становится отталкивательной, что и было подтверждено в недавних экспериментах.

Авторы ещё усложнили задачу, сделав исследуемую систему несимметричной: в их модели на один из взаимодействующих объектов — пластин из диоксида кремния — наносилось тончайшее (5–50 Å) золотое покрытие. В пространстве между пластинами находилась жидкость (бромбензол или толуол).

Как оказалось, после добавления покрытия сила Казимира — Лифшица приобретает очень интересную зависимость от расстояния между диэлектрическими пластинами. На относительно больших интервалах взаимодействие имеет отталкивательный характер, причём сила отталкивания увеличивается по мере сближения пластин и со временем достигает максимума, значение которого возрастает при уменьшении толщины золотой плёнки. При дальнейшем сближении взаимодействие ослабляется, а на какой-то критической дистанции, также определяемой толщиной металлического покрытия, и вовсе пропадает. Когда зазор делают ещё более узким, сила становится притягивающей.

Возможность «регулировки» силы и наблюдения эффекта левитации объектов в жидкости должна заинтересовать разработчиков микро- и наноэлектромеханических устройств, для миниатюрных элементов которых притягивающее взаимодействие Казимира — Лифшица особо опасно. Именно поэтому в своих будущих расчётах физики планируют смоделировать взаимодействия других материалов (оксида цинка, оксида гафния), часто используемых в микроэлектрических и микрооптических системах.

Полный вариант отчёта опубликован в журнале Applied Physics Letters.

Подготовлено по материалам Phys.Org.



Источник: science.compulenta.ru.

Рейтинг публикации:

Нравится0



Комментарии (0) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.





» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Январь 2025    »
ПнВтСрЧтПтСбВс
 12345
6789101112
13141516171819
20212223242526
2728293031 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map