Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Холодный ядерный синтез - миф или реальность

Холодный ядерный синтез - миф или реальность


30-05-2015, 11:09 | Наука и техника / Теории и гипотезы | разместил: Редакция ОКО ПЛАНЕТЫ | комментариев: (2) | просмотров: (27 167)

Холодный ядерный синтез - миф или реальность

 

ХОЛОДНЫЙ ЯДЕРНЫЙ СИНТЕЗ или «холодный термояд» - предполагаемая возможность осуществления ядерной реакции синтеза в химических системах без значительного нагрева рабочего вещества. Известные ядерные реакции синтеза проходят при температурах в миллионы Кельвин.

Наверное, нет на свете другого научного направления, кроме исследований ХОЛОДНОГО ТЕРМОЯДА, которое так напоминало бы чистое мошенничество и, которое, возможно, им не является. Хотя, конечно, без мошенников и сумасшедших здесь явно не обошлось.

После неудач в 1989 году и фальсификации результатов в 2002 «холодный термояд» прочно зарекомендовал себя как псевдонаука.

Однако с 2008 года, после публичной демонстрации эксперимента с электрохимической ячейкой Йосиаки Аратой (Yoshiaki Arata) из университета Осаки о холодном ядерном синтезе заговорили снова. Однако большинство химиков и физиков пытаются найти альтернативное (не ядерное) объяснение явления, тем более что информации о нейтронном излучении не поступало.

Скандал в истории создания ХОЛОДНОГО ТЕРМОЯДА

История холодного термояда началась крайне подозрительно. 23 марта 1989 года два химика – профессор Мартин Флейшман (Martin Fleischmann) и его коллега Стенли Понс (Stanley Pons) - провели в своем Университете штата Юта пресс-конференцию, где сообщили о том, как они путем почти обычного пропускания тока через электролит получили положительный энергетический выход в виде тепла, и зафиксировали идущее от электролита гамма-излучение.

Это взорвало американскую прессу. Еще бы – термояд на письменном столе вместо серии громадных и дорогостоящих установок, которые приведут к этому термояду неизвестно когда. Это было похоже на сказку. Это была потрясающая удача.

Но одновременно это была первая и решающая ошибка исследователей. Ученым очень не нравится, когда их коллеги выступают перед СМИ с заявлением о своем открытии прежде, чем сообщение о нем будет опубликовано в специализированных научных изданиях. Это дурной тон, это нарушение раз и навсегда заведенного порядка, согласно которому сначала научное сообщество должно оценить открытие и решить, признавать его или не признавать научно доказанной истиной. На деле сегодня это выливается в юридически оформленное требование полного молчания о сути статьи, поданной в научный журнал, но еще не опубликованной.

А такая статья уже была послана Флейшманом и Понсом в Nature - один из самых главных научных журналов мира, который, как известно, кого попало у себя не печатает. А профессор Мартин Флейшман уже тогда был весьма уважаемым специалистом в электрохимии. Статья вышла в июне, когда шум вокруг открытия вовсю разгорелся. Джон Мэддокс, главный редактор журнала, в редакционной статье следующего, июльского, номера усомнился в реальности открытия и заявил, что Флейшман и Понс должны нести ответственность за то, что они преждевременно сделали его предметом общественного обсуждения.

Ученые, как правило, не заявляют публично о своем открытии, прежде чем оно пройдет научную аттестацию. Обычно так поступают авантюристы. Правда, в реальной жизни люди не всегда поступают обычно.

Тут же Флейшману и Понсу был нанесен следующий, сокрушающий удар. Исследователи из ведущих научных центров США - Калифорнийского и Массачусетского технологических институтов в деталях повторили этот эксперимент, и ничего такого не обнаружили.

С тех пор не только научное, но и практически все общество по этому поводу разделилось на две несогласные части. Одни уверены, что никакого ХОЛОДНОГО ЯДЕРНОГО СИНТЕЗА нет и не может быть, что Флейшман и Понс просто-напросто смошенничали, а другие не верят в мошенничество и даже в то, что здесь была просто ошибка, и надеются, что найден наконец чистый и практически неисчерпаемый источник энергии.

Сторонники и противники ХОЛОДНОГО ТЕРМОЯДА

Но даже если и не вспоминать, что вся эта история началась как-то подозрительно, она все равно словно бы просится в руки мошенников и сумасшедших изобретателей вечного двигателя из-за своего глобального значения для всего мира и самой сути открытия. Народы объединяют свои финансы, чтобы через 20-50 лет построить, наконец, термоядерную электростанцию, а тут, на письменном столе, в банке с электролитом пропустили ток - и сразу получили энергию. Такая простота завораживает. Любители погреть руки обожают такие научные прорывы и инновационные проекты, равно как и персоны с проблемами психического расстройства. В кругу сторонников холодного термояда можно увидеть и тех, и других.

И точно так же эта история просто настаивала, чтобы ее записали в анналы лженаучных историй. В самом деле, для того чтобы объединить два атома в один, нужно приложить огромную энергию для преодоления электрического отталкивания. Именно поэтому ИТЭР, Международный термоядерный реактор, который сейчас строится во французском городе Карадаше, будет соединять два самых легких в природе атома, которые могут дать положительный выход энергии - дейтерий и тритий, изотопы водорода. Для их слияния нужны температуры в сотни миллионов градусов и давление, которое до сих пор достигается только в звездах. Получается, ХОЛОДНЫЙ ТЕРМОЯД в принципе невозможен?

Однако среди тех, кто занимается холодным термоядом есть не только единичные случаи авантюристов и изобретателей вечного двигателя. Среди сторонников холодного термоядерного синтеза множество вполне нормальных и вменяемых исследователей, которых заинтересовал сам эффект. Дело в том, что эксперимент Флейшмана-Понса пытались повторить не только в элитных западных институтах, а и во множестве других мест, в частности и в России, и самое интересное в том, что иногда это получалось, а иногда - нет.

Невозможность воспроизведения экспериментального результата в науке подобна приговору. Не получалось повторить опыт и у самих исследователей – то есть эффект, то нет. Сначала никто не понимал почему, да и сейчас только подозревают причину. Человек, который в таких условиях продолжает настаивать на своей правоте, становится подозреваемым то ли в подтасовках, то ли в некомпетентности. Надо обладать мужеством, чтобы продолжать заниматься делом, за которое можно получить клеймо авантюриста и маргинального ученого.

Результаты без объяснений

Американский электрохимик Майкл Маккубре (Michael McKubre), который сейчас возглавляет Центр энергетических исследований при Стенфордском исследовательском институте, ХОЛОДНЫМ ТЕРМОЯДОМ занимается с 1989-года. Маккубре - один из немногих работающих в этой сфере, кто умудрился не только не испортить себе репутацию, но и чрезвычайно ее упрочить, главным образом, потому что не обещает золотых гор, и вообще весьма осторожен в высказываниях. По-видимому, это главный специалист по плохой воспроизводимости экспериментов с холодным синтезом. В интервью он заявил, что обычно экспериментаторы добиваются положительного эффекта в 5-10% случаев. «Но на самой последней экспериментальной установке, - говорит Майкл Маккубре, - нам удалось добиться примерно 75% воспроизводимости (всего на ней было проведено 23 эксперимента), так что прогресс налицо. Мы стали лучше понимать, какие условия требуются для того, чтобы добиться положительного эффекта, то есть получения избыточного тепла».

В своей экспериментальной установке для получения ХОЛОДНОГО ЯДЕРНОГО СИНТЕЗА Майкл Маккубре использует дейтерий. До конца объяснить причину плохой воспроизводимости Маккубре пока не может. Не может он также объяснить причину, по которой ядра дейтерия (в тяжелой воде электролита) при контакте с палладиевым электродом могут производить избыточное тепло. По его мнению, там происходит следующее – «слегка ионизированные дейтроны проникают внутрь кубической решетки, в узлах которой находятся ядра палладия. Когерентный ансамбль этих дейтронов и производит тепло вместе с гелием-4. Вовлечены ли в этот эффект электроны решетки и сами ядра палладия, мы не знаем».

Противостояние сверху

Здесь мы подходим к очень тонкому моменту – люди, вовлеченные в исследования ХОЛОДНОГО ТЕРМОЯДА, утверждают, что против этих исследований ведется активная и организованная война. Сводится она, главным образом, к публичным выступлениям, часто со стороны очень авторитетных или очень высокопоставленных ученых, где явно или неявно между ХОЛОДНЫМ ЯДЕРНЫМ СИНТЕЗОМ и «патологической» наукой ставится знак равенства, создавая тем самым у общества совершенно определенное, негативное отношение ко всему этому научному направлению.

Все началось, утверждают эти ученые, с эксперимента Флейшмана и Понса, который сначала признали ошибочным, а потом переквалифицировали в мошеннический. В результате государственные структуры очень редко соглашаются финансировать такие эксперименты – деньги на них приходят от частных лиц, крупных фирм и т.д. Похоже, единственное исключение из этого правила – Пентагон. Противники холодного термояда утверждают, что никакого сопротивления нет и в помине, а есть люди, упорствующие в своих заблуждениях, а то и в подтасовках, но за два десятилетия так и не сумевшие доказать свою правоту в виде стабильно повторяющегося и воспроизводимого физического эффекта.

Маккубре подтверждает наличие яростного противодействия попыткам развивать эксперименты по ХОЛОДНОМУ ТЕРМОЯДУ, но не понимает его причин. «Даже если бы мы заявляли о намерении конкурировать с "большой нефтью" или "большим углем", - говорит он, - это не имело бы смысла. Даже если бы мы были неправы, все равно это не причина направлять на нас "большие пушки"». Маккубре не сомневается, что противодействие ХОЛОДНОМУ ЯДЕРНОМУ СИНТЕЗУ носит организованный характер, что оно действует на высоких уровнях, причем пока действует очень успешно.

Так это или не так, неизвестно. За два десятилетия об удачном и воспроизводимом получении холодного термояда ученые заявляли уже не один раз. В 2008-м году Рузи Талейархан за такое заявление лишился профессорского звания. Возможно, он и впрямь был мошенником, но тогда не совсем понятна судьба других заявлений.

Например, в феврале 2009 года физики из Центра боевых, космических и морских систем ВС США (Space and Naval Warfare Systems Center, SPAWAR) получили подтверждение «протекания термоядерного синтеза при ультранизких энергиях», громко заявили об этом, и с тех пор молчат, как будто бы ничего не было. Почти одновременно с заявлениями Талейархана группа японских физиков из Университета Осаки выступила с публичным заявлением (и публичной демонстрацией опыта) о том, что им, наконец, удалось справиться с невоспроизводимостью ХОЛОДНОГО ТЕРМОЯДА, и с тех пор о них ничего не слышно.

ХОЛОДНЫЙ ТЕРМОЯД - мошенничество или удача?

Очередное сенсационное заявление итальянских ученых, случившееся две недели назад, по всей видимости, ждет та же судьба. Тогда профессор Университета Болоньи Серджио Фоккарди и некто Андреа Росси предъявили миру работающий и уже запатентованный реактор, который генерирует тепло мощностью в 10 киловатт за счет холодного синтеза. Было обещано также, что через год реактор будет доведен до состояния полной готовности к коммерческому использованию, а через 2-3 года – к массовому производству и что на этот счет уже имеются контракты с США и рядом стран Европы. Причем стоимость электроэнергии у такого реактора будет около 1 цента за киловатт-час.

Именно это заявление очень похоже на авантюру. Формально авторы не нарушили научного протокола, перед публичным заявлением они опубликовали статью о своем реакторе в научном журнале, правда, потом оказалось, что журналом управляют все те же Фоккарди и Росси. Вызвала сомнения также и личность обладателя патента Андреа Росси - быстро выяснилось, что и идею он украл у другого итальянского ученого, Франческо Пьянтелли (Francesco Piantelli) из Сиены, да и вообще имеет за плечами судимость за мошенничество. Любопытно, что разоблачительные факты были вскрыты сторонниками ХОЛОДНОГО ТЕРМОЯДА.

Любопытно также, что сам факт протекания реакции холодного синтеза разоблачителями не оспаривается, так что остается маленькая, хотя и очень-очень призрачная, надежда на то, что спустя пять лет реактор Фоккарди-Росси можно будет купить в магазине.

Если такое, вопреки очевидности, все же случится, это будет достойное завершение эпопеи ХОЛОДНОГО ЯДЕРНОГО СИНТЕЗА. Дело, за которое Флейшман и Понс получили клеймо мошенников, будет благополучно завершено мошенниками же.

Стенли Понс, соавтор профессора Флейшмана и сотрудник его лаборатории в Университете штата Юта, в 1992-м году перебрался во Францию, где пытался получить ХОЛОДНЫЙ ТЕРМОЯД в лаборатории IMRA, финансируемой компанией «Тойота». В 1998-м эта лаборатория была закрыта после того как исследования, обошедшиеся в 12 млн. фунтов, не дали результатов.

Профессор Мартин Флейшман покинул США вместе с Понсом и до 1995-го года работал вместе с ним в одной лаборатории. В 1995-м году он перебрался в Великобританию, где успешно сотрудничал с национальными военными лабораториями Италии и США. Как ни странно, на его репутации скандал с холодным термоядом не сказался. Больше того, впоследствии он ее только упрочил, и одно время даже считался одним из виднейших электрохимиков мира.

Сейчас он живет в собственном доме близ Солсбери, где построил «улучшенный» вариант установки для получения холодного термояда. Его мучают болезнь Паркинсона и сожаления о прошедшем. «Я упустил свой шанс», - говорит Мартин Флейшман.



Источник: cont.ws.

Рейтинг публикации:

Нравится0



Комментарии (2) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.

  1. » #2 написал: Бутков (25 января 2016 18:08)
    Статус: Пользователь offline |



    Группа: Посетители
    публикаций 0
    комментарий 1
    Рейтинг поста:
    0
    Есть хорошая статья на эту тему в журнале "Химия и Жизнь" (№8, 2015)

    АНДРЕЕВ С. Н.
    ЗАПРЕТНЫЕ ПРЕВРАЩЕНИЯ ЭЛЕМЕНТОВ

    В науке есть свои запретные темы, свои табу. Сегодня мало кто из ученых осмелится заниматься исследованием биополей, сверхмалых доз, структуры воды… Области сложные, мутные, трудно поддающиеся. Здесь легко потерять репутацию, прослыв лжеученым, а уж о получении гранта говорить не приходится. В науке нельзя и опасно выходить за рамки общепринятых представлений, покушаться на догмы. Но именно усилия смельчаков, готовых быть не такими, как все, порой прокладывают новые дороги в познании.
    Мы не раз наблюдали, как по мере развития науки догмы начинают пошатываться и постепенно приобретают статус неполного, предварительного знания. Так, и не раз, было в биологии. Так было в физике. То же самое мы наблюдаем в химии. На наших глазах истина из учебника «состав и свойства вещества не зависят от способов его получения» рухнула под натиском нанотехнологий. Оказалось, что вещество в наноформе может кардинально изменить свойства — например, золото перестанет быть благородным металлом.
    Сегодня мы можем констатировать, что есть изрядное число экспериментов, результаты которых невозможно объяснить с позиций общепринятых воззрений. И задача науки — не отмахи-ваться от них, а копать и пытаться добраться до истины. Позиция «этого не может быть, потому что не может быть никогда» удобная, конечно, но она ничего не может объяснить. Более того, непонятные, необъяснимые эксперименты могут стать предвестниками открытий в науке, как это уже случалось. Одна из таких горячих в прямом и переносном смысле тем — так называемые низкоэнергетические ядерные реакции, которые сегодня именуют LENR — Low-Energy Nuclear Reaction.
    Мы попросили доктора физико-математических наук Степана Николаевича Андреева из Инсти-тута общей физики им. А. М. Прохорова РАН познакомить нас с существом проблемы и с неко-торыми научными экспериментами, выполненными в российских и западных лабораториях и опубликованными в научных журналах. Экспериментами, результаты которых мы пока объяснить не можем.

    РЕАКТОР «E-СAT» АНДРЕА РОССИ

    В середине октября 2014 года мировое научное сообщество было взбудоражено новостью — вышел отчет Джузеппе Леви, профессора физики Болонского университета, и соавторов о результатах тестирования реактора «E-Сat», созданного итальянским изобретателем Андреа Росси.
    Напомним, что в 2011 году А. Росси представил на суд общественности установку, над которой он работал многие годы в сотрудничестве с физиком Серджо Фокарди. Реактор, названный «E-Сat» (сокращенно от английского Energy Catalizer), производил аномальное количество энергии. В течение последних четырех лет «E-Сat» тестировали разные группы исследователей, поскольку научное сообщество настаивало на независимой экспертизе.
    Реактор представлял собой керамическую трубочку длиной 20 см и диаметром 2 см. Внутри реактора были расположены топливный заряд, нагревательные элементы и термопара, сигнал с которой подавался на блок управления нагревом. Питание к реактору подводили от электрической сети с напряжением 380 Вольт по трем жаропрочным проводам, которые разогревались докрасна во время работы реактора. Топливо состояло в основном из порошка никеля (90%) и алюмогидрида лития LiAlH4 (10%). При нагревании алюмогидрид лития разлагался и выделял водород, который мог поглощаться никелем и вступать с ним в экзотермическую реакцию.
    Изобретатель не раскрывает, как устроен реактор. Однако известно, что внутри керамической трубки размещены топливный заряд, нагревательные элементы и термопара. Поверхность трубки ребристая, чтобы лучше отводилось тепло

    В отчете сообщалось, что общее количество тепла, выделенное устройством за 32 дня непрерывной работы, составило около 6 ГДж. Элементарные оценки показывают, что энергоемкость порошка более чем в тысячу раз превышает энергоемкость, например, бензина!
    В результате тщательных анализов элементного и изотопного состава эксперты надежно установили, что в отработанном топливе появились изменения в соотношениях изотопов лития и ни-келя. Если в исходном топливе содержание изотопов лития совпадало с природным: 6Li — 7,5%, 7Li — 92,5%, то в отработанном топливе содержание 6Li увеличилось до 92%, а содержание 7Li уменьшилось до 8%. Столь же сильными были искажения изотопного состава для никеля. Например, содержание изотопа никеля 62Ni в «золе» составило 99%, хотя в исходном топливе его было всего 4%. Обнаруженные изменения изотопного состава и аномально высокое тепло-выделение указывали на то, что в реакторе, возможно, протекали ядерные процессы. Однако никаких признаков повышенной радиоактивности, характерной для ядерных реакций, не было зафиксировано ни во время работы устройства, ни после его остановки.
    Процессы, протекающие в реакторе, не могли быть ядерными реакциями деления, поскольку топливо состояло из стабильных веществ. Реакции синтеза ядер также исключаются, ведь с точ-ки зрения современной ядерной физики температура 1400оС ничтожно мала для преодоления сил кулоновского отталкивания ядер. Именно поэтому использование нашумевшего термина «холодный термояд» для подобного рода процессов — ошибка, которая вводит в заблуждение.
    Вероятно, здесь мы сталкиваемся с проявлениями нового типа реакций, в которых происходят коллективные низкоэнергетические превращения ядер элементов, входящих в состав топлива. Оценка энергий таких реакций дает величину порядка 1-10 кэВ на нуклон, то есть они занимают промежуточное положение между «обычными» высокоэнергетическими ядерными реакциями (энергии более 1 МэВ на нуклон) и химическими реакциями (энергии порядка 1 эВ на атом).
    Пока что никто не может удовлетворительно объяснить описанный феномен, а гипотезы, выдвигаемые множеством авторов, не выдерживают критики. Чтобы установить физические механизмы нового явления, необходимо тщательно изучить возможные проявления подобных низко-энергетических ядерных реакций в различных экспериментальных постановках и обобщить по-лученные данные. Тем более что подобных необъясненных фактов за многие годы накопилось весомое количество. Вот лишь некоторые из них.

    ЭЛЕКТРОВЗРЫВ ВОЛЬФРАМОВОЙ ПРОВОЛОЧКИ – НАЧАЛО ХХ ВЕКА

    В 1922 году сотрудники химической лаборатории Чикагского университета Кларенс Айрион и Джеральд Вендт опубликовали работу, посвященную исследованию электровзрыва вольфрамовой проволочки в вакууме (G.L.Wendt, C.E.Irion, Experimental Attempts to Decompose Tungsten at High Temperatures. «Journal of the American Chemical Society», 1922, 44, 1887—1894).
    В электровзрыве нет ничего экзотического. Это явление было открыто ни много ни мало в конце XVIII века, а в быту мы его постоянно наблюдаем, когда при коротком замыкании перегорают электролампочки (лампочки накаливания, разумеется). Что же происходит при электровзрыве? Если сила тока, протекающего через металлическую проволоку, велика, то металл начинает плавиться и испаряться. Вблизи поверхности проволоки образуется плазма. Нагрев происходит неравномерно: в случайных местах проволоки появляются «горячие точки», в которых выделяется больше тепла, температура достигает пиковых значений, и происходит взрывное разрушение материала.
    Самое поразительное в этой истории то, что ученые изначально рассчитывали эксперименталь-но обнаружить разложение вольфрама на более легкие химические элементы. В своем наме-рении Айрион и Вендт опирались на следующие уже известные в то время факты.
    Во-первых, в видимом спектре излучения Солнца и других звезд отсутствуют характерные оптические линии, принадлежащие тяжелым химическим элементам. Во-вторых, температура по-верхности Солнца составляет около 6000оС. Следовательно, рассудили они, атомы тяжелых элементов не могут существовать при таких температурах. В-третьих, при разряде конденсатор-ной батареи на металлическую проволочку температура плазмы, образующейся при электро-взрыве, может достигать 20 000оС.
    Исходя из этого, американские ученые предположили, что если через тонкую проволоку из тяжелого химического элемента, например, вольфрама, пропустить сильный электрический ток и нагреть ее до температур, сопоставимых с температурой Солнца, то ядра вольфрама окажутся в нестабильном состоянии и разложатся на более легкие элементы. Они тщательно подготовили и блестяще провели эксперимент, пользуясь при этом весьма простыми средствами.
    Электровзрыв вольфрамовой проволочки проводили в стеклянной сферической колбе (рис. 2), замыкая на нее конденсатор емкостью 0,1 микрофарад, заряженный до напряжения 35 кило-вольт. Проволочка располагалась между двумя крепежными вольфрамовыми электродами, впаянными в колбу с двух противоположных сторон. Кроме того, в колбе имелся дополнительный «спектральный» электрод, который служил для зажигания плазменного разряда в газе, образовавшемся после электровзрыва.
    Следует отметить некоторые важные технические детали эксперимента. При его подготовке колбу помещали в печь, где она непрерывно прогревалась при 300оС в течение 15 часов и все это время из нее откачивали газ. Вместе с прогревом колбы по вольфрамовой проволочке про-пускали электрический ток, нагревавший ее до температуры 2000оС. После дегазации стеклян-ный патрубок, соединяющий колбу с ртутным насосом, расплавляли с помощью горелки и запаивали. Авторы работы утверждали, что предпринятые меры позволяли сохранить чрезвычайно низкое давление остаточных газов в колбе в течение 12 часов. Поэтому при подаче высоковольтного напряжения 50 киловольт между «спектральным» и крепежным электродами пробоя не было.
    Айрион и Вендт выполнили двадцать один эксперимент с электровзрывом. В результате каждого опыта в колбе образовывалось порядка 10^19 частиц неизвестного газа. Спектральный анализ показывал, что в нем присутствовала характерная линия гелия-4. Авторы предположили, что гелий образуется в результате альфа-распада вольфрама, индуцированного электровзрывом. Напомним, что альфа-частицы, появляющиеся в процессе альфа-распада, представляют собой ядра атома 4He.
    Публикация Айриона и Вендта вызвала большой резонанс в научном сообществе того времени. Сам Резерфорд обратил внимание на эту работу. Он выразил глубокое сомнение в том, что использовавшееся в эксперименте напряжение (35 кВ) достаточно велико, чтобы электроны могли индуцировать ядерные реакции в металле. Желая проверить результаты американских ученых, Резерфорд выполнил свой эксперимент — облучил вольфрамовую мишень пучком электронов с энергией 100 килоэлектронвольт. Резерфорд не обнаружил никаких следов ядерных реакций в вольфраме, о чем в достаточно резкой форме сделал короткое сообщение в журнале «Nature». Научное сообщество приняло сторону Резерфорда, работу Айриона и Вендта признали ошибочной и забыли на долгие годы.

    ЭЛЕКТРОВЗРЫВ ВОЛЬФРАМОВОЙ ПРОВОЛОЧКИ: 90 ЛЕТ СПУСТЯ
    Только спустя 90 лет за повторение опытов Айриона и Вендта взялся российский научный коллектив под руководством доктора физико-математических наук Леонида Ирбековича Уруцкоева. Эксперименты, оснащенные современной экспериментальной и диагностической аппаратурой, проводили в легендарном Сухумском физико-техническом институте в Абхазии. Свою уста-новку физики назвали «ГЕЛИОС» в честь путеводной идеи Айриона и Вендта (рис. 3). Кварцевая взрывная камера расположена в верхней части установки и подключена к вакуумной системе — турбомолекулярному насосу (окрашен в голубой цвет). Четыре черных кабеля тянутся к взрыв-ной камере от разрядника конденсаторной батареи емкостью 0,1 микрофарад, которая стоит слева от установки. Для электровзрыва батарею заряжали до 35—40 киловольт. Диагностическая аппаратура, используемая в экспериментах (не показана на рисунке), позволяла исследовать спектральный состав свечения плазмы, которая образовывалась при электровзрыве проволочки, а также химический и элементный состав продуктов ее распада.


    Рис. 3. Так выглядит установка «ГЕЛИОС», в которой группа Л. И. Уруцкоева исследовала взрыв вольфрамовой проволочки в вакууме (эксперимент 2012 года)
    Эксперименты группы Уруцкоева подтвердили основной вывод работы девяностолетней давности. Действительно, в результате электровзрыва вольфрама образовывалось избыточное количество атомов гелия-4 (порядка 10^16 частиц). Если же вольфрамовую проволочку заменяли на железную, то гелий не образовывался. Заметим, что в экспериментах на установке «ГЕЛИОС» исследователи зафиксировали в тысячу раз меньше атомов гелия, чем в экспериментах Айриона и Вендта, хотя «энерговклад» в проволочку был приблизительно одинаков. С чем связано такое отличие — еще предстоит выяснить.
    Во время электровзрыва материал проволочки распылялся на внутреннюю поверхность взрыв-ной камеры. Масс-спектрометрический анализ показал, что в этих твердых остатках наблюдался дефицит изотопа вольфрама-180, хотя в исходной проволочке его концентрация соответствовала природной. Этот факт также может свидетельствовать о возможном альфа-распаде вольфрама или другого ядерного процесса при электровзрыве проволочки (Л. И. Уруцкоев, А. А. Рухадзе, Д. В. Филиппов, А. О. Бирюков и др. Исследование спектрального состава оптического излучения при электрическом взрыве вольфрамовой проволочки. «Краткие сообщения по физике ФИАН», 2012, 7, 13—18).

    Ускорение альфа-распада с помощью лазера
    К низкоэнергетическим ядерным реакциям можно отнести и некоторые процессы, ускоряющие спонтанные ядерные превращения радиоактивных элементов. Интересные результаты в этой области получили в Институте общей физики им. А. М. Прохорова РАН в лаборатории, возглавляемой доктором физико-математических наук Георгием Айратовичем Шафеевым. Ученые открыли удивительный эффект: альфа-распад урана-238 ускорялся под действием лазерного излучения с относительно небольшой пиковой интенсивностью 10^12—10^13 Вт/см2 (А.В.Симакин, Г.А.Шафеев, Влияние лазерного облучения наночастиц в водных растворах соли урана на активность нуклидов. «Квантовая электроника», 2011, 41, 7, 614—618).
    Вот как выглядел эксперимент. В кювету с водным раствором соли урана UO2Cl2 с концентрацией 5—35 мг/мл помещали мишень из золота, которую облучали лазерными импульсами с длиной волны 532 нанометра, длительностью 150 пикосекунд, частотой повторения 1 килогерц в течение одного часа. При таких условиях поверхность мишени частично расплавляется, а жид-кость, контактирующая с ней, мгновенно вскипает. Давление паров разбрызгивает наноразмерные капельки золота с поверхности мишени в окружающую жидкость, где они охлаждаются и превращаются в твердые наночастицы с характерным размером 10 нанометров. Такой процесс называют лазерной абляцией в жидкости и широко используют, когда требуется приготовить коллоидные растворы наночастиц различных металлов.
    В экспериментах Шафеева за один час облучения золотой мишени образовывалось 10^15 нано-частиц золота в 1 см3 раствора. Оптические свойства таких наночастиц радикально отличаются от свойств массивной золотой пластинки: они не отражают свет, а поглощают его, причем электромагнитное поле световой волны вблизи наночастиц может усиливаться в 100—10 000 раз и достигать внутриатомных величин!
    Ядра урана и продуктов его распада (торий, протактиний), оказавшиеся вблизи этих наночастиц, подвергались воздействию многократно усиленных лазерных электромагнитных полей. В ре-зультате заметно изменилась их радиоактивность. В частности, гамма-активность тория-234 увеличилась в два раза. (Гамма-активность образцов до и после лазерного облучения измеряли полупроводниковым гамма-спектрометром.) Поскольку торий-234 возникает в результате альфа-распада урана-238, увеличение его гамма-активности свидетельствует об ускорении альфа-распада этого изотопа урана. Отметим, что гамма-активность урана-235 не возросла.
    Ученые из ИОФ РАН обнаружили, что лазерное излучение может ускорять не только альфа-распад, но и бета-распад радиоактивного изотопа 137Cs — одного из главных компонентов радиоактивных выбросов и отходов. В своих экспериментах они использовали зеленый лазер на парах меди, работающий в импульсно-периодическом режиме с длительностью импульса 15 наносекунд, частотой повторения импульсов 15 килогерц и пиковой интенсивностью 109 Вт/см2. Лазерное излучение воздействовало на золотую мишень, помещенную в кювету с водным раствором соли 137Cs, содержание которого в растворе объемом 2 мл составляло примерно 20 пикограмм.
    Через два часа облучения мишени исследователи зафиксировали, что в кювете образовался коллоидный раствор с наночастицами золота размером 30 нм (рис. 4), а гамма-активность цезия-137 (и, следовательно, его концентрация в растворе) уменьшилась на 75%. Период полураспада цезия-137 составляет около 30 лет. Значит, такое уменьшение активности, какое было получено в двухчасовом эксперименте, должно происходить в естественных условиях примерно за 60 лет. Поделив 60 лет на два часа, получим, что в течение лазерного воздействия скорость распада увеличилась примерно в 260 000 раз. Такое гигантское возрастание скорости бета-распада должно было бы превратить кювету с раствором цезия в мощнейший источник гамма-излучения, сопровождающего обычный бета-распад цезия-137. Однако в действительности этого не происходит. Радиационные измерения показали, что гамма-активность раствора соли не увеличивается (E.V.Barmina, A. V. Simakin, G. A. Shafeev, Laser-induced caesium-137 decay. «Quantum Electronics», 2014, 44 , 8, 791—792).
    Этот факт говорит о том, что при лазерном воздействии распад цезия-137 идет не по наиболее вероятному (94,6 %) в нормальных условиях сценарию с излучением гамма-кванта с энергией 662 кэВ, а по другому — безызлучательному. Это, предположительно, прямой бета-распад с образованием ядра стабильного изотопа 137Ва, который в нормальных условиях реализуется только в 5,4% случаев.
    Почему происходит такое перераспределение вероятностей в реакции бета-распада цезия — пока неясно. Тем не менее имеются другие независимые исследования, подтверждающие, что ускоренная дезактивация цезия-137 возможна даже в живых системах.

    Низкоэнергетические ядерные реакции в живых системах

    Поиском низкоэнергетических ядерных реакций в биологических объектах уже более двадцати лет занимается доктор физико-математических наук Алла Александровна Корнилова на Физиче-ском факультете Московского государственного университета им. М. В. Ломоносова. Объектами первых опытов стали культуры бактерий Bacillus subtilis, Escherichia coli, Deinococcus radiodurans. Их помещали в питательную среду, обедненную железом, но содержащую соль марганца MnSO4 и тяжелую воду D2O. Эксперименты показали, что в этой системе вырабатывался дефицитный изотоп железа - 57Fe (Vysotskii V. I., Kornilova A. A., Samoylenko I. I., Experimental discovery of the phenomenon of low-energy nuclear transmutation of isotopes (Mn55 to Fe57) in growing bio-logical cultures, «Proceedings of 6th International Conference on Cold Fusion», 1996, Japan, 2, 687—693).
    По мнению авторов исследования, изотоп 57Fe появлялся в растущих клетках бактерий в резуль-тате реакции 55Mn+ d = 57Fe (d — ядро атома дейтерия, состоящее из протона и нейтрона). Определенным аргументом в пользу предлагаемой гипотезы служит тот факт, что если тяжелую воду заменить на легкую или исключить соль марганца из состава питательной среды, то изотоп 57Fe бактерии не нарабатывали.
    Убедившись, что ядерные превращения стабильных химических элементов возможны в микро-биологических культурах, А. А. Корнилова применила свой метод к дезактивации долгоживущих радиоактивных изотопов (Vysotskii V. I., Kornilova A. A., Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems. «Annals of Nuclear Energy», 2013, 62, 626—633). На сей раз Корнилова работала не с монокультурами бактерий, а со сверхассоциацией микроорганизмов различных типов, чтобы повысить их выживаемость в агрессивных средах. Каждая группа этого сообщества максимально адаптирована к совместной жизнедеятельности, коллективной взаимопомощи и взаимозащите. В результате сверхассоциация хорошо приспо-сабливается к самым разным условиям внешней среды, в том числе и к повышенной радиации. Типичная максимальная доза, которую выдерживают обычные микробиологические культуры, соответствует 30 килорад, а сверхассоциации выдерживают на несколько порядков больше, причем их метаболическая активность почти не ослабляется.
    В стеклянные кюветы помещали равные количества концентрированной биомассы вышеупомя-нутых микроорганизмов и 10 мл раствора соли цезия-137 в дистиллированной воде. Начальная гамма-активность раствора была равна 20 000 беккерелей. В некоторые кюветы дополнительно добавляли соли жизненно важных микроэлементов Ca, K и Na. Закрытые кюветы выдерживали при 20оС и каждые семь дней измеряли их гамма-активность при помощи высокоточного детек-тора.
    За сто дней эксперимента в контрольной кювете, не содержащей микроорганизмы, активность цезия-137 уменьшилась на 0,6%. В кювете, дополнительно содержащей соль калия, — на 1%. Быстрее всего активность падала в кювете, дополнительно содержащей соль кальция. Здесь гамма-активность уменьшилась на 24%, что эквивалентно сокращению периода полураспада цезия в 12 раз!
    Авторы выдвинули гипотезу, что в результате жизнедеятельности микроорганизмов 137Cs пре-образуется в 138Ba — биохимический аналог калия. Если калия в питательной среде мало, то трансформация цезия в барий происходит ускоренно, если много, то процесс трансформации блокируется. Что касается роли кальция, то она проста. Благодаря его присутствию в питатель-ной среде популяция микроорганизмов быстро растет и, следовательно, потребляет больше калия или его биохимического аналога — бария, то есть подталкивает трансформацию цезия в барий.
    А что с воспроизводимостью?
    Вопрос о воспроизводимости описанных выше экспериментов требует некоторых пояснений. Реактор «E-Cat», подкупающий своей простотой, пытаются воспроизвести сотни, если не тысячи изобретателей-энтузиастов по всему миру. Существуют даже специальные форумы в Интернете, на которых «репликаторы» обмениваются опытом и демонстрируют свои достижения (http://www.lenr-forum.com/). Определенных успехов в этом направлении добился российский изобретатель Александр Георгиевич Пархомов. Ему удалось сконструировать теплогенератор, работающий на смеси порошка никеля и алюмогидрида лития, который дает избыточное количество энергии (А.Г. Пархомов, Результаты испытаний нового варианта аналога высокотемпера-турного теплогенератора Росси. «Журнал формирующихся направлений науки», 2015, 8, 34—39). Однако в отличие от экспериментов Росси искажений изотопного состава в отработанном топливе обнаружить не удалось.
    Эксперименты по электровзрыву вольфрамовых проволочек, как и по лазерному ускорению распада радиоактивных элементов, гораздо более сложны с технической точки зрения и могут быть воспроизведены только в серьезных научных лабораториях. В связи с этим на место вопроса о воспроизводимости эксперимента приходит вопрос о его повторяемости. Для экспериментов по низкоэнергетическим ядерным реакциям типична ситуация, когда в идентичных условиях проведения эксперимента эффект то присутствует, то нет. Дело в том, что не удается контролировать все параметры процесса, включая, по-видимому, и основной — пока не выявленный. Поиск нужных режимов идет практически вслепую и занимает многие месяцы и даже годы. Экспе-риментаторам не раз приходилось менять принципиальную схему установки в процессе поиска управляющего параметра — той «ручки», которую нужно «крутить», чтобы добиться удовлетворительной повторяемости. На данный момент повторяемость в описанных выше экспериментах составляет примерно 30%, то есть положительный результат получается в каждом третьем опыте. Много это или мало, судить читателю. Ясно одно: без создания адекватной теоретической модели исследуемых явлений вряд ли удастся кардинально улучшить этот параметр.

    Попытка интерпретации

    Несмотря на убедительные экспериментальные результаты, подтверждающие возможность ядерных превращений стабильных химических элементов, а также ускорения распада радиоак-тивных веществ, физические механизмы этих процессов пока неизвестны.
    Основная загадка низкоэнергетических ядерных реакций — как положительно заряженные ядра при сближении преодолевают силы отталкивания, так называемый кулоновский барьер. Обычно для этого требуются температуры в миллионы градусов Цельсия. Очевидно, что в рассмотренных экспериментах такие температуры не достигаются. Тем не менее есть ненулевая вероятность того, что частица, не обладающая достаточной кинетической энергией для преодоления сил отталкивания, все же окажется вблизи ядра и вступит с ним в ядерную реакцию.
    Этот эффект, получивший название туннельного, имеет чисто квантовую природу и тесно связан с принципом неопределенности Гейзенберга. Согласно этому принципу, квантовая частица (например, ядро атома) не может иметь точно заданные значения координаты и импульса одновременно. Произведение неопределенностей (неустранимых случайных отклонений от точ-ного значения) координаты и импульса ограничено снизу величиной, пропорциональной постоянной Планка h. Это же произведение определяет вероятность туннелирования через потенциальный барьер: чем больше произведение неопределенностей координаты и импульса частицы, тем выше эта вероятность.
    В работах доктора физико-математических наук, профессора Владимира Ивановича Манько и соавторов показано, что в определенных состояниях квантовой частицы (так называемых когерентных коррелированных состояниях) произведение неопределенностей может на несколько порядков превышать постоянную Планка. Следовательно, для квантовых частиц в таких состояниях вероятность преодоления кулоновского барьера будет возрастать (В.В.Додонов, В.И.Манько, Инварианты и эволюция нестационарных квантовых систем. «Труды ФИАН. Москва: Наука, 1987, т. 183, с. 286)».
    Если в когерентном коррелированном состоянии окажутся одновременно несколько ядер раз-личных химических элементов, то в этом случае может протекать некий коллективный процесс, приводящий к перераспределению протонов и нейтронов между ними. Вероятность такого процесса будет тем больше, чем меньше разница энергий начального и конечного состояний ансамбля ядер. Именно это обстоятельство, по-видимому, и определяет промежуточное положение низкоэнергетических ядерных реакций между химическими и «обычными» ядерными реакциями.
    Как формируются когерентные коррелированные состояния? Что заставляет ядра объединяться в ансамбли и обмениваться нуклонами? Какие ядра могут, а какие не могут участвовать в этом процессе? На эти и на многие другие вопросы пока нет ответов. Теоретики делают только первые шаги на пути решения этой интереснейшей задачи.
    Поэтому на данном этапе основная роль в исследованиях низкоэнергетических ядерных реакций должна принадлежать экспериментаторам и изобретателям. Необходимы системные экс-периментальные и теоретические исследования этого удивительного феномена, всесторонний анализ полученных данных, широкое экспертное обсуждение.
    Понимание и освоение механизмов низкоэнергетических ядерных реакций помогут нам в решении самых разных прикладных задач — создании дешевых автономных энергетических установок, высокоэффективных технологий дезактивации ядерных отходов и преобразовании химических элементов.

       
     


  2. » #1 написал: eremei (30 мая 2015 16:30)
    Статус: Пользователь offline |



    Группа: Посетители
    публикаций 0
    комментариев 1440
    Рейтинг поста:
    0
    Механизм синтеза легких ядер по-видимому иной, чем у тяжелых (длина волны Де Бройля у которых, в отличие от легких, намного меньше размеров ядра). Ведь протонно-протонный цикл на ускорителях осуществить так и не удалось, а ведь на коллайдере сталкиваются протонный пучки колоссальных энергий. И ни одного ядра дейтерия!
    Предполагаю, что синтез легких ядер возможен, когда они находятся в конденсированном состоянии (такое возможно при очень большом давлении.
    В указанном выше случае ядра дейтерия могут конденсироваться, оказавшись в "плену" решетки палладия.
    Я об этом писал, хотя могу быть и не прав в ряде моментов. Если интересно - почитайте.

       
     






» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Декабрь 2024    »
ПнВтСрЧтПтСбВс
 1
2345678
9101112131415
16171819202122
23242526272829
3031 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map