Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Незавершенная революция

Незавершенная революция


14-06-2009, 12:18 | Наука и техника / Теории и гипотезы | разместил: Damkin | комментариев: (3) | просмотров: (2 343)

Введение

Может быть или может не быть Бога. Или богов. Однако есть что-то облагораживающее в нашем поиске божественного. А также нечто очеловечивающее, что отражается в каждом из путей, которые открывали люди, чтобы привести нас к более глубоким уровням истины. Некоторые отыскивают трансцедентное в медитации и молитве; другие ищут его в служении своим близким людям; еще другие, кто достаточно счастлив, чтобы иметь талант, ищут запредельное, занимаясь искусством.

Другим путем, затрагивающим самые глубокие вопросы жизни, является наука. Не то, чтобы каждый ученый являлся исследователем; большинство как раз нет. Но в рамках каждой научной дисциплины имеются те, кто страстно стремится узнать что-то самое существенно правильное о своей теме. Если они математики, они хотят знать, что есть числа или какой вид истины описывает математика. Если они биологи, они хотят знать, что есть жизнь и как она возникла. Если они физики, они хотят знать все о пространстве и времени и что привело мир к существованию. Эти фундаментальные вопросы наиболее тяжелы для ответов, и прогресс редко бывает непрерывным. Только горстка ученых имеет настойчивость для такой работы. Это один из самых рискованных видов деятельности, но велика и награда: когда кто-то отвечает на вопрос об основаниях той или иной темы, он может изменить все, что мы знаем.

Поскольку добавлять что-то в наше растущее хранилище знаний является их работой, ученые проводят свои дни, борясь с тем, чего они не понимают.

     

И те ученые, кто работает над основаниями любой заданной области, полностью осознают, что кирпичи в основании здания никогда не бывают так тверды, как склонны верить их коллеги.

Это история о поиске понимания природы не ее самом глубоком уровне. Ее главными героями являются ученые, которые работали, чтобы расширить наше знание основных законов физики. Период времени, к которому я буду обращаться, - грубо с 1975 года, - является промежутком и моей собственной профессиональной карьеры как физика-теоретика. Он же может быть и самым странным и разочаровывающим периодом в истории физики с тех времен, когда Кеплер и Галилей четыреста лет назад положили начало практике нашего ремесла.

История, о которой я буду говорить, могла бы читаться некоторыми как трагедия. Говоря прямо, - и чтобы обозначить линию удара, - мы потерпели неудачу. Мы унаследовали науку, физику, которая прогрессировала настолько быстро и настолько долго, что часто принималась за образец того, как должны действовать другие области науки. На протяжении более чем двух столетий до сегодняшнего времени наше понимание законов природы быстро расширялось. Но сегодня, несмотря на все усилия, то, что мы достоверно знаем об этих законах, не превышает того, что мы знали о них в 1970е.

Насколько необычно то, что на протяжении трех десятков лет в фундаментальной физике не произошло значительного прогресса? Даже если мы посмотрим назад более чем на двести лет, в те времена, когда наука большей частью касалась богатых любителей, это беспрецедентно. По меньшей мере, с конца восемнадцатого века существенный прогресс по ключевым вопросам достигался каждые четверть века.

К 1780, когда количественные химические эксперименты Антуана Лавуазье показали, что материя сохраняется, законы движения и гравитации Исаака Ньютона уже существовали почти сто лет. Но, хотя Ньютон дал нам систему для понимания всей природы, граница была широко открыта. Люди еще только начали изучать основные факты о материи, свете и теплоте, и еще предстояло прояснить загадочные явления вроде электричества и магнетизма.

На протяжении следующих двадцати пяти лет главные открытия были сделаны в каждой из этих областей. Мы начали понимать, что свет есть волна. Мы открыли закон, который управляет силами между электрически заряженными частицами. И мы сделали гигантский скачок в нашем понимании материи с атомной теорией Джона Дальтона. Было введено понятие энергии, интерференция и дифракция были объяснены в терминах

     

волновой теории света, было обнаружено электрическое сопротивление и взаимосвязь между электричеством и магнетизмом.

В следующую четверть века, с 1830 по 1855, возникло несколько основных концепций, лежащих в основе современной физики. Майкл Фарадей осознал, что силы передаются полями; использованная им идея привела к величайшему продвижению нашего понимания электричества и магнетизма. В течение того же периода было предложено сохранение энергии, а также второй закон термодинамики.

В следующей четверти века пионерские идеи Фарадея о полях были применены Джеймсом Клерком Максвеллом в нашей современной теории электромагнетизма. Максвелл не только объединил электричество и магнетизм, он объяснил свет как электромагнитную волну. В 1867 он объяснил поведение газов в терминах атомной теории. В течение того же периода Рудольф Клаузиус ввел понятие энтропии.

Период с 1880 по 1905 отметился открытиями электрона и Х-лучей. В несколько этапов было проведено изучение теплового излучения, которое привело в 1900 к открытию Максом Планком правильной формулы для описания тепловых свойств радиации - формулы, которая воспламенит квантовую революцию.

В 1905 Альберту Эйнштейну было двадцать шесть лет. Он не смог получить академическую работу, несмотря на тот факт, что одни его ранние труды по физике теплового излучения могли бы рассматриваться как важный вклад в науку. Но это была только разминка. Вскоре он сосредоточился на фундаментальных вопросах физики: и первое, как относительность движения могла бы согласовываться с законами электричества и магнетизма Максвелла? Об этом он рассказал нам в своей специальной теории относительности (СТО). Должны ли мы думать о химических элементах как о ньютоновских атомах? Эйнштейн доказал нам, что должны. Как мы можем согласовать теории света с существованием атомов? Эйнштейн сказал нам, как, и в процессе показал, что свет является как волной, так и частицами. И все это в 1905, во время, выкроенное из его работы в должности патентного поверенного.

Результаты эйнштейновских прозрений сказались в следующей четверти века. К 1930 мы имели его общую теорию относительности (ОТО), которая сделала революционное утверждение, что геометрия пространства не фиксирована, а развивается во времени. Корпускулярно-волновой дуализм, открытый Эйнштейном в 1905, стал полностью реализованной квантовой теорией, которая дала нам детальное понимание атомов, химии, материи и радиации. К 1930 мы также знали, что вселенная содержит гигантские количества галактик, подобных нашей собственной, и мы узнали, что они удаляются прочь друг от друга. Следствия еще не были ясны, но мы узнали, что мы живем в расширяющейся вселенной.

С созданием квантовой теории и ОТО как части нашего понимания мира закончился первый этап революции в физике двадцатого века. Многие профессора физики, некомфортно чувствовавшие себя из-за революции в их областях компетентности, успокаивались мыслью, что мы должны бы вернуться назад к развитию науки нормальным путем, без обращения на каждом повороте к вопросам о наших основополагающих представлениях. Но это успокоение было преждевременным.

Эйнштейн умер в конце следующей четверти века, в 1955. К тому моменту мы узнали, как последовательно объединить квантовую теорию с СТО; это было великое достижение поколения Фримена Дайсона и Ричарда Фейнмана. Мы открыли нейтрон и нейтрино, а также сотни других предположительно элементарных частиц. Мы также поняли, что мириады явлений в природе управляются всего четырьмя силами: электромагнетизмом, гравитацией, сильными ядерными силами (которые удерживают как целое атомные ядра) и слабыми ядерными силами (ответственными за радиоактивный распад).

Следующая четверть века приводит нас к 1980. К этому моменту мы сконструировали теорию, объясняющую результаты всех наших экспериментов над элементарными частицами и силами на тот момент, - теорию, названную стандартной моделью физики элементарных частиц. Например, стандартная модель точно говорила нам, как протоны и нейтроны собираются из кварков, которые удерживаются вместе глюонами, носителями сильного ядерного взаимодействия. Впервые в истории фундаментальной физики теория совпала с экспериментом. С этого момента не было сделано ни одного эксперимента, который бы не соответствовал этой модели или ОТО.

Двигаясь от очень малого к очень большому, наше знание физики теперь распространилось к новой науке о космологии, где общепринятым взглядом стала теория Большого Взрыва. Мы осознали, что наша вселенная содержит не только звезды и галактики, но и экзотические объекты, такие как нейтронные звезды, квазары, сверхновые и черные дыры. К 1980 Стивен Хокинг уже сделал фантастическое предсказание о том,

что черные дыры излучают. Астрономы также получили доказательства, что вселенная содержит много темной материи - что означает, материи в форме, которая не излучает и не отражает свет.

В 1981 космолог Алан Гут предложил сценарий для очень ранней истории вселенной, названный инфляцией. Грубо говоря, эта теория утверждает, что вселенная в очень ранний момент своей жизни прошла через рывок гигантского роста, и это объясняет, почему вселенная выглядит почти совсем одинаково в каждом направлении. Теория инфляции сделала предсказания, которые казались сомнительными до момента десятилетней давности, когда к ней начали поступать доказательства. Как об этом пишут, осталось несколько загадок, но весь объем доказательств поддерживает предсказания инфляции.

Таким образом, к 1981 физики отпраздновали двести лет взрывного роста. Открытие за открытием углубляли наше понимание природы, поскольку в каждом случае теория и эксперимент маршировали рука об руку. Новые идеи проверялись и подтверждались, а новые экспериментальные открытия объяснялись в терминах теории. Затем в начале 1980х ситуация вынужденно встала.

Я принадлежал к первому поколению физиков, образовавшемуся с момента установления стандартной модели физики частиц. Когда я встречаю старых друзей из колледжа и высшей школы, мы иногда спрашиваем друг друга: "Что такого мы открыли, чем бы наше поколение могло гордиться?" Если мы имеем в виду новые фундаментальные открытия, установленные экспериментом и объясненные теорией, - открытия на уровне тех, которые только что упоминались, - ответ, который мы должны признать, таков: "Ничего!" Марк Визе является ведущим теоретиком, работающим в физике частиц за пределами стандартной модели. На недавнем семинаре в Пограничном институте теоретической физики в Ватерлоо, Онтарио, где я работаю, он говорил о проблеме, откуда взялась масса элементарных частиц. Он сказал: "Мы были необыкновенно безуспешны в решении этой проблемы. Если я должен был бы рассказать о проблеме массы фермионов сейчас, я, вероятно, закончил бы рассказ вещами, которые я мог бы иметь в 1980х"[1]. Он рассказал историю о том, как он и Джон Прескилл, другой ведущий теоретик, прибыли в 1983 в Калифорнийский технологический институт, чтобы встретиться со своим факультетом. "Джон Прескилл и я сидели вместе в его офисе, разговаривали... . Джон сказал: "Ты знаешь, в Калтехе были боги физики, а теперь тут мы! Я стараюсь не забыть, что является важным, чтобы продолжать работать над ним." Затем он заговорил о том, что было известно о массах кварков

     

и лептонов, записал это на страничке желтой бумаги и приколол ее к своей доске для заметок, ... так же, чтобы не забыть поработать над ним. Через пятнадцать лет я прохожу через его офис, ... и мы разговариваем о чем-то, и я бросаю взгляд на его доску для заметок, и (отметьте это) этот листок бумаги все еще здесь, только все, что было на нем написано, выгорело на солнце. Так решались проблемы!"

Чтобы быть честным, мы сделали два экспериментальных открытия в последние два десятилетия: что нейтрино имеет массу и что во вселенной доминирует загадочная темная энергия, которая, кажется, ускоряет расширение вселенной. Но у нас нет идей, почему нейтрино (или любая из других частиц) имеет массу или что объясняет величину их массы. Так же и с темной энергией, она не объясняется в терминах любой существующей теории. Поэтому, ее открытие нельзя расценивать как успех, оно наводит на мысль, что имеется некоторый важнейший факт, которого нам всем не хватает. А исключая темную энергию, не было открыто новых частиц, не были найдены новые силы, мы не столкнулись ни с одним новым явлением, которое не было бы известно и понято двадцать пять лет назад.

Не поймите меня неправильно. Последние двадцать пять лет мы определенно были очень заняты. Достигнут гигантский прогресс в приложениях установленных теорий для различных объектов: свойств материалов, молекулярно-физических основ биологии, динамики обширных звездных скоплений. Но когда мы подходим к расширению нашего знания о законах природы, мы не имеем настоящего прогресса. Были исследованы многие прекрасные идеи, и были выдающиеся эксперименты на ускорителях частиц и космологические наблюдения, но они, большей частью, служили для подтверждения существующих теорий. Имелось несколько скачков вперед, но ни одного столь же определяющего или важного, как в предыдущие двести лет. Когда что-то похожее происходит в спорте или бизнесе, это называется упереться в стену.

Почему физика вдруг оказалась в затруднении? И что мы можем с этим сделать? Это центральные вопросы моей книги.

Я по натуре оптимист, и долгое время я боролся с заключением, что этот период в физике - период моей собственной карьеры - был необычно бесплодным. Для меня и многих моих друзей, кто пошел в науку в надежде сделать важный вклад в то, что было быстро растущей областью, это был шокирующий факт, к которому мы вынуждены подойти со словами: в отличие от предыдущих поколений,

     

мы не достигли ничего, что мы могли бы завещать пережившим нас. Это дает начало персональным кризисам. Но, что более важно, это вызывает кризис в физике.

Главная задача для теоретической физики частиц на протяжении последних трех десятилетий состояла в более глубоком объяснении стандартной модели. Здесь было очень много активности. Постулировались и анализировались новые теории, некоторые очень детально, но ни одна не была подтверждена экспериментально. И здесь центр проблемы: в науке, чтобы мы были уверенными в теории, она должна делать новые предсказания - отличающиеся от тех, что делали предыдущие теории, - для еще не выполненных экспериментов. Чтобы эксперимент был осмысленным, мы должны быть в состоянии получить ответ, который расходится с этими предсказаниями. Когда это так, мы говорим, что теория фальсифицируема - уязвима по отношению к тому, чтобы оказаться опровергнутой. Теория также должна быть подтверждаема, должно быть возможным проверить новые предсказания, которые делает только эта теория. Только когда теория проверена и результаты с ней согласуются, мы можем продвинуть теорию в разряд верных теорий.

Текущий кризис в физике частиц вытекает из факта, что теории, которые предлагались за пределами стандартной модели в последние тридцать лет, распадаются на две категории. Некоторые были фальсифицируемы, и они были опровергнуты. Остаток теорий проверке не подвергался - или потому, что они не делают чистых предсказаний, или потому, что сделанные ими предсказания не проверяемы на сегодняшнем уровне технологии.

За последние тридцать лет теоретики предложили, по меньшей мере, дюжину новых подходов. Каждый подход был мотивирован убедительными гипотезами, но ни один до сегодняшнего дня не был успешен. В области физики частиц эти подходы включали техниколор, преонные модели и суперсимметрию. В области пространства-времени эти подходы включали теорию твисторов, причинные ряды, супергравитацию, динамические триангуляции и петлевую квантовую гравитацию. Некоторые из этих идей столь же экзотичны, как и их название.

alt

Одна теория привлекла больше внимания, чем все остальные вместе: теория струн. Причину ее популярности нетрудно понять. Она претендовала на корректное описание большого и малого - как гравитации, так и элементарных частиц, - и, чтобы сделать это, она выдвинула самую смелую гипотезу из всех теорий: она постулировала, что мир содержит до сих пор не виданные измерения и намного больше частиц, чем известно в настоящее время. В то же время, она предположила, что все элементарные частицы возникают из колебаний единственной сущности -

     

струны, - которая подчиняется простым и красивым законам. Она претендовала на роль единственной теории, которая объединяет все частицы и все силы в природе. По существу, она обещала сделать чистые и недвусмысленные предсказания для любого эксперимента, который когда-либо будет или мог бы быть сделан. В последние двадцать лет в теорию струн было направлено много усилий, но мы все еще не знаем, является ли она правильной. Даже после всех этих трудов теория не делает новые предсказания, которые являются проверяемыми сегодняшними - или даже мыслимыми сегодня - экспериментами. Несколько чистых предсказаний, которые она делает, уже были сделаны другими, хорошо признанными теориями.

 

Часть причин, по которым теория струн не делает новых предсказаний, заключается в том, что она предстает перед нами в бесконечном количестве версий. Даже если мы ограничимся теориями, которые согласуются с некоторыми базовыми наблюдаемыми фактами о нашей вселенной, такими как ее огромный размер и существование темной энергии, мы останемся примерно с 10500 различными струнными теориями, - что означает единицу с 500 нулями после нее, больше, чем количество всех атомов в известной вселенной. С таким чудовищным числом теорий почти нет надежды, что мы сможем идентифицировать результат эксперимента, который не был бы выполнен одной из них. Таким образом, что бы ни показывал эксперимент, теория струн не может быть опровергнута. Но обратное тоже имеет место: не будет сделано когда-либо никаких экспериментов, которые смогли бы проверить ее правильность.

В то же время, мы очень мало понимаем в большинстве из этих теорий струн. И лишь малое число мы понимаем во всех деталях, каждая такая отдельная теория расходится с сегодняшними экспериментальными данными, обычно, по меньшей мере, в двух отношениях.

 

alt

 

Так что мы стоим перед парадоксом. Те теории струн, которые мы знаем как изучать, известны как ошибочные. Те же, которые мы не можем изучить, мыслятся существующими в таких гигантских количествах, что ни один мыслимый эксперимент никогда не сможет их все опровергнуть.

Это не единственная проблема. Теория струн покоится на нескольких ключевых предположениях, для которых имеются некоторые основания, но нет доказательств. Даже хуже, после всех научных усилий, потраченных на ее изучение, мы все еще не знаем, имеется ли полная и последовательная теория, которая как раз и могла бы отзываться на имя "теория струн". Фактически, то, что мы имеем, совсем не является теорией, а лишь большой коллекцией приблизительных расчетов вместе с сетью догадок, которые, если они верны, указывают на существование теории. Мы не знаем, каковы ее фундаментальные принципы. Мы

     

не знаем, на каком математическом языке она должна быть выражена - возможно, в будущем должен быть изобретен новый язык, чтобы описать ее. В отсутствие обоих фундаментальных принципов (подтверждаемость, фальсифицируемость) и математической формулировки мы не можем сказать, что мы даже знаем, что провозглашает теория струн.

Вот как струнный теоретик Брайан Грин представляет это в своей последней книге Ткань космоса: "Даже сегодня, более чем через три десятилетия после ее первоначального озвучивания большинство струнных практиков уверены, что мы все еще не имеем всестороннего ответа на элементарный вопрос: что есть теория струн? ... [Б]ольшинство исследователей чувствует, что наша сегодняшняя формулировка теории струн все еще нуждается в некой разновидности центральных принципов, которые мы нашли в основании других великих достижений".[2]

Герард т′Хоофт, обладатель нобелевской премии за его труды в физике элементарных частиц, охарактеризовал состояние теории струн следующим образом: "На самом деле, я не стал бы даже пытаться называть теорию струн ′теорией′, а не ′моделью′ или даже так: просто предчувствием. В конце концов, теория должна выйти с инструкциями о том, как действовать в ее рамках, чтобы идентифицировать вещи, которые она хочет описать, в нашем случае элементарные частицы, и она должна быть в состоянии, по меньшей мере, в принципе, сформулировать правила для расчетов свойств этих частиц и как делать новые предсказания для них. Представим, что я даю вам кресло, одновременно объясняя, что ножки все еще отсутствуют, и что сидение, спинка и подлокотники будут, вероятно, в ближайшее время доставлены. Что бы я вам ни дал, могу ли я все еще называть это креслом?"[3]

Дэвид Гросс, нобелевский лауреат за его труды по стандартной модели, стал с тех пор одним из самых агрессивных и грозных защитников теории струн. Даже он, закрывая недавнюю конференцию, намеревался отпраздновать прогресс теории словами: "Мы не знаем, о чем мы говорим ... . Состояние физики сегодня подобно тому, что было, когда мы были озадачены радиоактивностью ... . Они потеряли что-то абсолютно фундаментальное. Мы потеряли, возможно, что-то столь же основательное, как и они в те времена."[4] Но, хотя теория струн столь неполна, что даже само ее существование является недоказанной гипотезой, это не останавливает многих, кто работает над ней, от уверенности, что она представляет собой единственный путь вперед для теоретической физики. Одного известного струнного теоретика, Джозефа Полчински из Института теоретической физики Кавли в Калифорнийском университете, Санта Барбара, не так давно просили рассказать об "альтернативах струнной теории". Его первой реакцией были слова: "оказалось, что все это глупости, не имеется

     

альтернатив ... . Все хорошие идеи являются частью теории струн."[5] Любош Мотль, доцент в Гарварде, недавно заявил на своем блоге, что "наиболее вероятная причина, почему ни один ... человек не убедил других в альтернативах к теории струн, заключается в том, что, вероятно, не существует альтернатив теории струн."[6]

Что тут происходит? Обычно в науке под термином теория имеется в виду нечто вполне определенное. Лайза Рэндалл, влиятельный теоретик в области частиц и коллега Мотля по Гарварду, определяет теорию как "определенную физическую систему взглядов, которая воплощается в наборе фундаментальных предположений о мире, - и экономную систему взглядов, которая включает в себя широкое разнообразие явлений. Теория дает особый набор уравнений и предсказаний - тех, которые подтверждаются успешным согласием с экспериментальными результатами".[7]

Теория струн не подходит под это определение - по меньшей мере, пока не подходит. Как тогда некоторые эксперты могут быть уверены, что альтернатив теории струн нет, если они точно не знают, что она собой представляет? Что такое в точности то, чему, как они уверены, нет альтернативы? Таковы некоторые вопросы, которые заставили меня написать эту книгу.

Теоретическая физика трудна. Очень трудна. Не потому, что она содержит определенное количество математики, а потому, что она содержит большие риски. Как мы увидим снова и снова, когда будем исследовать историю современной физики, наука такого рода не может делаться без риска. Если большое количество людей много лет работает над вопросом, а ответ остается неизвестным, это может означать, что ответ не легок или не очевиден. Или это может быть вопрос, на который нет ответа.

Теория струн в тех пределах, в которых она понята, постулирует, что мир фундаментально отличается от мира, который мы знаем. Если теория струн верна, мир имеет больше измерений и намного больше частиц и сил, чем мы до сих пор наблюдали. Многие струнные теоретики говорят и пишут так, как если бы существование этих дополнительных измерений и частиц было установленным фактом, в чем не может не сомневаться хороший ученый. Неоднократно струнные теоретики говорили мне нечто вроде "Но ты имеешь в виду, что ты полагаешь возможным, что нет никаких дополнительных измерений?" Фактически, ни теория, ни эксперимент не предлагают совсем никаких доказательств существования дополнительных измерений. Одна из целей этой книги заключается в демистификации утверждений теории струн. Идеи прекрасны и хорошо мотивированы. Но чтобы понять, почему они не привели к большему

     

прогрессу, мы должны точно выяснить, что поддержано доказательствами, а что все еще нет.

Поскольку теория струн является таким высокорисковым предприятием, - не поддержанным экспериментом, хотя очень щедро поддержанным академическими и научными сообществами, - имеются только два пути окончания этой истории. Если теория струн окажется верной, струнные теоретики окажутся величайшими героями в истории науки. На основе горсти рассуждений, - ни одно из которых не имеет недвусмысленного прочтения, - они смогли открыть, что реальность намного более безбрежна, чем это раньше воображалось. Колумб открыл новый континент, не известный королю и королеве Испании (равно как испанские монархи были неизвестны жителям Нового Света). Галилей открыл новые звезды и луны, а затем астрономы открыли новые планеты. Все это побледнеет перед открытием новых измерений. Более того, многие струнные теоретики верят, что мириады миров, описываемых гигантским числом струнных теорий, реально существуют - как другие вселенные, которые нам невозможно увидеть непосредственно. Если они правы, мы видим намного меньшую часть реальности, чем часть земли, которую когда-либо видела любая группа обитателей пещеры. Никто в человеческой истории не мог когда-либо точно догадаться о таком огромном расширении известного мира.

С другой стороны, если струнные теоретики ошибаются, они не могут просто немножко ошибаться. Если новые размерности и симметрии не существуют, мы должны будем считать струнных теоретиков среди величайших неудачников науки, вроде тех, кто продолжал работать над эпициклами Птолемея, когда выдвинулись вперед Кеплер и Галилей. Их пример будет предостерегающим рассказом о том, как не надо делать науку, как не надо упускать теоретические гипотезы далеко за пределы того, что рационально можно утверждать как начало привлекательной фантазии.

Один результат взлета теории струн заключается в том, что сообщество людей, которые работают в фундаментальной физике, оказалось расколотым. Многие ученые продолжают работать над теорией струн, и за работу в этой области ежегодно присуждается, возможно, порядка пятидесяти новых степеней докторов философии*. Но имеются некоторые физики, которые настроены глубоко скептически, - кто или никогда не видел смысла, или кто к настоящему моменту отказался от ожидания знака, что теория имеет последовательную формулировку или делает реальные экспериментальные предсказания. Стороны раскола не всегда дружелюбны. С каждой стороны выражаются сомнения в профессиональной компетентности и этических стандартах

(*) Доктор философии (Philosophiae Doctor, PhD) - высшая ученая степень в США и Канаде, присуждаемая после защиты соответствующей диссертационной работы почти во всех научных областях, например: доктор философии по физике. Соответствует степени кандидата наук в странах бывшего СССР. В ряде стран (Великобритания, Германия) существуют более высокие степени, эквивалентные советскому доктору наук. - (прим. перев.)

     

другой стороны, и поддерживать дружеские отношения через имеющееся разделение - это настоящая работа.

В соответствии с картиной науки, которую мы изучали в школе, ситуации, подобные этой, не предполагают развития. Вся суть современной науки, как мы учились, в том, что она есть метод, который приводит к прогрессу в нашем понимании природы. Несогласие и противостояние, конечно, необходимы науке, чтобы прогрессировать, но при этом всегда предполагается, что имеется путь разрешения споров посредством эксперимента или математики. В случае теории струн, однако, кажется, что этот механизм отказал. Многие сторонники и критики теории струн настолько утвердились в своих взглядях, что тяжело получить радушное обсуждение проблемы даже среди друзей. "Как ты можешь не видеть красоту теории? Как теория могла бы делать все это и не быть верной?" - говорят струнные теоретики. Это провоцирует не менее горячий ответ от скептиков: "Вы потеряли свой ум? Как вы можете верить так сильно в какую бы то ни было теорию при полном отсутствии экспериментальной проверки? Вы забыли, как наука допускает к результату? Как вы можете быть уверены, что вы правы, когда вы даже не знаете, что из себя представляет теория?"

Я писал эту книгу в надежде, что она внесет вклад в честную и полезную дискуссию как среди экспертов, так и среди читателей-непрофессионалов. Несмотря на то, что я видел в последние несколько лет, я верю в науку. Я верю в способность научного сообщества подняться над раздражительностью и разрешить противоречия через рациональные аргументы, основывающиеся на стоящих перед нами доказательствах. Я сознаю, что даже только поднимая эти проблемы, я вызову гнев некоторых моих друзей и коллег, которые работают в теории струн. Я могу только настаивать, что я пишу эту книгу не для атаки на теорию струн или тех, кто в нее верит, но и без восхищения перед ней, и, главным образом, как выражение веры в физическое научное сообщество.

Так что это книга не про "нас" против "них". В течение моей карьеры я работал как над струнной теорией, так и над другими подходами к квантовой гравитации (то есть, к согласованию ОТО Эйнштейна с квантовой теорией). Даже если большая часть моих усилий прошла в этих других подходах, были периоды, когда я жадно верил в теорию струн и посвящал себя решению ее ключевых проблем. Хотя я не решил их, я написал восемнадцать статей по этой теме; таким образом, ошибки, которые я буду обсуждать, являются моими ошибками в той же мере, как и любого другого. Я буду говорить о гипотезах, в правильности которых была широкая

     

уверенность, несмотря на то, что ни одна не была подтверждена. Но я находился среди верующих, и я выбирал направление своих исследований, основываясь на этой вере. Я буду говорить о давлении, которое чувствуют юные ученые и которое принуждает их для получения достойной карьеры заняться темами, санкционированными генеральным направлением. Я чувствовал это давление на себе, и было время, когда я позволил своей карьере управляться им. Конфликт между необходимостью независимо выражать научное мнение и делать это способом, который не отчуждает тебя от главного потока, был еще одним, что я также испытал. Я написал эту книгу не для того, чтобы критиковать ученых, кто сделал отличные от моего выборы, а для изучения вопроса, почему ученые вообще должны конфликтовать из-за таких выборов.

Фактически, это мне давно подсказывало решиться и написать эту книгу. Я сам не люблю конфликты и конфронтации. В конце концов, в том виде науки, которым мы занимаемся, все, заслуживающее внимания, делается с риском, и все, что реально имеет значение, это что студенты наших студентов будут достойно думать об обучении их собственных студентов на пятьдесят лет дальше по дороге. Я сохраняю надежды, что кто-то в центре исследований теории струн напишет объективную и детальную критическую работу о том, чего в точности теория достигла, а чего не достигла. Этого не происходит.

Одна из причин донести эти проблемы до публики возвращается к дебатам, которые имели место несколько лет назад между учеными и "социальными конструктивистами", группой профессоров гуманитарных и социальных наук, о том, как работает наука. Социальные конструктивисты объявили, что научное сообщество не более рационально или объективно, чем любое другое человеческое сообщество. Это не то, как большинство ученых видят науку. Мы говорим нашим студентам, что уверенность в научной теории должна всегда базироваться на объективном развитии доказательств. Наши оппоненты по спору утверждали, что наши заявления о том, как работает наука, большей частью были пропагандой, сконструированной, чтобы устрашить людей, чтобы передать нам власть, и что вся научная отрасль двигается теми же политическими и социологическими силами, которые руководят людьми в других областях.

Один из главных аргументов, который мы, ученые, использовали в этих дебатах, заключался в том, что наше сообщество отличается, поскольку мы управляемся в соответствии с высокими стандартами - стандартами, которые предотвращают нас от выбора любой теории, пока она не подтверждена посредством публикации вычислений и экспериментальных данных за пределами сомнений компетентного профессионала. Как я буду касаться в некоторых деталях, это не всегда

     

так в теории струн. Несмотря на отсутствие экспериментальной поддержки и точной формулировки, некоторые последователи теории уверены в ней с определенностью, что кажется, скорее, эмоциональным, чем рациональным.

Агрессивное продвижение теории струн привело к ее становлению как главного пути для анализа больших вопросов физики. Почти каждый теоретик в области частиц с постоянным местом работы в престижном Институте перспективных исследований, включая директора, является струнным теоретиком, исключение составляет персона, приглашенная на работу десять лет назад. То же самое верно для Института теоретической физики Кавли. Восемь из девяти премий Общества Макартура для физиков в области частиц с начала программы в 1981 году достались струнным теоретикам. И в ведущих физических организациях страны (Беркли, Калтех, Гарвард, Массачусетский технологический, Принстон и Стэнфорд) двадцать один из двадцати двух профессоров по физике частиц, работающих на срочном договоре, кто получил степень доктора философии после 1981, сделали себе имя в теории струн или в связанных подходах. Теория струн сейчас занимает настолько доминирующее положение в академической науке, что для юного физика-теоретика было бы практически карьерным самоубийством не заниматься этой областью. Даже в областях, где теория струн не делает предсказаний, вроде космологии и феноменологии частиц, для исследователей является общим местом начинать доклад или статью объявлением уверенности, что их труд когда-нибудь в будущем будет выводим из теории струн. Имеются веские причины принимать теорию струн всерьез как гипотезу о природе, но это не то же самое, что декларировать ее правильность. Я вложил несколько лет в работу по теории струн, поскольку я верил в нее достаточно, чтобы желать приложить свои руки к решению ее ключевых проблем. Я также верил, что я не имею права на мнение, пока я не знаю ее в деталях, как может знать только практикующий ее физик. В то же время, я работал над другими подходами, которые также обещали ответы на фундаментальные вопросы. В результате ко мне относились с некоторым подозрением люди на обеих сторонах дебатов. Некоторые струнные теоретики рассматривали меня как "антиструнного". Это не могло бы быть менее правильным. Я никогда бы не потратил так много времени и усилий на работу по теории струн или не написал бы три книги, в значительной степени мотивированные ее проблемами, если бы я не был очарован ей и не чувствовал, что она может оказаться частью истины. Я не ратую за

     

что-нибудь, кроме науки, ни против чего-нибудь, кроме того, что рассматривается наукой.

Но здесь на кону больше, чем мирные отношения между коллегами. Чтобы делать нашу работу, нам, физикам, требуются значительные ресурсы, которые обеспечиваются, большей частью, нашими согражданами - через налоги, а также и через деньги фондов. Взамен они просят только возможность видеть через наши плечи, как мы выковываем будущее и углубляем человеческое знание мира, частью которого мы являемся. Те физики, которые общаются с публикой через статьи ли, публичные выступления, телевидение или Интернет, несут обязанность рассказывать честную историю. Мы должны стараться представить неудачи вместе с успехами. В самом деле, честность по поводу ошибок означает возможность помочь, вместо того, чтобы мешать нашему делу. В конце концов, поддерживающие нас люди живут в реальном мире. Они знают, что прогресс во всех попытках требует, чтобы принимались во внимание реальные риски, что временами мы будем терпеть неудачу.

В последние годы множество книг и журнальных статей для широкой публики описывали ошеломляющие новые идеи, которые вырабатывали физики-теоретики. Некоторые из этих хроник меньше всего заботились об объяснении именно того, насколько далеко новые идеи находятся как от экспериментального тестирования, так и от математического доказательства. Получая выгоду от желания публики знать, как работает вселенная, я чувствую обязанность подтвердить, что рассказываемая в этой книге история строго придерживается фактов. Я надеюсь, что представление различных проблем, которые мы оказались не в состоянии решить, прозрачно объяснит, что поддерживается экспериментом, а что нет, и отличит факты от спекуляций и интеллектуальных фантазий. Прежде всего, мы, физики, несем ответственность за будущее нашего ремесла. Наука, как я обосную позже, основывается на этике, а этика требует честности от части практиков науки. Это также требует, чтобы каждый ученый был знатоком того, во что он или она верит, так, чтобы каждая неподтвержденная идея встречалась со здоровой дозой скептицизма и критики, пока она не будет доказана. Это, с другой стороны, требует, чтобы в научном сообществе поддерживалась и приветствовалась диверсификация подходов к нерешенным проблемам. Мы проводим исследования, поскольку даже самый умный среди нас не знает ответа. Часто ответ лежит в ином направлении, чем то, которому следовали в рамках генеральной линии. В этих случаях, и даже когда генеральное направление считается правильным, прогресс науки

     

зависит от здоровой поддержки ученых, которые придерживались отличающихся взглядов.

Наука требует деликатного баланса между конформизмом и разнообразием. Поскольку так легко ошибиться, поскольку ответы не известны, эксперты, не важно, насколько умные или натренированные, не сойдутся во мнениях по поводу того, какой подход более вероятно даст плоды. Следовательно, если наука хочет двигаться вперед, научное сообщество должно поддерживать различные подходы к каждой отдельной проблеме.

Имеются обширные доказательства, что этим базовым принципам в случае фундаментальной физики больше не следуют. Хотя некоторые могут быть не согласны с высказыванием других взглядов, это все меньше и меньше практикуется. Некоторые молодые струнные теоретики говорили мне, что они чувствуют принуждения к работе над струнной теорией, верят они в нее или нет, поскольку это воспринимается как билет к профессорству в университете. И они правы: в Соединенных Штатах теоретик, который занимается подходами к фундаменальной физике, иными, чем теория струн, почти не имеет карьерных возможностей. За последние пятнадцать лет было всего три доцента, назначенных в американские исследовательские университеты, кто работал над подходами к квантовой гравитации, отличающимися от теории струн, и все эти назначения были в единственную исследовательскую группу. Раз уж теория струн борется на стороне науки, она одержала триумфальную победу в академии.

Это причиняет вред науке, поскольку заставляет отказаться от исследований альтернативных направлений, некоторые из которых очень многообещающие. Несмотря на неадекватное финансирование этих подходов, некоторые оказались впереди теории струн в отношении предложения определенных предсказаний для экспериментов, которые сейчас проводятся.

Как это возможно, что теория струн, которой занимались более тысячи блестящих и хорошо образованных ученых, работая в лучших условиях, находится в опасности неудачи? Это удивляло меня долгое время, но сейчас я думаю, что я знаю ответ. Что, я уверен, потерпело неудачу, это не только отдельная теория, но и стиль ведения науки, который хорошо подходил к проблемам, стоявшим перед нами в середине двадцатого века, но перестал быть пригодным для тех видов фундаментальных проблем, которые стоят перед нами сейчас. Стандартная модель физики частиц была триумфом особого способа ведения науки, который начал доминировать в физике с 1940х. Этот стиль прагматичен и реалистичен, он поощряет виртуозность в расчетах при обдумывании

     

тяжелых концептуальных проблем. Это крайне отличается от способа, которым делали науку Альберт Эйнштейн, Нильс Бор, Вернер Гейзенберг, Эрвин Шредингер и другие революционеры начала двадцатого века. Их работа возникала из глубокого размышления о наиболее основных вопросах окружающего пространства, времени и материи, и они видели, что они являлись частью широкой философской традиции, в которой они были дома.

В подходе к физике частиц, разработанном и преподанном Ричардом Фейнманом, Фрименом Дайсоном и другими, раздумья над фундаментальными проблемами не имели места в исследовании. Это освободило их от споров по поводу смысла квантовой физики, которые мучили их предшественников, и привело к тридцати годам впечатляющего прогресса. Это было так, как это и должно быть: для решения разных видов проблем были нужны различные стили исследований. Разработка приложений установленных концептуальных систем требует совсем других видов размышлений - и мыслителей, - чем открытие этих самых концептуальных систем впервые.

Однако, как я буду обосновывать в деталях на следующих страницах, урок последних тридцати лет в том, что проблемы, вставшие сегодня, не могут быть решены этим прагматическим способом ведения науки. Чтобы продолжить прогресс науки, мы опять должны бороться с глубокими вопросами о пространстве и времени, квантовой теории и космологии. Нам снова нужны типы людей, которые могут открыть новые решения давно стоящих основополагающих проблем. Как мы увидим, направления, в которых делается прогресс, - которые приводят теорию назад к контакту с экспериментом, - ведутся людьми, которые имеют свободное время, чтоб придумывать новые идеи, а не следовать популярным трендам, и делать науку, большей частью, в размышляющем и основательном стиле пионеров начала двадцатого века.

Я хочу подчеркнуть, что моя тема не связана со струнными теоретиками как индивидуальностями, некоторые из них являются самыми талантливыми и достигшими совершенства физиками, которых я знаю. Я буду первым отстаивать их право на продолжение исследований так, как они полагают самым многообещающим. Но я предельно озабочен тенденцией, в которой всесторонне поддерживается только одно направление исследований, тогда как другие многообещающие подходы мрут от голода.

Это тенденция с трагическим последствиями, если, как я буду обосновывать, истина лежит в направлении, которое требует радикального переосмысления наших базовых идей о пространстве, времени и квантовом мире.

Пять великих проблем теоретической физики


С самых ранних времен становления физики как науки находились люди, которые представляли себя последним поколением, сталкивающимся с неизвестным. Физика всегда казалась ее деятелям почти завершенной. Это самодовольство разбивается только во время революций, когда честные люди вынуждены признать, что они не знают основ. Но даже революционеры все еще представляют, что главная идея - та, что все объединит и приведет поиск знания к завершению, - лежит прямо за углом.

Мы живем в один из таких революционных периодов уже столетие. Последним таким периодом была революция Коперника, возникшая в начале шестнадцатого века, во время которой аристотелевы теории пространства, времени, движения и космологии были низвергнуты. Кульминацией указанной революции было предложение Исааком Ньютоном новой теории физики, опубликованное в 1687 в его Математических Принципах Натуральной Философии. Сегодняшняя революция в физике началась в 1900 с открытием Максом Планком формулы, описывающей распределение энергии в спектре теплового излучения, которая продемонстрировала, что энергия не непрерывна, но дискретна. Эта революция еще завершается. Проблемы, которые физики должны решать сегодня, являются, по большому счету, вопросами, которые остаются без ответа вследствие незавершенности научной революции двадцатого века. Ядро нашей неспособности завершить текущую научную революцию

     

состоит из пяти проблем, каждая из которых в высшей степени неподатлива. Эти проблемы противостояли нам, когда я начинал мои занятия физикой в 1970е, и, хотя мы много узнали о них за последние три десятилетия, они остались нерешенными. Так или иначе, любая предлагаемая теория фундаментальной физики должна решить эти пять проблем, так что стоит бросить краткий взгляд на каждую.

Альберт Эйнштейн был, определенно, самым значительным физиком двадцатого столетия. Его величайшей работой, возможно, было его открытие общей теории относительности (ОТО), которая является лучшей из имеющихся у нас на сегодняшний день теорий пространства, времени, движения и гравитации. Его глубочайшим прозрением было то, что гравитация и движение тесно связаны друг с другом и с геометрией пространства и времени. Эта идея завершила сотни лет раздумий о природе пространства и времени, которые до нее рассматривались как фиксированные и абсолютные. Будучи вечными и неизменными, они обеспечивали фон, который мы использовали для определения таких понятий как положение и энергия.

В ОТО Эйнштейна пространство и время больше не обеспечивают фиксированного абсолютного фона. Пространство столь же динамично, как и материя, оно двигается и деформируется. В итоге пустая вселенная может расширяться или сокращаться, а время может даже начаться (в Большом Взрыве) и закончиться (в черной дыре).

Эйнштейн довел до конца и кое-что другое. Он был первым человеком, который понял необходимость новой теории материи и излучения. На самом деле необходимость перелома подразумевалась в формуле Планка, но Планк не понял этого достаточно глубоко, он полагал, что формулу можно было бы примирить с ньютоновской физикой. Эйнштейн думал иначе, и первое определенное обоснование такой теории он дал в 1905. Потребовалось еще двадцать лет, чтобы изобрести эту теорию, известную как квантовая теория.

Каждое из этих двух открытий, относительность и кванты, требует от нас определенного разрыва с ньютоновской физикой. Однако, несмотря на великий прогресс на протяжении века, они остались незавершенными. Каждое имеет дефекты, которые указывают на существование более глубокой теории. Но главная причина незавершенности каждого заключается в существовании другого.

Разум вызывает третью теорию для унификации всей физики, и по простой причине. Природа в очевидном смысле "едина". Вселенная, в которой мы сами находимся, находится во взаимосвязи, что означает, что все взаимодействует со всем прочим. Нет оснований, по которым мы могли бы иметь две

     

теории природы, покрывающие различные явления, как если бы одна никогда не действовала вместе с другой. Все требует, чтобы конечная теория была полной теорией природы. Она должна включать в себя все, что мы знаем. Физика долгое время существовала без такой единой теории. Причина в том, что, говоря о подходящем эксперименте, мы были в состоянии разделить мир на две области. В атомной области, где правит квантовая физика, мы обычно можем игнорировать гравитацию. Мы можем трактовать пространство и время почти как это делал Ньютон - как неизменный фон. Другая область является областью гравитации и космологии. В этом мире мы часто можем игнорировать квантовые явления.

Но это не может быть ничем другим, как временным, предварительным решением. Выйти за его пределы и является первой нерешенной проблемой в теоретической физике:

 

ПРОБЛЕМА 1: Объединить ОТО и квантовую теорию в одну теорию, которая может претендовать на роль полной теории природы.

Это называется проблемой квантовой гравитации.

 

 

За пределами аргументов, основывающихся на единстве природы, имеются проблемы, специфические для каждой теории, которая требует объединения с другой. Каждая теория имеет проблему бесконечностей. В природе мы еще не столкнулись с чем-то измеримым, что имеет бесконечную величину. Но как в квантовой теории, так и в общей теории относительности мы сталкиваемся с предсказаниями физически осмысленных величин, становящихся бесконечными. Это похоже на то, что природа таким путем наказывает нахальных теоретиков, которые осмелились разрушить ее единство

 

alt

 

ОТО имеет проблему с бесконечностями, поскольку внутричерной дыры плотность материи и напряженность гравитационного поля быстро становятся бесконечными. Это же проявляется и в очень ранней истории вселенной - по меньшей мере, если мы доверяем общей теории относительности для описания ее младенчества. В точке, в которой плотность становится бесконечной, уравнения ОТО распадаются. Некоторые люди интерпретируют такое поведение как остановку времени, но более умеренный взгляд заключается в том, что теория просто неадекватна. В течение долгого времени умудренные люди рассуждали о том, что эта неадекватность происходит от пренебрежения эффектами квантовой физики. Квантовая теория, в свою очередь, имеет свои собственные неприятности с бесконечностями. Они возникают всякий раз, когда вы пытаетесь использовать квантовую механику для описания полей, вроде электромагнитного поля. Проблема в том, что электрическое и магнитное поля имеют величину в каждой точке пространства.

     

Это означает, что имеется бесконечное число переменных (даже в конечном объеме, где имеется бесконечное число точек, а отсюда бесконечное число переменных). В квантовой теории имеются неконтролируемые флуктуации в величинах каждой квантовой переменной. Бесконечное число неконтролируемо флуктуирующих переменных могут привести к уравнениям, которые "отбиваются от рук" и предсказывают бесконечные числа, когда вы задаете вопросы о вероятности наступления некоторого события или о величине некоторой силы.

Так что это является другим случаем, когда мы не можем помочь, но чувствуем, что существенная часть физики осталась за бортом. Долгое время была надежда, что, когда гравитация будет принята во внимание, флуктуации будут укрощены и все станет конечным. Если бесконечности являются знаком нарушения унификации, единая теория не будет их иметь. Это будет тем, что мы называем конечной теорией, теорией, которая отвечает на любой вопрос в терминах осмысленных, конечных чисел.

Квантовая механика была экстремально успешной в объяснении широчайшего круга явлений. Эта область простирается от излучения до свойств транзисторов и от физики элементарных частиц до действия ферментов и других больших молекул, которые являются строительными кирпичиками жизни. Ее предсказания подтверждались снова и снова в течение последнего столетия. Но некоторые физики всегда имели тревожные опасения по ее поводу, поскольку реальность, которую она описывает, столь эксцентрична. Квантовая теория содержит внутри себя некоторые очевидные концептуальные парадоксы, которые даже после восьмидесяти лет остаются неразрешенными. Электрон проявляется как волна и как частица. Так же ведет себя свет. Более того, теория дает только статистические предсказания субатомного поведения. Наша способность сделать что-нибудь лучше этого ограничивается принципом неопределенности, который говорит нам, что мы не можем в одно и то же время измерить положение и импульс частицы. Теория производит только вероятности. Частица - например, электрон в атоме - может быть где угодно, пока мы ее не измерим; наше наблюдение в некотором смысле определяет ее состояние. Все это указывает на то, что квантовая теория не рассказывает полную историю. В итоге, несмотря на ее успех, имеются многие эксперты, которые убеждены, что квантовая теория скрывает нечто существенное о природе, о чем нам нужно узнать.

Одна из проблем, которая с самого начала мучает теорию, заключается в вопросе о соотношении между реальностью и формализмом. Физики традиционно ожидают, что наука должна давать

     

оценку реальности такой, какой она была бы в наше отсутствие. Физика должна быть больше, чем набор формул, которые предсказывают, что мы будем наблюдать в эксперименте; она должна давать картину того, какова реальность на самом деле. Мы являемся случайными потомками древних приматов, которые появились в истории мира лишь совсем недавно. Не может быть, что реальность зависит от нашего существования. Проблема отсутствия наблюдателей не может быть решена и путем обращения к возможности существования чужих цивилизаций, так как было время, когда мир существовал, но был слишком горячим и плотным, чтобы существовал организованный разум.

Философы называют такую точку зрения реализмом. Она может быть обобщена через высказывание, что "реальный мир не здесь" (RWOT - real world out there, сокращение, которое использовал для его обозначения мой первый учитель философии) должен существовать независимо от нас. Отсюда следует, что термины, в которых наука описывает реальность, не могут включать любым существенным образом тот факт, что мы выбираем, измерять нам или не измерять.

Квантовая механика, по меньшей мере, в той форме, в которой она была впервые предложена, не подгоняется легко под реализм. Это происходит из-за того, что теория предполагает разделение природы на две части. С одной стороны разделения имеется наблюдаемая система. Мы, наблюдатели, находимся с другой стороны. С нами имеются инструменты, которые мы используем при проведении экспериментов и осуществлении измерений, и часы, которые мы используем, чтобы записать, когда произошли те или иные вещи. Квантовая теория может описываться, если использовать новый вид языка, в диалоге между нами и системой, которую мы исследуем нашими инструментами. Этот квантовый язык содержит глаголы, которые обозначают наши приготовления и измерения, и существительные, которые обозначают, что затем наблюдается. Он ничего не говорит нам о том, как будет выглядеть мир в наше отсутствие.

С момента первого предложения квантовой теории бушуют дебаты между теми, кто принимает такой путь подхода к науке, и теми, кто отвергает его. Многие основатели квантовой механики, включая Эйнштейна, Эрвина Шредингера и Луи де Бройля, находили такой подход к физике отвратительным. Они были реалистами. Для них квантовая теория, независимо от того, насколько хорошо она работает, была неполной теорией, поскольку она не обеспечивала картину реальности в отсутствие нашего взаимодействия с ней. На другой стороне были Нильс Бор, Вернер Гейзенберг и многие другие. Вместо того, чтобы ужасаться, они принимали такой новый путь подхода к науке. С тех пор реалисты добились некоторых успехов в обозначении непоследовательности существующей формулировки квантовой теории. Некоторые

     

из этих очевидных непоследовательностей возникают вследствие того, что квантовая теория, если она универсальна, должна также описывать нас самих. При этом возникают проблемы из-за разделения мира, которое требуется, чтобы придать смысл квантовой теории. Одна трудность заключается в том, где вы должны провести разделительную линию, которая зависит от того, кто проводит наблюдение. Когда вы измеряете атом, вы и ваши инструменты находятся по одну сторону, а атом по другую сторону. Но допустим, что я наблюдаю за вашей работой через видеокамеру. Я настроился на вашу лабораторию. Я могу рассматривать всю вашу лабораторию - включая вас и ваши инструменты, точно так же, как и атомы, с которыми вы манипулируете, - как составные части одной системы, которую я наблюдаю. С другой стороны буду только я.

Следовательно, вы и я описываем две разные "системы". Ваша включает только атом. Моя включает вас, атом и все то, что вы используете для его исследования. То, что вы рассматриваете как измерение, я рассматриваю как две физические системы, взаимодействующие друг с другом. Таким образом, даже если вы согласны, что хорошо иметь воздействие наблюдателя как часть теории, теория как таковая не достаточна. Квантовая механика должна быть расширена, чтобы учесть многие другие описания, зависящие от того, кто наблюдатель.

Вся эта проблема известна под названием проблемы обоснований квантовой механики. Она является второй великой проблемой современной физики.

alt

 

ПРОБЛЕМА 2: Решение проблемы обоснований квантовой механики или путем придания смысла теории в ее существующем виде, или путем изобретения новой теории, которая имеет смысл.

 

Имеется несколько различных путей, как это можно сделать.

1.

Обеспечить осмысленный язык для теории, который разрешает все головоломки вроде той, что только что была упомянута, и включает в себя разделение мира на систему и наблюдателя как существенную особенность теории.

 

2.

Найти новую интерпретацию теории - новый способ прочтения уравнений, - которая реалистична, так что измерение и наблюдение не будут играть роли в описании фундаментальной реальности.

 

3.

Изобрести новую теорию, такую, которая бы дала более глубокое понимание природы, чем это делает квантовая механика.

 

 

     

Все три пути в настоящее время исследуются небольшим числом умных людей. К сожалению, не многие физики работают над данной проблемой. Временами это принимается за указание, что проблема или решена, или не важна. Ни то ни другое не верно. Это, вероятно, самая серьезная проблема, стоящая перед современной наукой. Просто она столь трудна, что прогресс очень мал. Я глубоко восхищаюсь физиками, которые работают над ней, как из-за чистоты их усилий, так и из-за их мужества игнорировать моду и атаковать тяжелейшую и самую фундаментальную из проблем.

Но, несмотря на их лучшие попытки, проблема остается нерешенной. Это указывает для меня на то, что дело не только в нахождении нового способа размышлений о квантовой теории. Те, кто изначально формулировал теорию, не были реалистами. Они не верили, что человек способен сформировать правильную картину мира, как он существует независимо от наших действий и наблюдений. Вместо этого они отстаивали совершенно иной взгляд на науку: с их точки зрения наука может быть ничем иным, как расширением обычного языка, который мы используем для описания наших действий и наблюдений, до другого языка.

В более давние времена такой взгляд казался оправданным - продукт времени, когда мы надеялись, что мы продвинулись вперед во многих отношениях. Те, кто продолжает защищать квантовую механику в том виде, как она была сформулирована, и предлагает ее как теорию мира, действуют так обычно под знаменем реализма. Они ратуют за переинтерпретацию теории в русле реализма. Однако, хотя они и сделали некоторые интересные предложения, никого полностью не убедили.

Возможно, что это связано с тем, что реализм как философия просто вымер, но это кажется невероятным. В конце концов, реализм обеспечивает мотивацию, двигающую большинство ученых. Для большинства из нас, верящих в "реальный мир не здесь" (RWOT) и в возможность правильного знания, он обеспечивает мотивацию для тяжелой работы, необходимой, чтобы стать ученым и внести свой вклад в понимание природы. Если признать неудачу реалистов в придании смысла квантовой теории в ее исходной формулировке, становится все более и более вероятным только путь три: открытие новой теории, которая будет более подвержена реалистической интерпретации.

Я должен признать, что я реалист. Я на стороне Эйнштейна и других, кто верил, что квантовая механика является неполным описанием реальности. Тогда где мы должны искать, что неверно в

     

квантовой механике? Мне всегда казалось, что решение будет требовать более чем глубочайшего понимания самой квантовой физики. Я верю, что если проблема не была решена после всех прошедших времен, это происходит из-за некоторых ошибок, из-за некоторых связей с другими проблемами физики. Невероятно, чтобы проблема квантовой механики была решена изолированно, напротив, решение, вероятно, будет появляться по мере достижения нами прогресса в величайшей задаче унификации физики.

Но, если это верно, это работает в обе стороны: мы не сможем решить другие большие проблемы без нахождения также осмысленной замены для квантовой механики.

Идея, что физика должна быть унифицирована, вероятно, вызвала больше работ в физике, чем любая другая проблема. Но имеются различные пути, по которым физика может быть унифицирована, и мы должны постараться различить их. До сих пор мы обсуждали унификацию через отдельный закон. Непросто увидеть, как кто-то может не согласиться, что это необходимая цель.

Но имеются другие пути унификации мира. Эйнштейн, который определенно думал об этом более любого другого, подчеркивал, что мы должны различать два вида теорий. Это теории принципов и конструктивные теории. Теория принципов устанавливает систему взглядов, которая делает возможным описание природы. По определению, теория принципов должна быть универсальной: она должна быть применима ко всему, поскольку она устанавливает основной язык, который мы используем, чтобы говорить о природе. Не может быть двух различных теорий принципов, применимых к различным областям природы. Поскольку мир един, все, в конечном счете, взаимодействует со всем другим, и может быть только один язык, используемый для описания этих взаимодействий. Квантовая теория и общая теория относительности обе являются теориями принципов. Раз так, логика требует их объединения.

Другой вид теорий, конструктивные теории, описывают некоторые отдельные явления в терминах специфических моделей или уравнений.[1] Теория электромагнитного поля и теория электрона есть конструктивные теории. Такие теории не могут устанавливаться в одиночестве; они должны быть встроены в контекст теории принципов. Но до тех пор, пока теория принципов не появилась, могут существовать явления, подчиняющиеся различным законам. Например, электромагнитное поле подчиняется законам, отличным от законов, управляющих теоретически допустимой космологической темной материей (ее количество, как полагают, значительно превышает количество ординарной атомной

     

материи в нашей вселенной). Одна из вещей, которую мы знаем о темной материи независимо от того, что она из себя представляет, это то, что она темная.

alt

Это означает, что она не испускает света, так что она, вероятно, не взаимодействует с электромагнитным полем. Поэтому две различные теории могут сосуществовать бок о бок.

Дело в том, что законы электромагнетизма не диктуют, что еще может существовать в мире. Там могут быть кварки или нет, нейтрино или нет, темная материя или нет. Аналогично, законы, которые описывают два взаимодействия - сильное и слабое, - которые действуют внутри атомных ядер, не обязательно требуют, чтобы там были и электромагнитные силы. Мы можем легко представить мир, в котором есть электромагнетизм, но нет сильного ядерного взаимодействия, или наоборот.

Но все еще возможно спросить, не могут ли силы, которые мы наблюдаем в природе, быть проявлениями единственной, фундаментальной силы. Тут кажется, насколько я могу судить, нет логических аргументов, что это должно быть верно, но это все еще является чем-то, что может быть верным.

Страстное желание объединить различные силы привело к нескольким существенным продвижениям в истории физики. Джеймс Клерк Максвелл в 1867 объединил электричество и магнетизм в одну теорию, а столетием позже физики обнаружили, что электромагнитное поле и поле, которое распространяет слабые ядерные силы (силы, отвечающие за радиоактивный распад), могут быть объединены. Такой теорией стала электрослабая теория, предсказания которой раз за разом подтверждались в экспериментах на протяжении последних тридцати лет.

Имеются две фундаментальных силы природы (из тех, что мы знаем), которые остаются за пределами объединения электромагнитных и слабых сил. Это гравитация и сильное ядерное взаимодействие, отвечающее за связь между собой частиц, именуемых кварками, чтобы сформировать протоны и нейтроны, составляющие атомные ядра. Можно ли объединить все четыре фундаментальные силы?

Это наша третья великая проблема.

 

 

ПРОБЛЕМА 3: Определить, могут или нет различные частицы и силы быть объединены в теорию, которая объясняет их все как проявление единственной, фундаментальной сущности.


Назовем эту проблему проблемой объединения частиц и сил, чтобы отличить ее от унификации законов, которую мы обсудили ранее. Во-первых, эта проблема легко появилась. Первое предположение, как

     

объединить гравитацию с электричеством и магнетизмом, было сделано в 1914, и с тех пор было предложено намного больше. Все они работают, пока вы забываете одну вещь, что природа является квантовомеханической. Если вы исключаете квантовую физику из картины, унифицирующие теории легко придумываются. Но если вы включаете квантовую теорию, проблема становится намного, намного более тяжелой. Поскольку гравитация является одной из четырех фундаментальных сил природы, мы должны решить проблему квантовой гравитации (то есть, проблему номер 1: как примирить ОТО и квантовую теорию) вместе и параллельно с проблемой унификации. За последнее столетие наше физическое описание мира значительно упростилось. Раз уж речь идет о частицах, они проявляются только в двух видах: кварки и лептоны. Кварки являются составляющими протонов и нейтронов и многих частиц, которые мы аналогично им открыли. Класс лептонов охватывает все частицы, не состоящие из кварков, включая электроны и нейтрино. Обобщая, известный мир объясняется шестью видами кварков и шестью видами лептонов, которые взаимодействуют друг с другом посредством четырех сил (или, как их еще называют, взаимодействий): гравитации, электромагнетизма, и слабых и сильных ядерных взаимодействий.

 

alt

 

Двенадцать частиц и четыре взаимодействия это все, что нам нужно, чтобы объяснить все что угодно в известном мире. Мы также очень хорошо понимаем основную физику этих частиц и сил. Это понимание выражено в терминах теории, которая применима для всех этих частиц и всех сил, исключая гравитацию. Она называется стандартной моделью физики элементарных частиц - или стандартной моделью, для краткости. Эта теория не имеет отмеченных ранее проблем с бесконечностями. Все, что мы хотим рассчитать в этой теории, мы можем рассчитать, и результаты выражаются в конечных числах. За более чем тридцать лет с момента формулирования стандартной модели многие предсказания этой теории были экспериментально проверены. В каждом и любом случае теория подтверждалась. Стандартная модель была сформулирована в начале 1970х. За исключением открытия, что нейтрино имеют массу, она не требовала до сих пор корректировки. Так почему физики не стало после 1975? Что осталось сделать? При всей ее полезности стандартная модель имеет большую проблему. Она имеет длинный список подгоночных констант. Когда мы устанавливаем законы теории, мы должны определить величины этих констант. Насколько мы

     

знаем, могут быть использованы любые величины, поскольку теория математически состоятельна вне зависимости от того, какие величины мы в нее вставляем. Эти константы определяют свойства частиц. Некоторые говорят нам о массах кварков и лептонов, другие говорят нам о величине сил. У нас нет идей, почему эти числа имеют ту величину, какую имеют, мы просто определяем их через эксперименты, а затем подставляем числа в теорию. Если вы подумаете о стандартной модели как о калькуляторе, то константы будут вводимыми числами, такими, что может быть набор любых позиций, которые вам нравятся, каждый раз, когда программа запускается на выполнение.

Имеется около двадцати таких констант, и тот факт, что имеется так много свободно определяемых констант, которые должны быть подставлены в фундаментальную теорию, является жутким затруднением. Каждая константа представляет некоторый основополагающий факт, который мы игнорируем: а именно, физический механизм или основания, отвечающие за выбор константы в ее наблюдаемой величине.

Это наша четвертая большая проблема.

 

ПРОБЛЕМА 4: Объяснить, как в природе выбираются величины свободных констант в стандартной модели физики частиц.

 

alt

 

 

Есть глубокая надежда, что правильная единая теория частиц и сил даст однозначный ответ на этот вопрос.

В 1900м Вильям Томсон (лорд Кельвин), влиятельный британский физик, лихо объявил, что физика закончилась, исключая два маленьких облачка на горизонте. Эти "облачка" оказались ключами, которые привели нас к квантовой теории и теории относительности. Сегодня, даже если мы празднуем включение всех известных явлений в стандартную модель плюс ОТО, мы тоже осознаем два облачка. Это темная материя и темная энергия.

Отдельно от проблемы соотношения гравитации с квантами мы думаем, что мы очень хорошо понимаем гравитацию. Предсказания ОТО находятся в согласии с наблюдениями с очень большой степенью точности. Наблюдения по этим вопросам простираются от падающих тел и света на Земле, до детализированного движения планет и их лун, до масштабов галактик и скоплений галактик. Совершенно экзотические явления - вроде гравитационного линзирования, эффекта искривления пространства материей - сегодня настолько хорошо поняты, что используются для измерения распределений масс в скоплениях галактик.

alt

Во многих случаях - когда скорости малы по сравнению

     

со световой и массы не слишком компактны - ньютоновские законы гравитации и движения обеспечивают превосходное приближение к предсказаниям ОТО. Определенно, они должны нам помогать предсказывать, как массы звезд и другой материи в соответствующей галактике влияют на движение отдельной звезды. Но они не предсказывают. Гравитационный закон Ньютона говорит, что ускорение любого объекта при его обращении относительно другого пропорционально массе тела, вокруг которого он обращается. Чем тяжелее звезда, тем быстрее орбитальное движение планеты. Это означает, что если вокруг двух звезд обращаются планеты, и планеты находятся на одинаковых расстояниях от своих звезд, планета, обращающаяся вокруг более массивной звезды, будет двигаться быстрее. Таким образом, если вы знаете скорость тела на орбите вокруг звезды и его дистанцию до звезды, вы можете измерить массу этой звезды. То же самое сохраняется для звезд, обращающихся вокруг центра галактики; путем измерения орбитальной скорости звезд вы можете измерить распределение массы в этой галактике.

На протяжении последних десятилетий астрономы проделали очень простой эксперимент, в котором они измерили распределение масс в галактике двумя различными способами и сравнили результаты. Во-первых, они измерили массу через наблюдение орбитальных скоростей звезд; во-вторых, они провели более прямое измерение масс, оценив все звезды, газ и пыль, которые они могли видеть в галактике. Идея заключалась в сравнении двух измерений. Каждое должно было дать нам полную массу галактики и ее распределение. Полагая, что мы хорошо понимаем гравитацию, и что все известные формы материи испускают свет, два метода должны согласоваться.

Они не согласуются. Астрономы сравнили два метода измерения массы более чем в ста галактиках. Почти во всех случаях два измерения не совпадали, причем не на малую величину, а на фактор порядка 10. Более того, ошибка всегда была в одном направлении: почти всегда больше массы требовалось для объяснения наблюдаемого движения звезд, чем это следовало из прямой оценки всех звезд, газа и пыли. Имеются только два объяснения этому. Или второй метод неверен из-за того, что в галактике намного больше массы, ем это видно, или ньютоновские законы не могут предсказать точное движение звезд в гравитационном поле их галактики. Все формы материи, которые мы знаем, испускают свет или

     

непосредственно как звездный свет, или отраженный от планет или межзвездных камней, газа и пыли. Так что, если есть нечто, что мы не видим, оно должно быть некоторой новой формой материи, которая не испускает и не отражает света. А поскольку расхождение столь велико, подавляющая часть материи в галактиках должна быть в этой новой форме.

Сегодня большинство астрономов и физиков уверены, что это и есть правильный ответ на загадку. Имеется потерянная материя, которая на самом деле здесь, но которую мы не видим. Эта мистическая потерянная материя названа темной материей. Гипотеза темной материи более предпочтительна, поскольку единственная другая возможность, - что мы ошибаемся относительно законов Ньютона и их обобщения в ОТО, - слишком устрашающая, чтобы быть рассмотренной.

 

alt

 

Вещи стали даже более мистическими. Недавно мы открыли, что когда мы проводим наблюдения на еще больших масштабах, соответствующих миллиардам световых лет, уравнения ОТО не удовлетворяются, даже когда добавлена темная материя. Расширение вселенной, запущенное Большим Взрывом около 13,7 миллиардов лет назад, оказывается ускоряющимся, тогда как с учетом наблюдаемой материи плюс рассчитанной оценки темной материи оно должно быть, напротив, - тормозящимся. И опять тут возможны два объяснения. ОТО может просто быть неверна. Она была точно проверена только в пределах нашей солнечной системы и соседних систем в нашей собственной галактике. Возможно, когда мы переходим на масштабы, сравнимые с размерами целой вселенной, ОТО просто больше не применима. Или имеется новая форма материи - или энергии (напомним знаменитое уравнение Эйнштейна E = mc2, показывающее эквивалентность энергии и массы), - которая становится существенной на очень больших масштабах. Это означает, что эта новая форма энергии проявляется только в расширении вселенной. Чтобы делать это, она не может скапливаться вокруг галактик или даже скоплений галактик. Эта странная новая энергия, которую мы постулировали, чтобы соответствовать данным опытов, названа темной энергией. Большинство видов материи находится под давлением, но темная энергия находится под растяжением - это означает, что она стягивает вещи вместе вместо того, чтобы расталкивать их в стороны. По этой причине растяжение временами называют отрицательным давлением. Несмотря на факт, что темная энергия находится под растяжением, она заставляет вселенную расширяться быстрее. Если вы озадачены этим, я

     

вас поддерживаю. Можно подумать, что газ с отрицательным давлением будет действовать подобно резиновой ленте, связывающей галактики и замедляющей расширение. Но оказывается, что когда отрицательное давление достаточно отрицательно, в ОТО оно имеет противоположный эффект. Это вызывает расширение вселенной с ускорением.

Недавние измерения выявили вселенную, которая большей частью состоит из неизвестного. Полные 70 процентов плотности материи оказывается в форме темной энергии. Двадцать шесть процентов есть темная материя. И только 4 процента обычная материя. Так что менее 1 части из 20 построено из материи, которую мы наблюдаем экспериментально или описываем в стандартной модели физики частиц. Об оставшихся 96 процентах, за исключением только что отмеченных их свойств, мы не знаем абсолютно ничего.

 

alt

 

В последние десять лет космологические измерения стали намного более точными. Частично это проявление эффекта Мура, который устанавливает, что каждые восемнадцать месяцев или около того скорость операций компьютерных чипов удваивается. Все новые эксперименты используют микрочипы или на спутниках, или на телескопах земного базирования, так что, поскольку чипы становятся лучше, постольку лучше становятся и наблюдения. Сегодня мы много знаем об основных характеристиках вселенной, таких как полная плотность материи и темп расширения. Теперь имеется стандартная модель космологии, точно так же, как имеется стандартная модель физики элементарных частиц. Почти подобно своему двойнику стандартная модель космологии имеет список свободных подгоночных констант - в этом случае около пятнадцати. Они обозначают, среди других вещей, плотность различных видов материи и энергии и темп расширения. Никто не знает ничего о том, почему эти константы имеют именно те значения, какие имеют. Как и в физике частиц, величины констант берутся из наблюдений, но еще не объясняются ни одной теорией.

Эти космологические головоломки составляют пятую великую проблему.

 

ПРОБЛЕМА 5: Объяснить темную материю и темную энергию. Или, если они не существуют, определить, как и почему гравитация модифицируется на больших масштабах. Более общо, объяснить, почему константы стандартной модели космологии, включая темную энергию, имеют те величины, которые имеют.

Эти пять проблем представляют границы современного знания. Они являются тем, что бодрит физиков-теоретиков даже по ночам. Все вместе они двигают большую часть текущей работы на переднем крае теоретической физики.

Любая теория, которая претендует на звание фундаментальной теории природы,

     
должна ответить на каждую из них. Одна из целей настоящей книги заключается в оценке, насколько хорошо недавние физические теории, такие как теория струн, преуспели в достижении этой цели. Но перед тем, как мы сделаем это, нам необходимо посмотреть на более ранние попытки унификации. Мы должны многому научиться из успехов, - а также и из неудач.

Глава из книги Ли Смолина "Неприятности с физикой:

взлет теории струн, упадок науки и что за этим следует"

 



Рейтинг публикации:

Нравится0



Комментарии (3) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.

  1. » #3 написал: Damkin (14 июня 2009 15:26)
    Статус: |



    Группа: Гости
    публикаций 0
    комментариев 0
    Рейтинг поста:
    0
    Стандартная модель физики частиц была триумфом особого способа ведения науки, который начал доминировать в физике с 1940х. Этот стиль прагматичен и реалистичен, он поощряет виртуозность в расчетах при обдумывании тяжелых концептуальных проблем. Это крайне отличается от способа, которым делали науку Альберт Эйнштейн, Нильс Бор, Вернер Гейзенберг, Эрвин Шредингер и другие революционеры начала двадцатого века. Их работа возникала из глубокого размышления о наиболее основных вопросах окружающего пространства, времени и материи, и они видели, что они являлись частью широкой философской традиции, в которой они были дома.
    В подходе к физике частиц, разработанном и преподанном Ричардом Фейнманом, Фрименом Дайсоном и другими, раздумья над фундаментальными проблемами не имели места в исследовании. Это освободило их от споров по поводу смысла квантовой физики, которые мучили их предшественников, и привело к тридцати годам впечатляющего прогресса.

    Алекс два подхода, к проблеме:
    1. я хочу найти ответ,что такое электрический ток, я задаю вопросы себе, как это делали они - отцы
    2. ты уверовал, как Фейнман в квантовую физику и не ищешь  ответов на такие вопросы типа почему отталкиваются разноименные магнитные полюса, мы - разные, ты - работаешь, я - тунеядец и бездельник на шее олигархов.
    От Алекс Зес:
    Пока не прочитаете то что рекомендовал принципиально не буду комментировать. Прочитайте тогда и поговорим. Почему ленитесь? Не уж то так на шее олигархов удобно smile Кстати там найдете ответы и насчет отлалкивания и определения тока)) Так что жду прочтения изначально необходимой литературы, тогда и поговорим. 

       
     


  2. » #2 написал: Редакция ОКО ПЛАНЕТЫ (14 июня 2009 13:03)
    Статус: Пользователь offline |



    Группа: Главные редакторы
    публикации 32764
    комментариев 24112
    Рейтинг поста:
    0
    Дамкин, тут твердить не надо. Тут надо знать. Вы ж не читали то что я вам рекомендовал. А зря. Прочитайте. Вы сразу поймете, что гипотезы Канарева не имеют отношения к реальности, в отличии от теории Эйнштейна  подтвержденной экспериментально многократно. Вся беда втом что люди элементарно не разбираются  в таких вопросах поэтому клюют на популярное  изложение, которое не имеет отношения  к реальности опытных данных, но зато греет душу общедоступным "пониманием". Что касается Смолина, то в статье о нем, автор вообще не указал никаких нарушений ОТО и СТО, журналист назвал ее так, чтобы привлечь внимание читателя. Как раз суть исследований Смолина, судя по статье, подтверждение теории Эйнштейна. Вы клюнули на название, а оно противоположно содержанию статьи. Хокинг пишет о другом, о черных дырах и изменении времени в них. Он отказался от первоначальных своих гипотез. Ни какого отношения  к ОТО и СТО данная цитата не имеет. Еще раз говорю пока вы не прочитаете рекомендованную мной литературу обсуждать будет нечего. Поэтому для  стимулирования этого изучения ставлю вопрос ребром. Готов обсуждать любые вопросы по данной литературе в контексте ваших идей, но не гипотезы Канаревых и К. Так вы сможете наконец разобраться в физике вопроса, не подменяя ее новоявом разного рода домотканных "разработчиков" коих, вы правы, сейчас  масса  и ни кто из них толком не понимает вещей о которых пишет.     

       
     


  3. » #1 написал: Damkin (14 июня 2009 12:28)
    Статус: |



    Группа: Гости
    публикаций 0
    комментариев 0
    Рейтинг поста:
    0
    Мне не хотелось беспредметно пререкаться с любимым главным редактором ( низкий поклон, шаркаю ножкой, как это делает мой любимый образ - хулиганистый волк)
    Я не хотел без соответствующего подкрепления со стороны физика теоретика отвечать

    Не мелите чушь.

    Алекс, не только Смолин не согласен с Эйнштейном, я давно об этом твержу, пытаясь обратить внимание всех на определение понятия времени. Мы расходимся с в этом вопросе с тобой. Смолин, Канарев, и многие др.("др." - это и я тоже) чуть иначе, каждый по своему ( слова, слова....) говорим об одном и том же - гипотезы Эйнштейна и Бора остались гипотезами, ничего не доказано, есть интерпретация. Вот когда дашь определение электрического тока и что такое магнитное поле, тогда можно говорить предметно . А так - слова, слова...

    Если прочтешь, то увидишь, что Смолин другими словами, говорит о том же самом - "Что такое электрический ток?"

    Если Смолин не авторитет, то еще одна подпорка для шатающего деда (это- я):

    И в заключение автор научных бестселлеров "Краткая история времени" ('A Brief History of Time') и "Теория всего" ('The Theory of Everything'), профессор математики из Кембриджского университета предположил, что, "возможно [такая теория] невозможна".
    "Некоторые люди будут сильно разочарованы, узнав, что окончательной теории нет, - сказал Хокинг. - Я тоже принадлежал к этому лагерю, но теперь я передумал. Мы будем всегда иметь дело с вызовом со стороны новых научных открытий. Без этого цивилизация будет застаиваться. Поиск можно продолжать очень долго".


       
     






» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Декабрь 2024    »
ПнВтСрЧтПтСбВс
 1
2345678
9101112131415
16171819202122
23242526272829
3031 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map