Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Веревка из паутины

Веревка из паутины


9-12-2010, 12:12 | Наука и техника / Естествознание | разместил: VP | комментариев: (0) | просмотров: (4 581)

Дмитрий Багров
«Квант» №4, 2010

 

Изображение: «Квант»

 

Каждый может легко смахнуть паутину, висящую между ветками дерева или под потолком в дальнем углу комнаты. Но мало кто знает, что если бы паутина имела диаметр 1 мм, то она могла бы выдержать груз массой приблизительно 200 кг. Стальная проволока того же диаметра выдерживает существенно меньше: 30–100 кг, в зависимости от типа стали. Почему же паутина обладает такими исключительными свойствами?

 

Некоторые пауки прядут до семи типов нитей, каждая из которых имеет собственное назначение. Нити могут использоваться не только для ловли добычи, но и для строительства коконов и парашютирования (взлетая на ветру, пауки могут уходить от внезапной угрозы, а молодые пауки таким способом расселяются на новые территории). Каждый из типов паутины производится специальными железами.

 

Паутина, используемая для ловли добычи, состоит из нескольких типов нитей (рис. 1): каркасной, радиальной, ловчей и вспомогательной. Наибольший интерес ученых вызывает каркасная нить: она имеет одновременно высокую прочность и высокую эластичность — именно это сочетание свойств является уникальным. Предельное напряжение на разрыв каркасной нити паука Araneus diadematus составляет 1,1–2,7. Для сравнения: предел прочности стали 0,4–1,5 ГПа, человеческого волоса — 0,25 ГПа. В то же время каркасная нить способна растягиваться на 30–35%, а большинство металлов выдерживают деформацию не более 10–20%.

 

 

Рис. 1. Различные нити в составе паутины: каркасная нить самая прочная, она держит всю паутину в целом; радиальная нить тонкая и не липкая, она поддерживает липкую ловчую нить; вспомогательная спираль помогает расположить ловчую нить. Изображение: «Квант»
Рис. 1. Различные нити в составе паутины: каркасная нить самая прочная, она держит всю паутину в целом; радиальная нить тонкая и не липкая, она поддерживает липкую ловчую нить; вспомогательная спираль помогает расположить ловчую нить. Изображение: «Квант»

 

Представим себе летящее насекомое, которое ударяется в натянутую паутину. При этом нить паутины должна растянуться так, чтобы кинетическая энергия летящего насекомого превратилась в тепло. Если бы паутина запасала полученную энергию в виде энергии упругой деформации, то насекомое отскочило бы от паутины, как от батута. Важное свойство паутины состоит в том, что она выделяет очень большое количество теплоты при быстром растяжении и последующем сокращении: энергия, выделяемая в единице объема, составляет более 150 МДж/м3 (сталь выделяет — 6 МДж/м3). Это позволяет паутине эффективно рассеивать энергию удара и не слишком сильно растягиваться, когда в нее попадает жертва. Паутина или полимеры, обладающие аналогичными свойствами, могли бы стать идеальными материалами для легких бронежилетов.

 

В народной медицине есть такой рецепт: на рану или ссадину, чтобы остановить кровь, можно приложить паутину, аккуратно очистив ее от застрявших в ней насекомых и мелких веточек. Оказывается, паутина обладает кровеостанавливающим действием и ускоряет заживление поврежденной кожи. Хирурги и трансплантологи могли бы использовать ее в качестве материала для наложения швов, укрепления имплантантов и даже как заготовки для искусственных органов. С помощью паутины можно существенно улучшить механические свойства множества материалов, которые в настоящее время применяются в медицине.

 

Итак, паутина — необычный и очень перспективный материал. Какие же молекулярные механизмы отвечают за ее исключительные свойства?

 

Мы привыкли к тому, что молекулы — чрезвычайно маленькие объекты. Однако это не всегда так: вокруг нас широко распространены полимеры, которые имеют длинные молекулы, состоящие из одинаковых или похожих друг на друга звеньев. Все знают, что генетическая информация живого организма записана в длинных молекулах ДНК. Все держали в руках полиэтиленовые пакеты, состоящие из длинных переплетенных молекул полиэтилена. Молекулы полимеров могут достигать огромных размеров.

 

Например, масса одной молекулы ДНК человека порядка 1,9·1012 а.е.м. (однако это приблизительно в сто миллиардов раз больше, чем масса молекулы воды), длина каждой молекулы составляет несколько сантиметров, а общая длина всех молекул ДНК человека достигает 1011 км.

 

Важнейшим классом природных полимеров являются белки, они состоят из звеньев, которые называются аминокислотами. Разные белки выполняют в живых организмах чрезвычайно разные функции: управляют химическими реакциями, используются в качестве строительного материала, для защиты и т. д.

 

Рис. 2. Молекула спидроина и модель ее укладки в волокне. Изображение: «Квант»
Рис. 2. Молекула спидроина и модель ее укладки в волокне. Изображение: «Квант»

 

Каркасная нить паутины состоит из двух белков, которые получили названия спидроинов 1 и 2 (от английского spider — паук). Спидроины — это длинные молекулы с массой от 120000 до 720000 а.е.м. У разных пауков аминокислотные последовательности спидроинов могут отличаться друг от друга, но все спидроины имеют общие черты. Если мысленно вытянуть длинную молекулу спидроина в прямую линию и посмотреть на последовательность аминокислот, то окажется, что она состоит из повторяющихся участков, похожих друг на друга (рис. 2). В молекуле чередуются два типа участков: относительно гидрофильные (те, которым энергетически выгодно контактировать с молекулами воды) и относительно гидрофобные (те, которые избегают контакта с водой). На концах каждой молекулы присутствуют два неповторяющихся гидрофильных участка, а гидрофобные участки состоят из множества повторов аминокислоты, называемой аланином.

 

Длинная молекула (например, белок, ДНК, синтетический полимер) может быть представлена как скомканная запутанная веревка. Растянуть ее не составляет труда, потому что петли внутри молекулы могут расправляться, требуя сравнительно небольшого усилия. Некоторые полимеры (например, резина) могут растягиваться на 500% своей начальной длины. Так что способность паутины (материала, состоящего из длинных молекул) деформироваться больше, чем металлы, не вызывает удивления.

 

Откуда же берется прочность паутины?

 

Чтобы понять это, важно проследить за процессом формирования нити. Внутри железы паука спидроины накапливаются в виде концентрированного раствора. Когда происходит формирование нити, этот раствор выходит из железы по узкому каналу, это способствует вытягиванию молекул и ориентации их вдоль направления вытяжки, а соответствующие химические изменения вызывают слипание молекул. Фрагменты молекул, состоящие из аланинов, соединяются вместе и образуют упорядоченную структуру, похожую на кристалл (рис. 3). Внутри такой структуры фрагменты уложены параллельно друг другу и сцеплены между собой водородными связями. Именно эти участки, сцепленные между собой, и обеспечивают прочность волокна. Типичный размер таких плотно упакованных участков молекул составляет несколько нанометров. Расположенные вокруг них гидрофильные участки оказываются неупорядоченно свернутыми, похожими на скомканные веревки, они могут расправляться и этим обеспечивать растяжение паутины.

 

 

Рис. 3. Рекомбинантный белок паутины, способный образовывать особые структуры — тончайшие нити диаметром 3–5 нм. Изображение: «Квант»
Рис. 3. Рекомбинантный белок паутины, способный образовывать особые структуры — тончайшие нити диаметром 3–5 нм. Изображение: «Квант»

 

Многие композиционные материалы, например армированные пластмассы, устроены по тому же принципу, что и каркасная нить: в относительно мягком и подвижном матриксе, который дает возможность деформации, находятся малые по размерам твердые области, которые делают материал прочным. Хотя материаловеды давно работают с подобными системами, созданные человеком композиты только начинают приближаться к паутине по своим свойствам.

 

Любопытно, что, когда паутина намокает, она сильно сокращается (это явление получило название суперконтракции). Это происходит потому, что молекулы воды проникают в волокно и делают неупорядоченные гидрофильные участки более подвижными. Если паутина растянулась и провисла от попадания насекомых, то во влажный или дождливый день она сокращается и при этом восстанавливает свою форму.

 

Отметим также интересную особенность формирования нити. Паук вытягивает паутину под действием собственного веса, но полученная паутина (диаметр нити приблизительно 1–10 мкм) обычно позволяет выдержать массу, в шесть раз большую массы самого паука. Если же увеличить вес паука, вращая его в центрифуге, он начинает выделять более толстую и более прочную, но менее жесткую паутину.

 

Когда заходит речь о применении паутины, возникает вопрос о том, как ее получать в промышленных количествах. В мире существуют установки для «доения» пауков, которые вытягивают нити и наматывают их на специальные катушки. Однако такой способ неэффективен: чтобы накопить 500 г паутины, необходимо 27 тысяч средних пауков. И тут на помощь исследователям приходит биоинженерия. Современные технологии позволяют внедрить гены, кодирующие белки паутины, в различные живые организмы, например в бактерии или дрожжи. Эти генетически модифицированные организмы становятся источниками искусственной паутины. Белки, полученные методами генной инженерии, называются рекомбинантными. Отметим, что обычно рекомбинантные спидроины гораздо меньше природных, но структура молекулы (чередование гидрофильных и гидрофобных участков) остается неизменной.

 

Есть уверенность, что искусственная паутина по своим свойствам не будет уступать природной и найдет свое практическое применение как прочный и экологически чистый материал. В России исследованиями свойств паутины совместно занимаются несколько научных групп из различных институтов.

 

Получение рекомбинантной паутины осуществляют в Государственном научно-исследовательском институте генетики и селекции промышленных микроорганизмов, физические и химические свойства белков исследуют на кафедре биоинженерии биологического факультета МГУ им. М. В. Ломоносова, изделия из белков паутины формируют в Институте биоорганической химии РАН, их медицинскими применениями занимаются в Институте трансплантологии и искусственных органов.



Источник: elementy.ru.

Рейтинг публикации:

Нравится11



Комментарии (0) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.





» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Апрель 2024    »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map