Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Шедевр советской инженерии — компьютер на воде

Шедевр советской инженерии — компьютер на воде


23-01-2023, 12:06 | Политика / Размышления о политике | разместил: Око Политика | комментариев: (0) | просмотров: (1 806)

Буквально только сейчас узнал о совершенно потрясающем устройстве – водяном компьютере. Гидравлический интегратор Лукьянова — первая в мире вычислительная машина для решения дифференциальных уравнений в частных производных — на протяжении полувека был единственным средством вычислений, связанных с широким кругом задач математической физики.

В 1936 году он создал вычислительную машину, все математические операции в которой выполняла текущая вода. Слышали ли вы о таком?




Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых – одномерных задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций. В последствии интегратор был модифицирован для решения трехмерных задач.

После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.


Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора — наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ — с большими сложностями. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.



И еще немного для тех, кому интересны подробности.


Создание гидроинтегратора продиктовано сложной инженерной задачей, с которой молодой специалист В. Лукьянов столкнулся в первый же год работы.

После окончания Московского института инженеров путей сообщения (МИИТ) Лукьянов был направлен на постройку железных дорог Троицк-Орск и Карталы-Магнитная (ныне Магнитогорск).

В 20-30-е годы строительство железных дорог велось медленно. Основными рабочими инструментами были лопата, кирка и тачка, а земляные работы и бетонирование производились только летом. Но качество работ все равно оставалось невысоким, появлялись трещины — бич железобетонных конструкций.

Лукьянов заинтересовался причинами образования трещин в бетоне. Его предположение об их температурном происхождении сталкивается со скептическим отношением специалистов. Молодой инженер начинает исследования температурных режимов в бетонных кладках в зависимости от состава бетона, используемого цемента, технологии проведения работ и внешних условий. Распределение тепловых потоков описывается сложными соотношениями между температурой и меняющимися со временем свойствами бетона. Эти соотношения выражаются так называемыми уравнениями в частных производных. Однако существовавшие в то время (1928 год) методы расчетов не смогли дать быстрого и точного их решения.

В поисках путей решения проблемы Лукьянов обращается к трудам математиков и инженеров. Верное направление он находит в трудах выдающихся российских ученых — академиков А. Н. Крылова, Н. Н. Павловского и М. В. Кирпичева.

Инженер-кораблестроитель, механик, физик и математик академик Алексей Николаевич Крылов (1863-1945) в конце 1910 года построил уникальную механическую аналоговую вычислительную машину — дифференциальный интегратор для решения обыкновенных дифференциальных уравнений 4-го порядка.

Академик Николай Николаевич Павловский (1884-1937) занимался вопросами гидравлики. В 1918 году доказал возможность замены одного физического процесса другим, если они описываются одним и тем же уравнением (принцип аналогии при моделировании).


Академик Михаил Викторович Кирпичев (1879-1955) — специалист в области теплотехники, разработал теорию моделирования процессов в промышленных установках — метод локального теплового моделирования. Метод позволял в лабораторных условиях воспроизводить явления, наблюдаемые на больших промышленных объектах.


Лукьянов сумел обобщить идеи великих ученых: модель — вот высшая степень наглядности математической истины. Проведя исследования и убедившись, что законы течения воды и распространения тепла во многом сходны, он сделал вывод — вода может выступать в роли модели теплового процесса. В 1934 году Лукьянов предложил принципиально новый способ механизации расчетов неустановившихся процессов — метод гидравлических аналогий и спустя год создал тепловую гидромодель для демонстрации метода. Это примитивное устройство, сделанное из кровельного железа, жести и стеклянных трубок, успешно разрешило задачу исследования температурных режимов бетона.

Главным его узлом стали вертикальные основные сосуды определенной емкости, соединенные между собой трубками с изменяемыми гидравлическими сопротивлениями и подключенные к подвижным сосудам. Поднимая и опуская их, меняли напор воды в основных сосудах. Пуск или остановка процесса расчета производились кранами с общим управлением.

В 1936 году заработала первая в мире вычислительная машина для решения уравнений в частных производных — гидравлический интегратор Лукьянова.

Для решения задачи на гидроинтеграторе необходимо было:

1) составить расчетную схему исследуемого процесса;

2) на основании этой схемы произвести соединение сосудов, определить и подобрать величины гидравлических сопротивлений трубок;

3) рассчитать начальные значения искомой величины;

4) начертить график изменения внешних условий моделируемого процесса.



После этого задавали начальные значения: основные и подвижные сосуды при закрытых кранах наполняли водой до рассчитанных уровней и отмечали их на миллиметровой бумаге, прикрепленной за пьезометрами (измерительными трубками) — получалась своеобразная кривая. Затем все краны одновременно открывали, и исследователь менял высоту подвижных сосудов в соответствии с графиком изменения внешних условий моделируемого процесса. При этом напор воды в основных сосудах менялся по тому же закону, что и температура. Уровни жидкости в пьезометрах менялись, в нужные моменты времени краны закрывали, останавливая процесс, и на миллиметровой бумаге отмечали новые положения уровней. По этим отметкам строили график, который и был решением задачи.

Возможности гидроинтегратора оказались необычайно широки и перспективны. В 1938 году В. С. Лукьяновым была основана лаборатория гидравлических аналогий, которая вскоре превратилась в базовую организацию для внедрения метода в народное хозяйство страны. Руководителем этой лаборатории он оставался в течение сорока лет.

Главным условием широкого распространения метода гидравлической аналогии стало совершенствование гидроинтегратора. Создание конструкции, удобной в практическом применении, позволило решать задачи различных типов — одномерные, двухмерные и трехмерные. Например, течение воды в прямолинейных границах — одномерный поток. Двумерное движение наблюдается в районах крупных излучин рек, вблизи островов и полуостровов, а грунтовые воды растекаются в трех измерениях.

Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых — одномерных — задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций.

В 1949 году постановлением Совета Министров СССР в Москве создан специальный институт "НИИСЧЕТМАШ", которому были получены отбор и подготовка к серийному производству новых образцов вычислительной техники. Одной из первых таких машин стал гидроинтегратор. За шесть лет в институте разработана новая его конструкция из стандартных унифицированных блоков, и на Рязанском заводе счетно-аналитических машин начался их серийный выпуск с заводской маркой ИГЛ (интегратор гидравлический системы Лукьянова). Ранее единичные гидравлические интеграторы строились на Московском заводе счетно-аналитических машин (САМ). В процессе производства секции были модифицированы для решения трехмерных задач.



В 1951 году за создание семейства гидроинтеграторов В. С. Лукьянову присуждена Государственная премия.

После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.

Особенно наглядно проявилась эффективность метода гидравлических аналогий при изготовлении железобетонных блоков первой в мире гидроэлектростанции из сборного железобетона — Саратовской ГЭС им. Ленинского комсомола (1956-1970). Требовалось разработать технологию изготовления около трех тысяч огромных блоков весом до 200 тонн. Блоки должны были быстро вызревать без трещин на поточной линии во все времена года и сразу устанавливаться на место. Очень сложные расчеты температурного режима с учетом непрерывного изменения свойств твердеющего бетона и условий электропрогрева произвели своевременно и в нужном объеме только благодаря гидроинтеграторам Лукьянова. Теоретические расчеты в сочетании с испытаниями на опытном полигоне и на производстве позволили отработать технологию изготовления блоков безукоризненного качества.



Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора — наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ — с большими сложностями. Более того, предварительное применение метода гидравлических аналогий помогало поставить задачу, подсказать путь программирования ЭВМ и даже проконтролировать ее во избежание грубых ошибок. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.

Два гидроинтегратора Лукьянова представлены в коллекции аналоговых машин Политехнического музея в Москве. Это редкие экспонаты, имеющие большую историческую ценность, памятники науки и техники. Оригинальные вычислительные устройства вызывают неизменный интерес посетителей и входят в число самых ценных экспонатов отдела вычислительной техники.




Я еще хотел бы вам напомнить про Секретного предка компьютеров, а так же что это за «Сетунь» — единственный серийный троичный компьютер из СССР ну и вспомним немного про Советские корни процессора Intel Pentium. Вот кстати, еще «Минск» против IBM, а так же Неформальная история разработки ПК “Истра-4816”


Источник: masterok.livejournal.com.

Рейтинг публикации:

Нравится37



Комментарии (0) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.





» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Апрель 2024    »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map