Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Нейросеть научили «оживлять» портреты на основе всего одного статичного изображения

Нейросеть научили «оживлять» портреты на основе всего одного статичного изображения


23-05-2019, 14:42 | Необычные явления / Хроника необычного | разместил: Редакция ОКО ПЛАНЕТЫ | комментариев: (0) | просмотров: (1 755)

Российские специалисты из Центра искусственного интеллекта Samsung AI Center-Moscow в сотрудничестве с инженерами из Сколковского института науки и технологий разработали систему, способную создавать реалистичные анимированные изображения лиц людей на основе всего нескольких статичных кадров человека.

 

Обычно в таком случае требуется использование больших баз данных изображений, однако в представленном разработчиками примере, систему обучили создавать анимированное изображение лица человека всего из восьми статичных кадров, а в некоторых случаях оказалось достаточно и одного. Более подробно о разработке сообщается в статье,

опубликованной

в онлайн-репозитории ArXiv.org.

Как правило, воспроизводить фотореалистичную персонализированную модуль лица человека довольно сложно из-за высокой фотометрической, геометрической и кинематической сложности воспроизведения человеческой головы. Объясняется это не только сложностью моделирования лица в целом (для этого существует большое количество подходов к моделированию), но также и сложностью моделирования определенных черт: полости рта, волос и так далее. Вторым усложняющим фактором является наша предрасположенность улавливать даже незначительные недоработки в готовой модели человеческих голов. Такая низкая толерантность к ошибкам моделирования объясняет нынешнюю распространенность нефотореалистичных аватаров, использующихся в телеконференциях.

По словам авторов, система, получившая название Fewshot learning, способна создать очень реалистичные модели говорящих голов людей и даже портретных картин. Алгоритмы производят синтез изображения головы одного и того же человека с линиями ориентира лица, взятых из другого фрагмента видео, или с использованием ориентиров лица другого человека. В качестве источника материала для обучения системы разработчики использовали обширную базу данных видеоизображений знаменитостей. Чтобы получить максимально точную «говорящую голову», системе необходимо использовать более 32 изображений.

Для создания более реалистичных анимированных изображений лиц разработчики использовали предыдущие наработки в генеративно-состязательном моделировании (GAN, где нейросеть додумывает детали изображения, фактически становясь художником), а также подход машинного мета-обучения, где каждый элемент системы обучен и предназначен для решения какой-то конкретной задачи.

Схема мета-обучения

Для обработки статичных изображений голов людей и превращения их в анимированные использовались три нейросети: Embedder (сеть внедрения), Generator (сеть генерации) и Discriminator (сеть дискримитатор). Первая разделяет изображения головы (с примерными лицевыми ориентирами) на векторы внедрения, которые содержат независимую от позы информацию, вторая сеть использует полученные сетью внедрения ориентиры лица и генерирует на их основе новые данных через набор сверточных слоев, которые обеспечивают устойчивость к изменениям масштаба, смещениям, поворотам, смене ракурса и прочим искажениям исходного изображения лица. А сеть дискриминатор используется для оценки качества и подлинности работы двух других сетей. В результате система превращает ориентиры лица человека в реалистично выглядящие персонализированные фотографии.

Разработчики особо подчеркивают, что их система способна инициализировать параметры как сети генератора, так и сети дискриминатора индивидуально для каждого человека на снимке, поэтому процесс обучения может быть основан всего на нескольких изображениях, что повышает его скорость, несмотря необходимость подбора десятков миллионов параметров.



Источник: hi-news.ru.

Рейтинг публикации:

Нравится9



Комментарии (0) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.





» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Ноябрь 2024    »
ПнВтСрЧтПтСбВс
 123
45678910
11121314151617
18192021222324
252627282930 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map