Вероятно, история сейчас переживает «картезианский период» своего развития. Однако вопрос об иерархии причинно-следственных связей уже поставлен. Известен классический пример М.Блока с падением человека в пропасть в результате неосторожного шага. Тривиальному подходу «существенно все» противопоставлен поиск конкретной причины — неосторожного шага:»И не в том дело, что именно этот антецедент был самым необходимым для данного события. Множество других были в равной степени необходимыми. Но среди всех других он выделяется несколькими очень четкими чертами: он был последним, наименее постоянным, наиболее исключительным в общем ходе вещей, наконец, в силу именно этой наименьшей всеобщности его вмешательства как будто легче всего было избежать» [25].
М.Блок и ряд его последователей предложили критический подход к доступным источникам, что тем самым превращает работу историка в своеобразное «историческое расследование». При этом традиционные приемы криминалистики и использование стандартов анализа, принятых в юридических науках, помогли получить много интересных научных результатов в этом жанре «исторического детектива». Выделение стандартных схем рассуждений и типичных модельных ситуаций позволило С.Смирнову создать жанр своеобразных «исторических шахмат» [27], обсуждаемых в нескольких задачниках по истории. Нахождение достаточно простых и красивых схем, позволяющих анализировать происходящее на различных исторических подмостках, в парадоксальной «олимпиадной» форме, выходит за рамки учебных упражнений. Это сродни рефлексии математиков и представителей естественных наук, часто приводящей к парадоксам и «красивым» задачам.
Историческая информатика в том традиционном смысле, как это, например, понимается в сборнике [28] или книге [76], расширяет возможности историка, давая инструменты для анализа фактического материала, привлечения современного статистического анализа. Однако это не означает нового качества, компьютер, по-прежнему, остается «машиной для обработки данных». Глубокое и оригинальное обсуждение методов моделирования в анализе исторических процессов показывает, что мы здесь находимся в начале пути [31-33, 75, 76]. Теоретическая история могла бы сделать следующий шаг — развить технику вычислительного эксперимента в истории. В физике, химии, технологии, где это делалось в 60-е годы, использование этой техники имело фундаментальное значение. В частности, в России начало этих работ было связано с научными школами академиков А.Н.Тихонова, А.А.Самарского и Н.Н.Моисеева.
Построение набора моделей. Огромный набор моделей, построенных на вербальном уровне, уже существует. Гегель, Маркс, Тойнби, Гумилев представляют историческое развитие достаточно ясным, логичным и самосогласованным образом. Каждая из этих концепций, по-видимому, допускает достаточно простое формализованное математическое описание. И основная проблема, веpоятно, состоит не в том, чтобы подобрать адекватный математический язык. Серьёзная междисциплинарная работа нужна, чтобы понять, что и в каких случаях применимо, какие упрощения разумны и оправданы.
Другую принципиальную проблему можно проиллюстрировать на примере использования аппарата теории катастроф в социологии, психологии, других сферах «мягкого моделирования». Предположение о том, что мы имеем дело с «типичными» катастрофами складки или сборки неконструктивно, если у нас нет процедуры измерения величин, «отложенных по осям». Нетрудно убедиться, что число моделей, для которых он решается или просто ставится, ничтожно (см., например, библиографию в книге [30]).
В свое время Л.Н.Гумилевым [8] была введена и блестяще использована для исторического анализа концепция пассионарности. Эта концепция представляется глубокой и содержательной, однако ее использование в математическом моделировании требует ответа на вопрос, каким образом пассионарность, хотя бы в принципе, может быть измерена. Получение этого ответа и требует совместной работы историков, психологов, социологов, специалистов по моделированию.
Система верификации и методика установления соответствия. Этот вопрос требует отдельного анализа и обсуждения и, вероятно, является одним из самых «больных» для специалистов, использующих математические методы в исторических исследованиях. Традиционные возражения «классических» историков сводятся к следующему:»Вы получили в точности то, что заложили и что мы и без того знали». Либо:»Модель никуда не годится, потому что мы этого не знали и получилась нелепость». За этим очевидным логическим тупиком (новое знание не может идеально соответствовать старому, потому что иначе оно не является новым) на самом деле стоит глубокая проблема. Это проблема критерия истины в таких исследованиях. На основе чего то или иное историко-математическое построение может быть принято или отвергнуто? Успехи неклассической, а позже «постнеклассической» науки, во многом связаны с наличием весьма жестких рамок, в которые должны укладываться предсказания всех вновь создаваемых физических теорий. Именно благодаря этим рамкам и удалось поставить «решающие эксперименты». Напротив, психоанализ и множество медицинских теорий обычно сталкиваются с упреками в том, что они все объясняют, но ничего не предсказывают, «не могут быть фальсифицированы» и т.д. По-видимому, эти методологические вопросы, тесно связанные с нашими сегодняшними возможностями и результатами конкретных исследований, могут быть успешно решены. Их решение, вероятно, также является важным шагом при построении теоретической истории.
Когда теоретическая история будет создана…
Проблемы жгучи, ставки впечатляющи. Мы живем в поистине интересные времена, и это вполне объяснимо: мы живем в век величайший бифуркации за всю историю человечества.
Эрвин Ласло
Допустим, что исследовательская программа, связанная с построением теоретической истории, реализована. Что это дает? Варианты ответов на этот вопрос могут, например, быть следующими.
Это приведет к аппарату для задавания вопросов. Давайте представим себе, что мы стали участниками межпланетной экспедиции на некую обитаемую, но неизвестную нам планету. Народ на той планете имеет долгую и славную историю. В экспедицию, соответственно, включены физики, химики, биологи и, разумеется, историк. Физики и химики привезут на планету не только приборы, но и конкретные исследовательские программы, «аппарат генерации вопросов». С чем прибудет историк? Какие вопросы следует задать немедленно, а с какими можно подождать лет десять? Другими словами, как отделить суть дела от несущественных деталей? Разумеется, этот мысленный эксперимент — лишь способ обострить проблемы, возникающие при стратегическом планировании в наших конкретных земных условиях.
Теоретическая история может оказаться полезной в сфере долгосрочного планирования. Одному государственному деятелю приписывают следующую крылатую фразу:»Я могу найти множество специалистов, которые берутся построить пирамиду, и не могу найти ни одного, кто знал бы, следует ли ее строить». Эта фраза отражает те суровые реальности, которые сложились к концу нашего века. Еще не так давно в рамках кдарственному деятелю приписывают следующую крылатую фразу:»Я могу найти множество специалистов, которые берутся построить пирамиду, и не могу найти ни одного, кто знал бы, следует ли ее строить». Эта фраза отражает те суровые реальности, которые сложились к концу нашего века. Еще не так давно в рамках как рыночной, так и плановой экономики, правительства, как правило, планировали развитие своих государств в пятилетней перспективе. Исчерпание многих важнейших ресурсов, ухудшение экологической ситуации, быстрый рост населения стран третьего мира, изменение политической карты мира и передел сфер влияния, тупик концепции «устойчивого развития» создают новую ситуацию. Приходится принимать в полном смысле слова исторические решения, которые могут изменить траекторию развития цивилизации, по крайней мере, на много десятков лет.
Среди множества проблем, которые здесь возникают, обратим внимание только на одну. Это так называемый «парадокс планировщика». То, что прекрасно на временах 5-7 лет, может оказаться далеко не лучшим решением на временах порядка 10-20 лет и гибельным на временах 40-60 лет. Как тут быть? Считать, следуя Ф.Хайеку, что следующие поколения сами позаботятся о себе, и нас их проблемы волновать не должны? Или действовать как-то иначе?
Теоретическая история, вооруженная опытом изучения стран и цивилизаций в кризисные переломные моменты, современными средствами теоретического исследования и методами анализа наблюдений, идущими от естественных наук и математики, могла бы сыграть здесь огромную роль.
Как «научиться хотеть»? Культура, религия, идеология, научные теории в огромной степени определяются не только текущим состоянием общества, но и его ожиданиями, долгосрочным прогнозом. В одних случаях они могут играть стимулирующую, а в других разрушительную роль. Есть все основания полагать, что история готовит нашей цивилизации много неприятных неожиданностей. Уже происходит достаточно быстрый отход от предшествующей траектории развития человечества. Анализ возможных ответов на этот вызов является сверхзадачей всей науки. Естественные науки сами по себе решать такие проблемы не могут. Масштабы ожидаемых перемен слишком велики, и очень многое должно измениться в самом человеке. Тут свое слово должны сказать междисциплинарные подходы и, может быть, теоретическая история.
Общие трудности, общие проблемы
«Мы с вами одной крови, вы и я», — сказал Маугли, произнося по-медвежьи те слова, которые обычно говорит весь Охотничий Народ.
Р.Киплинг
Еще не так давно на математику смотрели как на королеву наук, дающую образцы логики, строгости, дедуктивного мышления другим дисциплинам. Иммануил Кант формулировал свои философские утверждения в виде теорем. В самом деле, вспомним образцы, данные Евклидом. Минимальное количество основных допущений, простота и наглядность используемых математических моделей, огромные возможности для дедукции и весьма высокие требования к строгости рассуждений. Очарование и изящество классических произведений, которые доныне вдохновляют тех, кто строит математические теории.
Однако современной математике и математическому моделированию в ХХ в. пришлось столкнуться с весьма непростыми ситуациями, пришлось во многих случаях перестать быть «образцом строгости». Наряду с аналитиками, которые делают «то, что можно, и так, как нужно», появился большой отряд специалистов по прикладной математике, которым приходится делать «то, что нужно, так, как можно», и широко использовать результаты компьютерного моделирования.
За это пришлось весьма дорого заплатить. Специалисты по математическому моделированию и нелинейной динамике столкнулись с теми же трудностями и проблемами, которые стоят перед дисциплинами, изучающими сверхсложные объекты. И, в частности, перед историей. Обратим внимание на некоторые из них.
Трудность выделения параметров порядка. Появление и широкое внедрение компьютеров породило иллюзию, что «чем больше учтем, тем лучше». (Это сродни мнению, бытующему среди некоторых исторических школ, что «все существенно».) При этом построение модели сложного явления часто сравнивали со складыванием мозаики. Провал нескольких крупных исследовательских проектов показал, что так действовать нельзя. Например, американский проект «Биосфера», связанный с моделированием экологических процессов, в котором участвовало около 700 ведущих специалистов, «складывающих мозаику», привел к результатам, не допускающим какой-либо разумной интерпретации.
Приходится тем или иным способом выделять главные, ведущие переменные, к которым подстраиваются все остальные степени свободы («решать проблему агрегации» в другой терминологии). Уточнение математического описания обычно связано с построением иерархии математических моделей, что неоднократно обсуждалось [29, 34, 63, 64, 70]. Однако в моделировании, как, вероятно, и в истории, выделение параметров порядка остается скорее искусством, нежели наукой.
Появление проблемы измерения. Успехи в математическом моделировании сложных систем, как правило, связаны с анализом объективных количественных характеристик исследуемых объектов. Опыт развития математической психологии и математической географии показал, что это является далеко не простым делом [47, 49, 50]. Характерный пример дает анализ Чернобыльской аварии и ряда других катастроф. «Слабым звеном» во множестве случаев оказываются люди, а не техника. Именно их действия и реакцию следовало бы описывать и предсказывать как во множестве прикладных задач, так и в истории. Однако здесь количественное описание существенно отличается от стандартных приемов, используемых в естествознании. С помощью тестов, опросов, анализа других косвенных данных приходится часто извлекать объективную информацию о субъективных факторах. Эта проблема, присутствующая во многих математических моделях экономики, социологии, психологии, политологии и ряда других дисциплин, использующих результаты «мягкого моделирования», естественно встанет и при создании теоретической истории.
Акцент на качественном описании системы. В истории огромную роль играет выявление тенденций, возникновение новых качеств. Зачастую несущественными оказываются многие количественные характеристики исследуемых социумов. При этом качественные революционные скачки, «локомотивы истории», всегда служили предметом пристального внимания.
Но именно «анализ качеств», а не чисел и фигур, стал основным лейтмотивом множества разделов математики, родившихся в ХХ в. — топологии, теории катастроф, некоторых теорий в нелинейной динамике. И здесь мы также видим общие проблемы.
«Информационный джинн». Во множестве ситуаций принято жаловаться на недостаток информации, необходимой для конкретного анализа, принятия ответственных решений и т.д. Однако и нелинейная динамика, и историческая наука зачастую сталкиваются с прямо противоположной ситуацией. Не ясно, что делать с уже собранной информацией, что следует выделить и уточнить, а что «забыть». Типичные примеры дают данные, поступающие со спутников, с сейсмических станций, метеорологические наблюдения. Огромные массивы информации в этих важных сферах очень часто не дают ни понимания исследуемых процессов, ни возможностей для их прогноза. Громадные объемы данных вообще никогда не анализировались. Другими словами, упорядочение информации, выделение в ней «параметров порядка», анализ вопросов, которые можно задать, располагая этой информацией, выходят на первый план во многих приложениях нелинейной динамики. Можно ожидать, что скоро на эти рубежи выйдет и история. Когда «клиометрия» или «количественная история», так иногда называют направление, связанное с компьютерной обработкой исторических источников, сделает свое дело, и вста-newpage noindent нет вопрос «что дальше?», свое слово должна сказать теоретическая история.
«Исторический подход» теории бифуркаций. Одним из основных инструментов современной нелинейной динамики является теория бифуркаций.
Чтобы придать конкретный смысл понятию «бифуркация», надо понять, чем «одно» отличается от «другого» (того, что возникло после). Для простых моделей эти отличия удается выделить, их анализ для многих сложных систем — нерешенная проблема [52]. В чем-то обсуждение этих проблем «нелинейщиками» напоминает дискуссии историков об укладах, формациях, классах, «европейском» и «азиатском» пути развития. Наверное, оно похоже на поединок Геракла с Антеем, в котором последний утратил силу и мощь, оторвавшись от надежной почвы.
Характерный пример, демонстрирующий пользу «вымышленных параметров», перехода от одного класса объектов к более широкому классу систем, связан с анализом сценариев перехода от порядка к хаосу. Одним из наиболее интересных и сложных сценариев, обнаруженных к настоящему времени, является разрушение инвариантных торов. Принципиальной моделью в этой теории является отображение
yn+1 = a yn(1-yn-1). (1)
Компьютерное исследование этой модели позволило обнаружить много странных свойств этого объекта. Эти свойства удалось понять и объяснить, только рассмотрев более широкое семейство —
xn+1=yn+bxn, yn+1=ayn(1-xn), (2)
и введя «вымышленный» параметр b. (Семейство отображений (2) переходит в семейство (1) при b=0.) Может быть, создание «виртуальных миров» окажется полезным и при анализе некоторых исторических проблем?
Большой интервал характерных масштабов. Имея дело с экологическими задачами, анализом межгосударственных отношений, проблемами стратегического планирования, специалисты по математическому моделированию столкнулись с тем, что существенные процессы занимают огромный интервал временных масштабов. Иерархия примерно такова:
— катастрофы, стихийные бедствия, религиозные конфликты, использование вооруженных сил — дни-недели;
— решения политического руководства — недели-месяцы;
— изменение стереотипов массового сознания под влиянием средств массовой информации — 1-3 года;
— экономические реформы — 3-5 лет;
— изменение уровня образования, качества подготовки специалистов — 5-10 лет;
— технологические и технические нововведения — 10-15 лет;
— изменение соотношения сил различных государств, эволюция межгосударственных отношений — 20-50 лет;
— этногенез, рождение и развитие новых идеологий, мировых религий и т. д. — сотни лет.
Ключевой задачей при моделировании сложных социально-эконо-ми-чес-ких систем становится выделение определенного интервала масштабов, на которых разворачиваются исследуемые процессы. При этом приходится прибегать к определенным допущениям относительно «медленных» и «быстрых» переменных.
Отсюда вытекает иерархия пространственных масштабов, масштабов взаимодействия различных социальных групп. Но это в точности те же проблемы, которые возникают при историческом анализе, и на которые обращает внимание А.Тойнби [8].
Что нового на чаше весов?
Резюмируя предыдущее, скажем, что известные раньше явления систематизируются все лучше и лучше. Но и новые явления требуют себе места…Тут целый мир, о существовании которого никто и не догадывался.
А.Пуанкаре
Исследователи очень часто полны радужных надежд и склонны составлять наполеоновские планы. Однако обычно существует противоречие между благими научными намерениями и средствами, имеющимися для их реализации. Поэтому приходится взвешивать. Класть на одну чашу весов ожидаемые результаты и усилия, которые можно вложить, на другую — инструменты и подходы, которые существуют или могут быть развиты. Итак, что же нового на эту чашу весов сегодня может положить нелинейная динамика?
Вероятно, следовало бы обратить внимание на несколько результатов.
Алгоритмы выделения параметров порядка. Основой синергетики и нелинейной динамики является концепция параметров порядка [42]. Эта концепция за последние двадцать лет прошла большой путь от «символа веры», который разделяли в основном физики, до нового раздела математики — теории инерциальных многообразий [51]. В этой теории для большого класса систем, имеющих бесконечно много степеней свободы, доказано существование конечного набора параметров порядка, определяющих поведение изучаемых объектов на больших характерных временах. Оказалось, что за фасадом исключительно сложных, хаотических явлений действительно скрывается внутренняя простота.
Однако, несмотря на большое значение этих принципиальных результатов, гораздо важнее было бы построение алгоритмов, позволяющих устанавливать взаимосвязи между этими параметрами. Например, нахождение связывающей их системы обыкновенных дифференциальных уравнений (инерциальной формы). Исследования в этом направлении интенсивно развиваются, и появились первые сообщения об обнадеживающих результатах.
Большие усилия в последние годы вкладывались в алгоритмы так называемой реконструкции аттракторов [18, 52]. Это новый класс методов обработки временных рядов, порождаемых детерминированными динамическими системами либо системами с малым шумом. Такие методы позволяют выяснить, насколько сложной должна быть модель изучаемого явления (сколько в ней должно быть степеней свободы или параметров порядка), насколько велик временной интервал, на котором можно прогнозировать поведение изучаемого объекта. Возможно, эти методы окажутся полезными при анализе социальных и исторических процессов. В ряде случаев они оказались очень эффективными в задачах медицинской и технической диагностики.
Изучение неустойчивых решений, определяющих будущее. Допустим, что важная часть проблемы решена, и параметры порядка выделены. Это не является столь уж невероятным, например, в макроэкономике эта задача иногда успешно решается. Кривые спроса и предложения, кривые производственных возможностей [15, 63, 64] связаны с разумным решением таких проблем на определенном уровне.
Допустим, что развита теория, показывающая, каким образом будут меняться эти величины в зависимости от времени (параметр t на рис.5). Говоря математическим языком, у нас появилась возможность построить бифуркационную диаграмму для исторических процессов, включая неустойчивые траектории.
Современная теория бифуркаций показывает, что эти «вещи в себе», которые также должны быть в центре внимания теоретической истории, подчас приобретают решающее значение. Неустойчивые и устойчивые ветви могут «схлопываться», «коллапсировать», что приводит к катастрофическим скачкам, к принципиальным изменениям в жизни общества, происходящим за очень короткий срок.
Перелистав страницы А.Дж.Тойнби или Л.Н.Гумилева, нетрудно найти много эпизодов не только из жизни полисов, где развитие шло в соответствии со сценарием, представленным на диаграмме (рис.2-5а). Диаграмма на рис.5б может соответствовать кризису «общества потребления», имеющего весьма высокие жизненные стандарты.
Однако, пожалуй, гораздо интереснее и важнее анализировать и предсказывать ситуации, представленные на рис.5в. Эта картина соответствует, например, разрушению окружающей среды при использовании традиционных технологий природопользования, резкому понижению жизненных стандартов и выходу с течением времени на уровень возобновляемых ресурсов. Две верхние изолированные ветви (устойчивая и неустойчивая) соответствуют, например, новой технологии природопользования. И здесь становится ясна большая польза диаграмм, подобных нарисованным. Допустим, что мы никоим образом не представляем кривой своего исторического развития. Тогда нас ожидают катастрофы, бедствия и серьезные неприятности в точках l3 и l4 (см. рис.5в).
Рис. 5. Типичные бифуркационные диаграммы, допускающие наглядную историческую интерпретацию.
Но, если мы имеем развитый и эффективный аппарат прогноза, то ситуация существенно меняется. Тут вполне уместна пословица «предупрежден, следовательно вооружен». Тут мы знаем «поворотный пункт» l*, где мобилизация ресурсов и усилий с целью перейти на верхнюю ветвь разумна и оправдана. Позже для этого попросту может не оказаться возможностей.
Здесь ситуация очень похожа на ту, которая сложилась у геофизиков, занимающихся прогнозом землетрясений: чем более обоснован и достоверен прогноз, тем более масштабные и энергичные меры можно предпринимать, чтобы уменьшить ущерб от стихийного бедствия [39].
Обратим внимание на попытку классификации и терминологию, введенную для бифуркаций в ходе исторического процесса [62]:<<Сами нестабильности могут быть различного происхождения. Они могут возникать вследствие недостаточной ассимиляции или плохого применения технологических инноваций. Такого рода нестабильности служат примерами того, что я называю «T-бифуркациями». Толчком к их возникновению могут быть и внешние факторы, такие как гонка вооружений, и внутренние факторы, такие как политические конфликты, образующие «C-бифуркации». Нестабильности могут быть вызваны крушением локального экономико-социального порядка под влиянием учащающихся кризисов, порождающих «E-бифуркации». Независимо от своего происхождения, нестабильности с высокой вероятностью распространяются на все секторы и сегменты общества и тем самым открывают двери быстрым и глубоким изменениям>>.
Изменение поля возможностей и эволюция областей притяжения аттракторов. Анализ развития системы высшего образования, в котором одному из авторов довелось принять участие [1, 2, 53], а также работа с моделями теории нейронных сетей, имитирующих элементы мышления [41, 54], помогла увидеть общую для многих задач нелинейной динамики проблему. Эта проблема может стать одной из ключевых при построении теоретической истории. Проблема связана с изменением областей притяжения аттракторов исследуемых систем.
В нелинейной динамике принципиальную роль играют притягивающие множества в фазовом пространстве. Формально они описывают поведение исследуемого объекта на больших временах. В теории нейронных сетей они соответствуют запомненным образам, которые следует распознать. В ряде междисциплинарных исследований аттракторам сопоставляются предельные состояния общества. Иногда их трактуют как «цели развития» [72, 73]. До середины восьмидесятых годов именно аттракторы и были в центре внимания специалистов по нелинейной динамике [18, 81].
Рис. 6. Метаморфоза области притяжения аттрактора A приводит к изменению «цели» исследуемой системы.
Однако сейчас акценты существенно меняются. На арену все чаще выходят множества в фазовом пространстве, называемые областями притяжения аттракторов. Пусть некоторое множество A (например, особая точка, как на рис.6) является аттрактором. Если начальная точка в фазовом пространстве, например, описывающая состояние общества, принадлежит его области притяжения, то траектория, начинающаяся в ней, с течением времени стремится к аттрактору A. Область G1 показывает, насколько существенен этот аттрактор, как много траекторий он «притягивает». Обычно рассматривают не одну модель (динамическую систему), а семейство моделей, зависящих от параметра (например, состояния окружающей среды или какой-нибудь другой «медленной переменной»). При этом не так давно было открыто интересное явление, — метаморфозы областей притяжения аттрактора — катастрофическое, скачкообразное изменение этой области при малом изменении параметра.
Приведем простой «околоисторический» пример, показывающий, что это может означать. Допустим, что при данном значении параметра наша траектория, выходящая из точки B, стремится к аттрактору A. Именно аттрактор A определял, как иногда говорят историки, тенденции развития. Будучи предметом рефлексии общества, эти тенденции порождали определенные религиозные верования, философские системы, научные теории. Но ситуация изменилась, область притяжения аттрактора A уменьшилась, и точка C, в которую мы пришли из точки B, с течением времени (см. рис.6б) уже не принадлежит, к нашему сожалению, области притяжения аттрактора A. Внешне, если иметь в виду ближайшую перспективу и локальную окрестность нынешного состояния, почти ничего не изменилось. Однако в историческом, долговременном плане перемены оказываются радикальны — у общества изменилось будущее, изменилась «цель развития». Наверное, анализ, с этой точки зрения, отдельных периодов в истории различных цивилизаций был бы любопытен.
bf Нейросистемы, поиск закономерностей, новая техника «работы с незнанием». Одна из наиболее трудных задач как для историков, так и для специалистов по математическому моделированию — поиск причинно-следственных связей. Причем проблема многократно усложняется, если мы имеем дело с редкими, но исключительно важными событиями. Тут мы, с одной стороны, не знаем законов, определяющих ход исследуемых процессов, с другой стороны, не удается опереться на статистические методы анализа.
В настоящее время в одних областях разрабатываются, в других эффективно применяются компьютерные системы нового поколения, одной из основных задач которых является поиск закономерностей [40, 41]. Эти системы, получившие название нейрокомпьютеров или нейросистем, имитируют некоторые важные особенности работы мозга. Это позволяет не писать программы, определяющие действия компьютера для всех ситуаций, с которыми он может встретиться, а обучать его, предъявляя набор примеров или образцов. Очень быстрый прогресс в этой области, растущие масштабы использования нейросистем в экономике и банковском деле вселяют надежду на то, что вскоре эта технология компьютерного анализа будет использоваться и в исторических исследованиях.
Ляпуновские показатели, горизонт предсказуемости, циклы этногенеза. Одним из фундаментальных результатов нелинейной динамики является осознание принципиальных ограничений в области получения прогноза даже для простейших механических, физических, химических систем. Такие системы обладают чувствительностью к начальным данным. То есть, рассматривая две близкие траектории’(t)»(t) динамической системы
d/dt = (),’(0) =,»(t) = +, (3)
для множества моделей можно численно проверить, а для некоторых случаев строго доказать, что расстояние между бесконечно близкими вначале траекториями в среднем экспоненциально растет
d(t) = |’(t) -»(t)| ~ ||exp(lt) .
Величина l, называемая ляпуновским показателем, характеризует горизонт предсказуемости — время, на которое можно дать прогноз поведения исследуемой системы. Это ограничение представляется столь же глубоким ограничением, характеризующим наш мир, как невозможность создания вечных двигателей, движения со сверхсветовыми скоростями, бесконечно точного одновременного измерения координаты и импульса микрочастицы.
Рис. 7. Характерный вид проекции хаотического аттрактора в системе небольшой размерности. «Клубок траекторий» выглядит достаточно упорядоченным.
Разумеется, это не означает, что после этого времени мы ничего не знаем о системе. Образно говоря, если предельное множество представляет собой «клубок» в фазовом пространстве (см. рис.7), то мы по-прежнему достоверно знаем, что точка, характеризующая состояние системы, принадлежит этому «клубку», а не уйдет куда-нибудь в другую область фазового пространства. Однако неизвестно, в каком месте «клубка» будет находиться эта точка.
«Горизонт предсказуемости» можно трактовать и иначе — он дает характерный временной масштаб, определяющий, на каких временах будут сказываться изменения начальных данных на величину e. Он показывает, насколько быстро будут «забыты» системой последствия наших действий, если мы можем изменить состояние последней на e. По существу, горизонт прогноза характеризует «память» изучаемого объекта.
Например, по мнению большинства экспертов, тот факт, что для динамической системы, описывающей состояние атмосферы, l ~ 1/неделя, приводит к принципиальной невозможности получить среднесрочный прогноз погоды.
С помощью динамических систем вида (3) описывались и такие процессы, имеющие непосредственное отношение к истории, как гонка вооружений [65, 66]. Модели такого типа, учитывающие экономические возможности страны и стоимость вооружений, хорошо описывают неустойчивость, возникшую в этой области накануне первой мировой войны [65]. С помощью аналогичных моделей анализировались в свое время последствия реализации сверхдержавами программ, связанных с выводом стратегических оборонных вооружений и средств борьбы с ними в космос [66]. В частности, на основе этих моделей было показано, что реализация таких проектов не повысит безопасность сторон. Была установлена связь между ляпуновскими показателями и концепцией стратегической стабильности. Оказалось, что нестабильность определяется наличием положительных ляпуновских показателей и переходом в режим динамического хаоса.
В этой связи возникает принципиальный вопрос, который необходимо было бы выяснить, приступая к моделированию конкретных исторических процессов. Каковы должны быть положительные ляпуновские показатели в моделях таких явлений? Какова «глубина памяти» в исторических событиях? Было бы естественно ожидать, что мы имеем дело с диссипативной динамической системой вида (3), которая «забывает» детали начальных данных и имеет ляпуновские показатели порядка 1/век. Здравый смысл подсказывает, что негоже королю в провале своей политики и неудачах королевства винить реформы прапрадеда. В конце концов, и у него самого, и у его отца и деда были возможности внести коррективы.
В этой связи особый интерес представляет и диаметрально противоположная точка зрения, недавно высказанная С.Смирновым [58]. В соответствии с ней существует вековой ритм этногенеза, характеризующий его фазы, выделенные Л.Н.Гумилевым — 1,5 — 2 — 2,5 — 3 столетия, а также большой четырехвековой цикл. По его мнению, этногенез можно сравнить с волновым процессом, аналогичным распространению солитонов. То есть речь идет о системе с очень большой или бесконечной памятью. Такой подход позволяет, например, составить «расписание российских этногенезов», в которых исторически важные события, связанные причинно-следственными связями, следуют с определенным временным интервалом. Это приводит, например, к такой причинно-обусловленной цепи событий:
<<А: серия, инициированная ударом арабов по Хазарии: 1565-1581-1730-1985-??? консорций: оборона Пскова и начало покорения Сибири; этнос: обрыв Петровских «реформ сверху», начало их усвоения; надлом: распад партократии, начало плюрализма>>.
Предложенная схема представляется достаточно экзотической. Волны солитонного типа характерны для нелинейных сред, для которых существует достаточно большое или бесконечное число законов сохранения. Не видно веских причин, чтобы считать, что в мировой истории мы сталкиваемся именно с этой ситуацией. Кроме того, было бы разумно предположить, что «плюрализм» практически не связан с разгромом хазар в VIII в.
Тем не менее, сколь бы парадоксальной не представлялась гипотеза С.Смирнова, принципиально важно иметь возможность ее проверить. Вероятно, тут есть два пути. Первый — построение адекватных имитационных моделей ряда исторических процессов. Затем, если они будут иметь вид динамической системы (3), — оценка ляпуновских показателей, либо каких-то других величин, показывающих, как быстро будут «забыты» возмущения. Здесь-то и должна идти речь о близких траекториях, об альтернативах, о поле путей развития. Второй способ — попытка более объективно оценить «важность» или «значение» исторических событий и ранжировать их причинно-следственные связи, исходя из представлений гуманитарных наук. Возможно, опыт работы с достаточно субъективными оценками, накопленный в математической психологии или при создании экспертных систем, здесь окажется очень полезным.
Нетрудно предположить, что работы в этом направлении будут критиковаться как «справа», так и «слева». Точка зрения на развитие общества, как на поведение управляемой динамической системы, согласуется с самой идеей философии истории. Однако можно возразить, что динамика и объективные возможности не очень существенны, а должен преобладать игровой аспект. При таком взгляде, характерном для исторических романов, решающими оказываются поступки королей и интриги временщиков, а не развитие промышленности или переход к новым технологиям земледелия. Математическим выражением этого взгляда является трактовка истории с точки зрения классической теории игр.
Другое отрицание предлагаемого подхода может быть, например, таково: «Динамическая система слишком быстро изменяется в связи с прогрессом технологий, используемых обществом. Поэтому теоретический анализ моделей вида (3) в истории не нужен. Декорации слишком быстро меняются, поэтому у актеров нет возможности сыграть похожие спектакли». Действуя в традиции исторического материализма [10], в которой центральным является представление об исторической формации, и предполагая быстрый рост производительных сил, мы вполне логично приходим к этому выводу.
Контраргументами здесь могут быть длительные периоды весьма медленных технологических изменений. Кроме того, существует весьма большая вероятность, что обострившиеся экологические проблемы и исчерпание ресурсов готовят нашей цивилизации резкое замедление технологического развития. Наконец, множество схожих эпизодов в развитии «этносов», по терминологии Л.Н.Гумилева, или «цивилизаций», по терминологии А.Тойнби, показывают, что многие «спектакли» в истории были аналогичны. Но решающим аргументом здесь могут стать только глубокие содержательные математические модели, связанные с конкретной исторической реальностью.
Моделирование динамики расселения в историческом контексте. Излюбленной темой многих выдающихся историков было влияние географической среды на развитие и исторические судьбы народов и государств. И действительно, изменение климата, стихийные бедствия в одних случаях существенно влияли на судьбы этносов, а в других, по мнению А.Тойнби — становились причиной того, что цивилизация оказывалась «остановленной».
Однако до последних лет анализ этого влияния проводился на уровне общих, достаточно уязвимых рассуждений. До недавнего времени и анализ формирования систем расселения также трактовался весьма субъективно и упрощенно. Преобладало мнение о полной предопределенности на одних исторических временах, например, при анализе формирования промышленных, культурных, политических центров. Такой подход был типичен при обсуждении вопроса, почему именно Москва стала «центром кристаллизации» окрестных княжеств. На других характерных временах, связанных с рождением и интенсивным развитием городов, в отечественной и зарубежной литературе бытовало мнение об определяющей роли субъективного фактора. В таких работах подразумевалась возможность достаточно детально планировать градостроение и выражались надежды, что эти планы будут реализованы в прекрасном соответствии с предлагаемыми проектами. Последнее заблуждение многократно опровергалось при строительстве новых городов. Процессы обычно шли совсем не так, как планировалось. Принципиальному изменению взглядов в этой области способствовал анализ динамики систем расселения с точки зрения теории самоорганизации и нелинейной динамики, а также использование в этих задачах методов точных наук. За последнее десятилетие было предложено несколько математических моделей развития динамики систем расселения, углубляющих и развивающих представление социально-экономической географии [46-48].
Даже анализ простейших моделей [61] показал, что нет дилеммы — полная предопределенность, не допускающая вмешательства случая, или, напротив, полная управляемость и определяющая роль субъективного фактора. Как правило, локальные характеристики возникающих городов или других населенных пунктов могут меняться в широком интервале масштабов. В то же время глобальные характеристики системы расселения, как целого, оказываются вполне предсказуемыми.
Естественно, математическое моделирование освоения территории на временах 10-30 лет относится к описанию развития государств в течение веков, как прогноз погоды и анализ климатических изменений. Это связанные, но существенно различные задачи.
Тем не менее созданный арсенал математического описания динамики расселения дает возможность для построения нового поколения моделей, описывающих влияние среды на жизнь и деятельность людей в историческом контексте. При построении теоретической истории этими возможностями было бы разумно воспользоваться.
Математический аппарат теоретической истории и лезвие Оккама. Наверное, моделирование почти во всех нетрадиционных областях прошло через искус собственной уникальности и исключительности. Одно из проявлений этого — стремление использовать новый достаточно сложный и экзотический математический аппарат, — нечеткие множества, фрактальную геометрию, методы квантовой теории поля и т.д., либо создавать свой, совершенно оригинальный. Вероятно, это стало столь же модно, как уповать на «безумные идеи», значение которых обычно очень преувеличивают. Этот искус проходит и математическое моделирование исторических процессов.
Источник: spkurdyumov.ru.
Рейтинг публикации:
|