ОКО ПЛАНЕТЫ > Космические исследования > Человек на Луне! Дозы радиации при полете на Луну

Человек на Луне! Дозы радиации при полете на Луну


5-01-2014, 19:11. Разместил: Редакция ОКО ПЛАНЕТЫ

 

Для определения доз радиации при полете на Луну мы рассмотрели солнечный ветер и потоки протонов и электронов; солнечные вспышки, которые  во время максимумов активности вместе с рентгеновским излучением Солнца резко повышают радиационную опасность для космонавтов; галактические космические лучи (ГКЛ), как  наиболее высокоэнергетическую составляющую корпускулярного потока в межпланетном пространстве (150—300 мбэр в сутки); так же коснулись радиационного пояса Земли (РПЗ). Было указано, что  для космонавтов РПЗ один из наиболее опасных факторов на трассе сообщений Земля-Луна.
 
Определим дозы радиации при прохождение радиационных поясов, а так же учтем радиационную опасность солнечного ветра.  Воспользуемся общепринятой моделью радиационного пояса Земли AP-8 min (1995 г.).



ПРОТОННАЯ СОСТАВЛЯЮЩАЯ РАДИАЦИОННОГО ПОЯСА ЗЕМЛИ
На рис. 1 приведено распределение протонов различных энергий в плоскости геомагнитного экватора. По оси абсцисс отложен параметр L в радиусах Земли, по оси ординат - плотность потока протонов в см-2 с-1. На этом рисунке представлены усредненные по времени значения плотности потоков протонов по данным советских и зарубежных авторов, относящиеся к периоду I96I-I975 гг [48].

Распределение протоны в радиационном поясе Земли
Рис. 1. Усредненные по времени профили плотности потоков протонов в плоскости геомагнитного экватора (цифры у кривых соответствуют нижнему пределу энергии протонов в МэВ).

 

На рис. 2 приведены результаты последних исследований состава и динамики протонной составляющей радиационного пояса Земли, выполненных на искусственных спутниках Земли и орбитальных станциях [50].

 

Распределение протонов в радиационном поясе Земли

Рис. 2. Распределение  интегральных потоков протонов в плоскости геомагнитного экватора. L - расстояние от центра Земли, выраженное в радиусах Земли. (Цифры у кривых соответствуют нижнему пределу энергии протонов в МэВ).

 

Места приводнения Аполлонов относительно радиационного пояса

Рис. 3. Меридиональное сечение радиационного пояса Земли и места приводнения Аполлонов. Оболочки L = 1-3 - внутренняя часть пояса РПЗ; L = 3,5-7 - внешняя часть РПЗ; L равен радиусу Земли. Красными точками обозначены места приводнения Аполлон 8, 10, 11, 12, 13, 14, 15, 16, 17, находящиеся вблизи геомагнитного экватора.

Воспользуемся формулой для расчета эквивалентной дозы радиации за единицу времени, которую человек получает в Космосе для кожи и внутренних органов в зависимости от толщины внешней защиты и ионизирующего излучения. В таблице 1 приведены эквивалентные дозы радиации, которые получает астронавт при двукратном прохождении внутреннего протонного РПЗ, находясь в командном модуле Apollo (7,5 г/см2).

 

Табл. 1. Эквивалентные дозы радиации, 
полученные кожей и внутренними органами астронавта
с учетом защиты командного модуля Apollo
при прохождении внутреннего протонного РПЗ.

 

энергия протонов,      МэВ плотность потока,       частиц/(сек см2) время пролета      рад. пояса; мин эк. доза      радиации в ком.  модуле Apollo (7,5 г/см2),      Зиверт
кожа вн. органы на глуб.  1      см вн. органы на глуб. 10 см
1000 10 10 0,00 0,00 0,00
500 100 20 0,19 0,19 0,17
200 1000 20 0,60 0,59 0,40
170 5000 20 2,23 2,09 1,10
105 8000 20 2,00 1,65 0,45
50 10000 33 0,27 0,16 0,00
30 20000 40 0,00 0,00 0,00
20 70000 45 0,00 0,00 0,00
      ИТОГО:5,29 ИТОГО:4,68 ИТОГО:2,12
* Более точный расчёт дозы радиации связан с учётом пика Брэгга; увеличит значение дозы радиации в 1,5-2 раза.

 

Вариации протонов в радиационном поясе ЗемлиВо время магнитных бурь наблюдаются значительные вариации высокоэнергетичных протонов. Появление нового мощного пояса протонов на L~2.5 было зарегистрировано на ИСЗ CRRES 24 марта 1991 г.. В момент гигантского внезапного импульса геомагнитного поля на L~2.8 сформировался новый пояс протонов, эквивалентный стабильному внутреннему поясу, имеющему максимум на L~1.5.
На рис. 4. показаны радиальные профили радиационных поясов для протонов с Ер=20-80 МэВ и электронов с Ее>15 МэВ, построенные по данным измерений на ИСЗ CRRES до события 24 марта 1991 г. (день 80), через три дня после образования нового пояса (день 86) и через ~6 месяцев (день 257).  Видно, что потоки протонов расширились более чем в два раза, а потоки электронов с Ее>15 МэВ превысили спокойный уровень почти на три порядка величины. В дальнейшем они регистрировались до середины 1993 г.
Аполлонам  17 (последняя высадка на Луну) за полгода до старта предшествовало три мощных магнитных шторма - 17-19 июня, 4-8 августа после мощного солнечно-протонного события, 31 октября по 1 ноября 1972 гг.. Это же касается Аполлона 8 (первый облёт Луны с человеком на борту), которому предшествовал мощный магнитный шторм за два месяца,  30-31 октября 1968 гг.. Очевидно, следовало ожидать значительное расширение протонного пояса и увеличение дозы радиации до 10 Зивертов. Это смертельная доза радиации для человека.

Для потоков протонов существует высотный ход интенсивности протонов, который  может быть записан в виде:

 

J(B) = J(Bэ)(BЭ/B)n
где В и В - напряженность магнитного поля в искомой точке и на экваторе, a J(В) и J(Вэ) - интенсивности как функции В и Вэ; n=1,8-2 [50].
Например, для протонов в плоскости геомагнитного экватора на широтах λ~30° (В/Вэ=3) и λ~44° (В/Вэ=10) значение доз радиации протонной составляющей уменьшится, соответственно, в 10 и 100 раз.

 

И если на траектории Земля-Луна полёт по легенде НАСА проходил выше  геомагнитной широты 30 градусов, тогда, согласно универсальному высотному ходу интенсивности потоков протонов, дозы радиации можно уменьшить на порядок. Однако, возвращение на Землю и приводнение было вблизи геомагнитного экватора (Аполлон 12 и Аполлон 15 - 0-2 градуса северной геомагнитной широты, с учётом ежегодного смещения магнитных полюсов).  Дозы радиации будут соответствовать максимальным значениям.

Прохождение протонного радиационного пояса Земли вызывает эффект на три порядка выше официальных доз радиации для Аполлонов. Результатом является острая лучевая болезнь, старт к Луне по схеме НАСА после магнитных штормов - это 100% летальный исход. Реальные полученные дозы радиации будут много выше, чем официальные НАСА.
Очевидно, высадка американцев - это придуманная легенда. К сожалению, данная очевидность, требует самых основательных и самых упорных доказательств. Ибо слишком многим недостаёт глаз, чтобы видеть её (Ф. Ницше).



ЭЛЕКТРОННАЯ СОСТАВЛЯЮЩАЯ РАДИАЦИОННОГО ПОЯСА ЗЕМЛИ
Внешний пояс радиации открыт советскими учеными, расположен на высотах от 9000 до 45000 км. Он намного шире внутреннего (распространяется на 50° к северу и на 50° к югу от экватора). Электронная компонента радиационных поясов испытывает значительные пространственные и временные вариации в зависимости от трех параметров: местного времени, уровня геомагнитного возмущения и фазы цикла солнечной активности. Максимальная поглощённая доза, создаваемая внешним поясом за один час, может составить громадную величину — до  100  Грей. Проблема защиты от радиации внешнего пояса менее сложная, чем проблема защиты от радиации внутреннего пояса. Внешний пояс состоит в основном из электронов  невысокой энергии, от которых защищают обычные материалы обшивки космического корабля. 
Однако, при такой защите создается жесткое и мягкое рентгеновское излучение (эффект "рентгеновской трубки"). Рентгеновское излучение является ионизирующим и глубоко проникающим при прочих равных условиях для других видов излучения. Полёт через радиационный пояс на пути к Луне и обратно длится около 7 часов.  Аполлон 13 по легенде НАСА вовсе "возвращался" в лунном модуле с толщиной защиты в пять раз меньше, чем для командного модуля. В течении этого времени излучение воздействует на ткани живых организмов, может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей, наконец, является мутагенным фактором.

Воспользуемся следующими данными и оценим дозы радиации.

Ниже представлены усредненные по времени и по всем значениям долготы профили интегральной интенсивности электронов различных энергий для (а) - минимума солнечной активности, (б) - для эпохи максимума [48].

Профили электронов в радиационном поясе Земли

Рис. 4. Усредненные во времени и по всем значениям долготы профили интенсивности электронов различных энергий на геомагнитном экваторе. Цифры у кривых соответствуют энергии электронов в МэВ. (а) и (б) - для эпох минимума и максимума солнечной активности.


Рисунок показывает, что в эпоху максимума солнечной активности доза радиации, создаваемая внешним поясом, возрастает в 4-7 раза.  Напомним, что 1969 - 1972 был год пика 11-летней солнечной активности.
Как и для протонов, для электронной составляющей РПЗ существует универсальный высотный ход, n=0,46 [50]. Высотный ход для электронов менее критичен, чем для протонов. Например, для электронов на широтах λ~30° (В/Вэ=3) и λ~44° (В/Вэ=10) значение доз радиации электронной составляющей уменьшится, соответственно, в 1,7 и 3,1 раз. Это значит, что по схеме НАСА полёта к Луне и возвращения на Землю Аполлоны никак не могут миновать электронную составляющую РПЗ.

Результаты расчета дозы радиации и используемые характеристики электронной составляющей РПЗ приведены в таблице 2.

Табл. 2. Характеристика электронной составляющей РПЗ,
эффективный пробег электронов в Al,
время пролета РПЗ Аполлонами к Луне и при возвращении на Землю, отношение удельных
радиационных и ионизационных потерь энергии,
коэффициенты поглощения рентгеновских лучей для Al и воды,
эквивалентная и поглощенная доза радиации*.

Данные потоков электронов в РПЗ и время пролётов Apollo

Доза радиации для Apollo от электронной составляющей РПЗ

 E, МэВ проб в Al, см поток, /см2сек1 Дж/м2сек врем полет,  *103 сек Энер,  Дж/м2 доля рентг, % коэф ослаб в Al, см-1 коэф
ослаб
в орг,
см-1
Команд модуль Apollo Лунный модуль Apollo
0,05 0,002 6*107  0,00480 12 57,6 0,082 0,99 0,61 0,0000 0,0036
0,1 0,006 3*107 0,00480 14 67,2 0,164 0,46 0,46 0,0035 0,0153
0,3 0,027 1,5*107 0,00720 15 108,0 0,492 0,28 0,32 0,0426 0,0887
0,5 0,056 8*106 0,00640 12 76,8 0,82 0,23 0,26 0,0611 0,1091
1 0,151 1,5*106 0,00240 10 23,0 1,64 0,167 0,19 0,0448 0,0698
1,8 0,311 3*105 0,00086 8 6,910 2,952 0,121 0,14 0,0256 0,0363
3 0,551 8*104 0,00038 6 2,304 4,92 0,096 0,11 0,0150 0,0196
20 3,887 103 0,00003 1 0,032 32,8 0,057 0,05 0,0011 0,0014
 

 

Итого:
0,194 Зв
Итого:
0,345 Зв
Итого:
19,38 рад
Итого:
34,55 рад
*Прим. - интегральный подсчет увеличит итоговые дозы радиации на 50-75%.

Результаты показывают, что обычная защита КА в  тысяч раз снижает радиационное воздействие электронной компоненты радиационных поясов. Полученные значения дозы радиации не опасны для  жизни космонавтов.  Основной вклад в дозы радиации вносят электроны с энергией 0.3-3 МэВ, которые генерируют жесткое рентгеновское излучение.

Отметим обстоятельство, что радиационный эффект на 1-2 порядка выше, чем даёт официальный доклад НАСА для миссий Аполлонов. Так для Аполлон 13 значение поглощенной дозы составляет 0,24 рад. Расчёт даёт значение  ~34,5 рад, это в 144 раз больше. При этом радиационный эффект увеличивается почти в два раза при уменьшении эффективной защиты с 7,5 до 1,5 г/см2, тогда как доклад  НАСА указывает на обратное. Для Аполлон 8 и Аполлон 11 официальные дозы радиации составляют, соответственно, 0,16 и 0,18 рад. Расчет дает 19,4 рад. Это в 121 и 108 раз меньше, соответственно. И только для Аполлон 14 официальные дозы радиации составляют 1,14 рад, что в 17 меньше расчетного.

Для электронной составляющей РПЗ существует сезонные вариации. На рис. 5 представлены потоки релятивистских электронов за один пролет пояса по данным ИСЗ ГЛОНАСС и геомагнитные индексы Кр и Dst за 1994-1996 гг. Жирные линии представляют результаты сглаживания измерений. Представленные данные демонстрируют хорошо заметные сезонные вариации: потоки электронов весной и осенью в 5-6 раз больше минимальных – зимой и летом.

Сезонные вариации потоков электронов в РПЗ

Рис. 5. Временной ход проинтегрированных за пролет спутника ГЛОНАСС через радиационный пояс потоков электронов с энергией 0.8-1.2 МэВ (флюенсов) за период с июня 1994 г. по июль 1996 г. Приведены также индексы геомагнитной активности: суточный Кр- индекс и Dst-вариация. Жирные линии – сглаженные значения флюенсов и Кр-индекса. 


Запуск и посадка Аполлон 13 состоялись весной, соответственно, 11.04.1970 и 17.04.1970. Очевидно, потоки электронов будут в несколько раз выше, чем усредненные. Это значит, что значение поглощенной дозы радиации вырастит в несколько раз и составит 43-52 рад. Это в 200 раз больше официальных данных.  Аналогично, для Аполлон 16 (запуск и посадка, соответственно, 16.04.1972 и  27.04.1972) доза радиации составит 25-30 рад.

Во время магнитных бурь происходит изменение интенсивности электронов в РПЗ иногда в 10-100 раз и более в эпоху максимума солнечной активности.  В этом случае дозы радиации могут возрасти до опасных значений для жизни космонавтов и составить 10 Зивертов и более. Как правило, в эти периоды преобладает инжекция частиц, особенно при сильных магнитных возмущениях. На рис. 6 приведены профили интенсивности электронов различных энергий в спокойных условиях (рис. 6а) и через 2 дня после магнитной бури 4 сентября 1966 года (рис. 6б) [48].

Радиационный пояс до и после магнитной бури

Рис. 6. Профили потоков электронов в спокойных условиях за шесть дней до бури (а) и спустя два дня после магнитной бури (б). Цифры у кривых-энергий электронов в кэВ.


Одним из полетов к Луне по отчёту НАСА был Аполлон  14: Алан Шепард, Эдгар Митчелл, Стюарт Руса 31.01.1971 — 09.02.1971 GMT / 216:01:58 Третья высадка на Луну: 05.02.1971 09:18:11 — 06.02.1971 18:48:42 33 ч 31 мин / 9 ч 23 мин 42.9. 27 января за несколько дней до старта  Аполлон началась умеренная магнитная буря, перешедшая в малую бурю 31 января [49], которые вызвала солнечная вспышка в направлении к Земле 24.01.1971 гг.. Очевидно, повышение уровня радиации можно ожидать в 10-100 раз или 1-10 Зивертов (100-1000 рад). В  случае дозы радиации 10 Зивертов  радиационный эффект при полете через пояс Ван-Алена  - 100% летальный исход.

Результаты воздейсвтия радиации

Рис. 7 Результат воздействия радиации. Хиросима и Нагасаки.



слева направо: Стюарт Руса, Алан Шепард, Эдгар МитчеллИтогами полета Аполлон 14  было:  1) продемонстрирована отличная физическая подготовка и высокая квалификация астронавтов, в частности — физическая выносливость Шепарда, которому на момент полёта было 47 лет; 2) никаких болезненных явлений у астронавтов не наблюдалось; 3) Шепард прибавил в весе полкилограмма (первый случай в истории американской пилотируемой космонавтики); 4) за время полёта астронавты ни разу не принимали медикаментов; 5) продемонстрированы преимущества исследования Луны с участием астронавтов по сравнению с полётами автоматических аппаратов...

На рис. 8 показано изменение профилей интенсивности электронов с энергией 290-690 кэВ до и после магнитной бури.

Ралиационный пояс после магнитной бури

Рис. 8. Плотности потока электронов с энергией 290-690 кэВ для различных моментов времени на оболочках радиационного пояса Земли от 1,5 до 2,5. Цифрами у кривых обозначено время в сутках, прошедшее после инжекции электронов.


Рис. 8 показывает, что через 5 суток плотность потоков электронов с энергией 290-690 кэВ значительно расширена и в 40-60 раз выше, чем до магнитной бури, через 15 суток - в 30-40 раз выше, через 30 суток - в 5-10 раз больше, через 60 суток - в 3-5 раз  больше.  Только через 3 месяца электронная составляющая РПЗ приходит к равновесному состоянию.
Значительные пространственные и временные изменения  потоков электронов во всей области поясов в течение одного года показаны на рис. 9.

Поведение электронов в радиационном поясе Земли

Рис. 9. Изменения потоков электронов c энергией >400 кэВ в радиационных поясах в течение 1 года. Оттенки серо-чёрного цвета демонстрируют изменение потока частиц: чем чернее оттенок, тем больше поток частиц. Видно, что наибольшие потоки частиц наблюдаются во время магнитных бурь (геомагнитный индекс Кр). В эти моменты времени на несколько порядков увеличивают плотность электронов между внутренней и внешней зонами радиации на расстояниях 2,5-5,5 Rз.


Как можно видеть, значительные вариации электронной составляющей РПЗ  по интенсивности и по пространству относительно спокойного состояния радиационного пояса Земли занимают четверть года. Во время магнитных бурь потоки частиц значительно расширяются во внешнюю область и "сползают” ближе к Земле, заполняя ранее пустовавшие области захваченной радиации.
Резкое увеличение потоков электронов создают реальную угрозу спутникам и пилотам КА на трассе Земля-Луна, находящихся в зоне всплесков их потока. Уже отмечено довольно много случаев, когда выход из строя отдельных систем спутников или даже прекращение их функционирования связан с резким усилением потока релятивистских электронов. Мощный поток электронов с энергией в несколько МэВ, насквозь пробивает оболочку спутника, электроны с меньшей энергией  генерируют огромны поток вторичного тормозного излучения, состоящего из жесткого рентгеновского излучения.



ДОЗЫ РАДИАЦИИ В ОКОЛОЛУННОМ ПРОСТРАНСТВЕ И НА ПОВЕРХНОСТИ ЛУНЫ
На околоземной орбите космонавты находятся под защитой магнитосферы Земли. В окололунном пространстве или на поверхности Луны весь поток солнечного ветра принимает корпус космического аппарата или лунного модуля. Потоком протонов можно пренебречь (очевидно, кроме солнечно-протонных событий). Плотность потока электронов в солнечном ветре меняется на два-три порядка порой в течении одной только недели. При столкновении с обшивкой корабля или модуля электроны останавливаются и рождают рентгеновское излучение, которое имеет огромную проникающую способность (толщина защиты 7,5 г/см2 алюминия уменьшит дозы радиации только в два раза).
Ниже график изменения дозы радиации рад/сутки с 1996 по 2013 год, которые получает астронавт при толщина внешней защиты 1,5 г/см2:


Рис. 10. Изменения дозы радиации рад/сутки с 1996 по 2013 год, которые получает астронавт при толщина внешней защиты 1,5 г/см2 в окололунном пространстве. Нелинейная шкала слева – уровни потока электронов для солнечного ветра по данным спутника ACE, нелинейная шкала справа – доза радиации в единицах рад за сутки. Горизонтальные линии отмечают уровни для сравнения: жёлтая – доза при единичной рентгенографии грудной клетки, оранжевая – доза при томографии позвонков.

Из рис. 10 видно, что дозы радиации в окололунном пространстве и на поверхности Луны носят нерегулярный характер. В год минимума солнечной активности дозы радиации составляют 0,0001 рад. В год максимума солнечной активности изменяются от 0,003 до 1 рад/сутки (прим. - для электронов бэр=рад; нерегулярность потоков электронов в солнечном ветре в годы максимальной солнечной активности связана с вспышками на Солнце, которые происходят ежедневно). За месяц пребывания в окололунном пространстве астронавты для значения соответствующем 1-31 октября 2001 года получают дозы 0,5 рад, среднее 0,016 рад/сут; для значения соответствующем 1-30 ноября 2001 года получают дозы 3,4 рад, среднее 0,11 рад/сут; усредненное за два месяца составляет - 3,9 рад за 60 суток или 0,065 рад/сут. Это значит, что дозы радиации, полученные астронавтами 9-ти миссий только пребывания в окололунном пространстве, выше доз, заявленных НАСА и должны иметь значительные вариации. Это противоречит данным миссий Аполлон.  При боле высокой плотности потока электронов, а так же при длительном пребывании вне магнитосферы Земли (100 суток), дозы могут приближаться к значениям лучевой болезни - 1,0 Зв. Дополнительно - Архив доз радиации с 1 января 2010 г.

Очевидно, что данные дозы радиации суммируются с другими дозами, например, при прохождении радиационного пояса Земли, в итоге имеем те значения, которое получает астронавт при полете на Луну и возвращении на Землю.



ОБСУЖДЕНИЕ
После миссий Аполлонов прошло 40 лет. До сих пор ни кто не даёт точный прогноз для геомагнитного возмущения. Говорят о вероятности геомагнитных возмущений (магнитная буря, магнитный шторм) на сутки, на несколько дней. Точность прогноза на неделю ниже 5%. Более непредсказуемый характер отмечается для электронов солнечного ветра.  Это значит, что с вероятностью  не ниже 20-30% астронавты миссий Аполлонов попадут в непредсказуемый мощный поток электронов радиационного пояса Земли и солнечный ветер.

Полёт Аполлонов сквозь внешний РПЗ и солнечный ветер в эпоху активного солнца можно сравнить с гусарской рулеткой, когда в пустой барабан 4-зарядного револьвера заряжается один патрон! Было сделано 9 попыток. Вероятность не получить острую лучевую болезнь

 

 

Попытка Вероятность выжить

1

3 / 4 = 0,750

2

(3 / 4)2 = 0,562

3

(3 / 4)3 = 0,422

4

(3 / 4)4 = 0,316

5

(3 / 4)5 = 0,237

6

(3 / 4)6 = 0,178

7 (3 / 4)7 = 0,133
8 (3 / 4)8 = 0,100
9 (3 / 4)9 = 0,075

Это равносильно почти 100% лучевой болезни.
 
Подводя итог скажем: двукратное прохождение радиационного пояса Земли по схеме НАСА приводит к смертельным дозам радиации 5 Зивертов и более во время магнитных бурь.
Даже если бы Аполлонам сопутствовала  фортуна -

  1. дозы радиации при прохождении протонной составляющей РПЗ были бы в 100 раз меньше,
  2. прохождение электронной составляющей РПЗ было бы при минимальном геомагнитном возмущении и низкой магнитной активности,
  3. низкая плотность электронов в солнечном ветре,

тогда суммарная доза радиации составит не ниже 20-30 бэр.  Дозы радиации не опасны для жизни человека. Однако и в этом случае радиационный эффект на два порядка выше тех значений, которые заявлены в официальном докладе НАСА!

В таблице 3 приведены суммарные и суточные дозы радиации пилотируемых полётов на космических кораблях и данные с орбитальных станций.

Таблица 3. Суммарные и суточные дозы радиации пилотируемых полётов
на космических кораблях и на орбитальных станциях.

миссия запуск и посадка продолжительность элементы орбиты сум. дозы радиации, рад [источ] среднее за сутки, рад/сут
Аполлон 7 11.10.1968 / 22.10.1968 10 д 20 ч 09м 03 с орбитальный полёт, высота орбиты 231—297 км 0,16
[51]
0,015
Аполлон 8 21.12.1968 / 27.12.1968 6 д 03 ч 00 м полёт на Луну и возвращение на Землю согласно НАСА 0,16
[51]
0,026
Аполлон 9 03.03.1969 / 13.03.1969 10 д 01 ч 00 м 54 с орбитальный полёт, высота орбиты 189—192 км, на третьи сутки - 229—239 км 0,20
[51]
0,020
Аполлон 10 18.05.1969 / 26.05.1969 8 д 00 ч 03 м 23 с полёт на Луну и возвращение на Землю согласно НАСА 0,48
[51]
0,060
Аполлон 11 16.07.1969 / 24.07.1969 8 д 03 ч 18 м 00 с полёт на Луну и возвращение на Землю согласно НАСА 0,18
[51]
0,022
Аполлон 12 14.11.1969 / 24.11.1969 10 д 04 ч 25 м 24 с полёт на Луну и возвращение на Землю согласно НАСА 0,58
[51]
0,057
Аполлон 13 11.04.1970 /  17.04.1970 5 д 22 ч 54 м 41 с полёт на Луну и возвращение на Землю согласно НАСА 0,24
[51]
0,041
Аполлон 14 01.02.1971 /  10.02.1971 9 д 00 ч 05 м 04 с полёт на Луну и возвращение на Землю согласно НАСА 1,14
[51]
0,127
Аполлон 15 26.07.1971 /  07.08.1971 12 д 07 ч 11 м 53 с полёт на Луну и возвращение на Землю согласно НАСА 0,30
[51]
0,024
Аполлон 16 16.04.1972 /  27.04.1972 11 д 01 ч 51 м 05 с полёт на Луну и возвращение на Землю согласно НАСА 0,51
[51]
0,046
Аполлон 17 07.12.1972 / 19.12.1972 12 д 13 ч 51 м 59 с полёт на Луну и возвращение на Землю согласно НАСА 0,55
[51]
0,044
Скайлэб 2 25.05.1973 / 22.06.1973 28 д 00 ч 49 м 49 с орбитальный полёт, высота орбиты 428—438 км 2,90—3,66
[52]
0,103—0,131
Скайлэб 3 28.07.1973 / 25.09.1973 59 д 11 ч 09 м 01 с орбитальный полёт, высота орбиты 423— 441 км 5,87—6,74
[50]
0,099—0,113
Скайлэб 4 16.11.1973 / 08.02.1974   84 д 01 ч 15 м 30 с орбитальный полёт, высота орбиты 422—437 км 10,88—12,83
[50]
0,129—0,153
Shuttle Mission 41–C 06.04.1984 / 13.04.1984  6 д 23 ч 40 м 07 с орбитальный полёт, перигей: 222 км
апогей: 468 км
0,559 0,079
ОС "Мир" 1986-2001 15 лет орбитальный полёт, высота орбиты 385—393 км - - - 0,020—0,060
[7]
ОС "МКС" 2001-2004 4 года орбитальный полёт, высота орбиты 337—351 км - - - 0,010—0,020
[7]

Можно отметить, что дозы радиации Аполлон 0,022-0,127 рад/сут, получаемые астронавтами при полёте на Луну,  не отличаются от доз радиации 0,010-0,153  рад/сут при орбитальных полетах.  Влияние радиационного пояса Земли равно нулю. Хотя настоящий расчёт показывает, что дозы радиации миссий на Луну в 100-1000 раз и более будут выше. Можно так же отметить, что наиболее низкий радиационный эффект 0,010—0,020 рад/сут наблюдаются для орбитальной станции "МКС", имеющей эффективную защиту 15 г/см2 и находящейся на низкой опорной орбите Земли.  Наиболее высокие дозы радиации 0,099—0,153 рад/сут отмечены для ОС "Скайлэб", имеющий  защиту 7,5 г/см2 и осуществлявших полёт на высокой опорной орбите.

 

ЗАКЛЮЧЕНИЕ

Аполлоны не летали на Луну, они кружили на низкой опорной орбите, находясь под защитой магнитосферы Земли, имитируя полёт к Луне, и получили дозы радиации обычного орбитального полёта.

В целом, истории «пребывания человека на Луне» несколько десятилетий! Полёт американцев к Луне можно сравнить с шахматной игрой. С одной стороны было НАСА, великодержавный престиж нации, политика и "адвокаты" НАСА, с другой стороны были Ральф Рене, Ю. И. Мухин, А. И. Попов и многие другие энтузиасты-оппоненты. Оппонентами было поставлено множество шахматных шахов, один из последних -  "Человек на Луне. Солнце на снимках Аполлонов в 20 раз больше!" Данной статьей  от имени  всех оппонентов объявляется шахматный мат НАСА.

Несмотря на опасность РПЗ и политику, безусловно, человечество не останется вечно на Земле… Главным способом обойти радиационные пояса Ван-Алена является изменение схемы траектории полета к Луне и электромагнитная защита от электронов.

 

Точный расчет траектории полета Аполлон 11, Аполлон 14, Аполлон 15 и Аполлон 17 через радиационный пояс Земли. Дозы радиации
15:28
Схема траекторий полетов Apollo на ЛунуНастоящая статья ставит под сомнение, что миссия Apollo была на Луне.

Большинство официальных иллюстраций траектории полетов Apollo на Луну отмечают только основные элементы миссии. Такие схемы геометрически не точные, а масштаб грубый. Пример из отчета НАСА приведен справа.

Очевидно, что для правильного представления полетов Аполлонов к Луне важен другой подход, а именно точное определение положения космического аппарата от времени. Это позволяет рассмотреть траекторию Аполлонов при прохождении опасного для человека радиационного пояса Земли, а так же разработать элементы траектории для безопасного полета к Луне.

В 2009 году Robert A. Braeunig представил элементы орбиты транслунной траектории Apollo 11 с вычислением положения КА в зависимости от времени и ориентации относительно Земли. Работа представлена в Глобальной Сети - Apollo 11's Translunar Trajectory and how they avoided the radiation belts. О данной работе защитники НАСА высоко отзываются, для них она Евангелие для поклонения, пишут: "Браво", и часто на нее ссылаются во время дискуссий с оппонентами о радиационном облучении и невозможности миссии Аполлонов.

Траектория Аполлон-11 через электронный радиационный пояс согласно расчетам Robert A. Braeunig
Илл. 1. Траектория Аполлон-11 (синяя кривая с красными точками) через электронный радиационный пояс согласно расчетам Robert A. Braeunig. Жми, чтобы увеличить.
Расчеты были проверены и они указывают на следующие ошибки Robert A. Braeunig:


1) Роберт использовал значения гравитационной постоянной и массы Земли времен 60-ых прошлого века.

В настоящих расчетах использованы современные данные. Гравитационная постоянная равна 6,67384E-11; масса Земли равна 5,9736E+24. Расчеты скорости и расстояния от Земли Аполлон 11 стали немного отличаться от расчета Роберта, однако они оказались точнее опубликованных данных в 2009 году PAO NASA (служба связи с общественностью НАСА).


2) Robert A. Braeunig заявляет, что остальные траектории Аполлонов типичны траектории Аполлон 11.

Давайте рассмотрим точки выхода Аполлонов на транслунную орбиту (сокр. - TLI) по документам НАСА. Мы видим и имеем разное положение относительно географического (геомагнитного) экватора и имеем разную - восходящую или нисходящую траекторию относительно экватора. Это проиллюстрировано ниже.


Илл. 2. Проекция орбиты ожидания Аполлонов на поверхность Земли: желтыми точками указаны выходы на траекторию полета к Луне TLI для Аполлон 8, Аполлон 10, Аполлон 11, Аполлон 12, Аполлон 13, Аполлон 14, Аполлон 15, Аполлон 16 и Аполлон 17, красной линией указана траектория орбиты ожидания, красными стрелками указано направление движения. Жми, чтобы увеличить.

Илл. 2 показывает, что выход на транслунную траекторию разный на плоской карте Земли:
  • для Аполлон 14 ниже географического экватора с приближением к нему под углом около 20 градусов,
  • для Аполлон 11 выше географического экватора с удалением от него под углом около 15 градусов,
  • для Аполлон 15 выше географического экватора под углом около нуля градусов,
  • для Аполлон 17 выше географического экватора с приближением к нему под углом около -30 градусов.
Это значит, что на транслунной траектории одни Аполлоны пройдут выше географического экватора, другие ниже. Очевидно, это положение справедливо для геомагнитного экватора.

Были сделаны расчеты для всех Аполлонов по шагам Роберта. Действительно, Аполлон 11 проходит выше протонного радиационного пояса и летит сквозь электронный РПЗ. Но через протонную сердцевину радиационного пояса проходят Аполлон 14 и Аполлон 17.

Ниже представлена иллюстрация траектории движения для Аполлон 11, Аполлон 14, Аполлон 15 и Аполлон 17 относительно геомагнитного экватора.




Илл. 3. Траектории движения Аполлон 11, Аполлон 14, Аполлон 15 и Аполлон 17 относительно геомагнитного экватора, так же указан внутренний протонный радиационный пояс.
Звёздами указаны официальные данные для Аполлон 14. Жми, чтобы увеличить.

Илл. 3 показывает, что на транслунной траектории Аполлон 14 и Аполлон 17 (также миссии Аполлон 10 и Аполлон 16 из-за близких параметров TLI к А-14) проходят через опасный для человека радиационный протонный пояс.
Аполлон 8, Аполлон 12, Аполлон 15 и Аполлон 17 проходят через сердцевину электронного радиационного пояса.
Аполлон 11 так же проходит через электронный радиационный пояс Земли, но в меньшей степени, чем Аполлон 8, Аполлон 12 и Аполлон 15.
Аполлон 13 в наименьшей степени пребывает в радиационном поясе Земли.

Robert A. Braeunig мог просчитать траектории для других Аполлонов, как положено для человека с научной школой. Однако, в своей статьей он ограничился Аполлон 11 и назвал остальные траектории Аполлонов типичными! На популярном YouTube были размещены видео TLI Orbit Slice View - http://youtu.be/YuH4rxda3Z4, TLI_Orbit.avi - http://youtu.be/z4gSRy1tHls...

Для истории это значит обман и осознанное введение в заблуждение пользователей Глобальной Сети.

Кроме этого, можно было открыть архивы НАСА и поискать отчеты по траектории Аполлонов. Пусть даже будет всего несколько координат.

Официальный отчет по траектории Аполлон 14 (стр. 12, табл. 1. траектория полета) указывает две координаты космического аппарата на TLI перед южной частью протонного радиационного пояса Ван Алена и через 28 минут уже с северной его стороны или пересечение по диагонали снизу вверх РПЗ (см. илл. 3 - алая кривая).

Для Аполлон 17 - Apollo 17 Mission Report (стр. 3-4, табл. 3-III, параметры орбиты) - указаны две координаты космического аппарата на TLI перед протонным радиационным поясом Ван Алена и после него уже с южной стороны или пересечение сверху вниз РПЗ (см. илл. 3 - красная кривая).

3) При переходе от географических к геомагнитным координатам Robert A. Braeunig делает очередную ошибку.

Это видно из иллюстрации ниже.


Илл. 4. Наложение двух графиков - траектория относительно географического и геомагнитного экватора для Аполлон-11 по расчетам Robert A. Braeunig. Проекции на географическую и геомагнитную ось изменились, а проекция на геомагнитный экватор осталась прежней (географической). Проекция первой точки выполнена с ошибкой.

Это школьные знания - если делается проекция на новую систему координат с некоторым углом поворота, то изменяется положение всех точек. У Роберта первая точка осталась неизменной по X и Y, координаты остальных точек по X то же неизменные.

Данная ошибка была исправлена в настоящих расчетах. Это приводит к тому, что космический аппарат (КА) проходит радиационный пояс Земли (РПЗ) на 25-40% дольше, чем по расчетам Роберта. Соответственно, экипаж КА получает больше дозы радиационного облучения.


4) Робертом не правильно определены обратные траектории полетов к Земле.

Задача трех тел до сих пор не решена. По этой причине на транслунной и обратной траектории используют несколько коррекций курса космического аппарата. Главную коррекцию производят вблизи точки Лагранжа Земля-Луна, где уравновешено гравитационное поле Земли и Луны и скорость космического аппарата минимальная. В этой области небольшим дополнительным реактивным импульсом легко изменить курс. Такие корректировки неоднократно производили Аполлоны, как при полете к Луне, так и при возвращении на Землю. Кроме этого, существует коррекция курса для выхода на орбиту Луны. Другие коррекции... Ясно, что без данных координат коррекции курса, определение обратной траектории и определение прохождения радиационного пояса невозможны.

Кратко, обратные траектории к Земле не могут соответствовать антисимметричной транслунной траектории TLI.


5) При возвращении с Луны Robert A. Braeunig описывает выход космического аппарата на орбиту Земли, см. илл. 5.


Илл. 5. Траектория возвращения Аполлон-11 на орбиту Земли. Жми, чтобы увеличить.

Выход на орбиту Земли по иллюстрации 5 означает гравитационное искривление траектории полета и уходу со второй космической скоростью на орбиту с апогеем около 380 000 км. Правильно, когда при возвращении на Землю КА не скользит по околоземной орбите, а падает под углом 20-30 градусов со второй космической скоростью на поверхность Земли.

По легенде НАСА так и происходит. На это указывают данные положения КА на высоте ~180 км и их приводнения.

По этим данным можно определить курсовой угол КА и определить траекторию Аполлонов при прохождении внутреннего радиационного пояса.

Ниже на илл. 6 показан курс траектории приводнения Аполлонов на поверхность Земли, использованы данные НАСА - Entry, Splashdown, and Recovery.


Илл. 6. Возвращение Аполлонов (первая точка, 180 км над Землей) и приводнение на Земле (вторая точка). Для Аполлон 12 и Аполлон 15 первая точка на высоте 3,6 тыс. км. Красной кривой обозначен геомагнитный экватор. Жми, чтобы увеличить.

Из илл. 6 важно отметить, что Аполлон 12 и Аполлон 15 при возвращении на Землю пройдут внутренний радиационный пояс Ван Алена.

Официальный отчет по траектории Аполлон 12 (стр. B-2, табл. B-1, параметры орбиты) указывает координаты при возвращении на Землю до и после внутреннего РПЗ. Аполлон 12 проходит через протонный радиационный пояс Ван Алена. Зная скорость и координаты КА, определяем, что экипаж КА протонный пояс Земли пересекает за 340 сек.

Для Аполлон 15 из официального отчета табл. 3-III, параметры орбиты указаны две координаты на высоте 180 км и 3611 км, соответственно, положения командного модуля в радиационном поясе Ван Алена и после его прохождения. Высокоэнергичный протонный пояс экипаж Аполлон 15 пересекает за 320 секунд.

6) Robert A. Braeunig приводит иллюстрацию устаревшего радиационного пояса Земли, соответствующего модели спокойного солнца 60-ых годов, см. илл. 7.


Илл. 7. Схематическое изображение радиационного пояса Ван Алена (1976 г.), используемое Robert A. Braeunig. Жми, чтобы увеличить.

На илл. 7 показана модель Ван Алена (1976 г.). На смену ей пришла модель AP-8 min (1995 г.), которая расширила высокоэнергетичную часть радиационного пояса Земли в несколько раз. В настоящее время признана модель AD2005 (2007-2012 г.), которая к модели AP-8 min увеличивает концентрацию протонов с энергией 100-400 Мэв в 6-10 раз. Подобные картинки, как илл. 7, НАСА размещает в архиве и использует для школьного самообразования.

Ниже приведена современная модель радиационного пояса Земли.


Илл. 8. Радиационный пояс Земли. Модель 2010 года.
Жми, чтобы увеличить.

Все полеты пилотируемых КА проходят под радиационным поясом на высоте 200-400 км. Радиационный пояс Земли выполняет роль ловушки для электронов и протонов солнечного ветра, защищая атмосферу Земли и экипажи орбитальных станций от радиационного облучения.

Для сравнения, флюенс протонов в РПЗ на порядок выше, чем в мощном протонно-солнечном событии от 4-11 августа 1972 года. Потоки протонов и электронов в РПЗ отличаются от солнечного ветра тем, что каждый протон (электрон) вращается вдоль силовой линии магнитного поля Земли, при энергии 10 МэВ - с радиусом ~100 (10) км и периодом ~10-3 (10-6) с, доходит до зеркала магнитного поля, отражается и двигается в противоположном направлении, периоды колебаний между парой зеркальных точек РПЗ составляют десятую долю секунды (секунду). Радиационный пояс Земли – это множество протонных и электронных смерчей с противоположными направлениями, которые дрейфуют, сталкиваются, взаимодействуют с внешними корональными дырами и плотностью протонов в миллион раз больше, чем в солнечном ветре.

В годы активного Солнца РПЗ расширяется в несколько раз.

Ниже представлены усредненные по времени и по всем значениям долготы профили интегральной интенсивности электронов различных энергий для (а) - минимума солнечной активности, (б) - для эпохи максимума.

Профили электронов в радиационном поясе Земли

Илл. 9. Усредненные во времени и по всем значениям долготы профили интенсивности электронов различных энергий на геомагнитном экваторе. Цифры у кривых соответствуют энергии электронов в МэВ. (а) и (б) - для эпох минимума и максимума солнечной активности.

Илл. 9 показывает, что в эпоху максимума солнечной активности дозы радиации, создаваемые электронным поясом, возрастают в 4-7 раза. Напомним, что миссия Apollo приходилась на момент пика 11-летней солнечной активности.


7) Роберт не обсуждает особенности и состояние Солнца перед полетом и во время полета Аполлонов.

При солнечно-протонных событиях, корональных выбросах протонов и электронов, солнечных вспышках, магнитных бурях и сезонной вариации флюенсы частиц РПЗ увеличиваются на несколько порядков и могут сохраняться больше полугода.

Вариации протонов в радиационном поясе ЗемлиНа илл. 10 справа показаны радиальные профили радиационных поясов для протонов с Ер=20-80 МэВ и электронов с Ее>15 МэВ, построенные по данным измерений на ИСЗ CRRES до внезапного импульса геомагнитного поля 24 марта 1991 г. (день 80), через шесть дней после образования нового пояса (день 86) и через 177 дней (день 257).

Видно, что потоки протонов расширились более чем в два раза, а потоки электронов с Ее>15 МэВ превысили спокойный уровень более чем на два порядка. В дальнейшем они регистрировались до середины 1993 г. 

Для экипажа КА при полете на Луну это означает увеличение прохождения протонного РПЗ в 3-4 раза и увеличение дозы радиации от электронов в 10-100 раз.

Первому облёту Луны с человеком на борту, миссия Аполлона 8, предшествовал мощный магнитный шторм за два месяца, 30-31 октября 1968 гг.. Аполлон 8 проходит расширенный радиационный пояс Земли. Это равносильно многократному увеличению дозы радиации, тем более по сравнению с дозами экипажей КА на опорной орбите Земли. НАСА заявило для Аполлон 8 дозу 0,026 рад/сут, что в пять раз меньше дозы на орбитальной станции "Скайлэб" 1973-1974, соответствующих годам спада активности Солнца.

27 января 1971 г. за несколько дней до старта Аполлона 14 началась умеренная магнитная буря, перешедшая в малую бурю 31 января, которую вызвала солнечная вспышка в направлении к Земле 24.01.1971 гг.. При полете на Луну повышение уровня радиации можно было ожидать в 10-100 раз от средних значений. Аполлон 14 проходит через протонный радиационный пояс. Дозы будут огромными! НАСА заявило для Аполлон 14 дозу 0,127 рад/сут, что меньше дозы на орбитальной станции "Скайлэб 4" (1973-1974).

Аполлон 15 во время своей миссии на Луну находился в хвосте магнитосферы Земли несколько суток. Никакой магнитной защиты от электронов не было. Потоки электронов составляют несколько сот джоулей на квадратный метр за сутки. Сталкиваясь с обшивкой КА, они рождают жесткое рентгеновкое излучение.  Из-за электронной рентгеновской составляющей дозы радиации составят десятки рад (с учетом высокоэнергичных электронов, данные которых до сих пор отсутствуют, дозы увеличивают). При возвращении на Землю Аполлон 15 проходит внутренний радиационный пояс. Суммарная доза радиации огромная. НАСА заявлено 0,024 рад/сут.

Аполлону 17 (последняя высадка на Луну) до старта предшествовало три мощных магнитных шторма: 1) 17-19 июня, 2) 4-8 августа после мощного солнечно-протонного события, 3) с 31 октября по 1 ноября 1972 гг.. Траектория Аполлон 17 проходит через протонный радиационный пояс. Это смертельно опасно для человека! НАСА заявляет дозу радиации 0,044 рад/сут, что в три раза меньше меньше дозы на орбитальной станции "Скайлэб 4" (1973-1974).


8) Для оценки дозы радиации Robert A. Braeunig пренебрегает опасным для человека протонным вкладом радиационного пояса Ван Алена и использует неполные данные электронного радиационного пояса.

Для оценки дозы радиации Роберт использует неполные данные VARB, илл. 9.


Илл. 11. Дозы радиации в поясе Ван Алена и траектория Аполлон 11 по Robert A. Braeunig. Жми, чтобы увеличить.

Из илл. 11 видно, что часть траектории Аполлон 11 проходит выше недостающей данных РПЗ, погрешность дозы радиации составляет почти порядок. По такой картинке нельзя оценить дозы радиации!

Кроме этого, данная иллюстрация касается только электронного радиационного пояса. Это видно из илл. 12.


Илл. 12. Дозы радиации в поясе Ван Алена от электронной составляющей (1990-1991 г.). Жми, чтобы увеличить.

Нужно отметить, что иллюстрации 11 и 12 аналогичны флюенсу электронов с энергией 1 Мэв в радиационном поясе Ван Алена по НАСА - The Van Allen Belts.


Илл. 13. Профиль электронов относительно геомагнитного экватора по НАСА. Жми, чтобы увеличить.

Тогда, на основе данной иллюстрации можно восстановить картину дозы радиации для электронного РПЗ.


Илл. 14. Дозы радиации в электронном радиационном поясе Земли и траектория Аполлон 11, Аполлон 14, Аполлон 15 и Аполлон 17. Жми, чтобы увеличить.

Илл. 14 аналогичная ил. 12, разница в полных данных электронного РПЗ.

Согласно илл. 14, Аполлон 11 проходит уровень радиации 7,00Е-3 рад/сек за 50 минут. Суммарная доза составит D=7,00Е-3*50*60=21,0 рад. Это почти в 1,8 раз больше, чем указано в статье Роберта. При этом мы только рассматриваем дозу на транслунной траектории и не учитываем обратное прохождение электронного РПЗ.

Учетом вклада протонного радиационного пояса пренебрежено в статье Robert A. Braeunig. Нет данных радиационной опасности! А ведь вклад протонного РПЗ в поглощенную дозу радиации может быть на порядок больше и опасный для человека.

По какой причине автор, который рассчитывает транслунную траекторию Аполлон 11 и является авторитетом, не замечает главного? По одной причине - для невежественного читателя, ибо обыватель доверяет авторитетному источнику и не важно, что автор мошенничает в пользу аферы.


9) Роберт неправильно обсуждает радиационную защиту Аполлонов.

ПРОТОННАЯ СОСТАВЛЯЮЩАЯ РАДИАЦИОННОГО ПОЯСА ЗЕМЛИ

Согласно радиационной физике 100-Мэвные протоны прошивают насквозь командный модуль Аполлонов. Чтобы уменьшить поток в два раза, не полностью, а только в 1/2, нужна толщина из алюминия 3,63 см. Для ясности, 3,63 см - это высота всего выделенного данного абзаца! В космонавтике есть научный термин - толщина защиты КА. Если считать, что весь корпус алюминиевый, тогда у КМ Аполлонов толщина составляла 2,78 см (без последних двух строчек). Это значит, что более половины протонов проникают в КА и вызывают радиационное облучение человека. На самом деле толщина Al корпуса командного модуля меньше, в основном 80% резина и теплоизолятор. Толщина защиты этих материалов ~7,5 г/см2, такая же как у Al. Отличие заключается в том, что длина пробега протонов увеличивается во много раз...

Мы рассматриваем, что корпус алюминиевый толщиной 2,78 см.




Илл. 15. График зависимостей поглощенной дозы от длины пробега протона с энергией 100 МэВ
с учётом пика Брэгга для протонов через внешнюю защиту 7,5 г/см2 и биологическую ткань. Величина дозы приведена в расчете на одну частицу.

Кроме протонов, потоки электронов сталкиваются с металлом КА и фонят в виде высокопроникающего жесткого рентгеновского излучения.

Чтобы полностью погасить протонное и рентгеновское излучение нужны экраны из свинца толщиной 2 сантиметра. Аполлоны не имели таких экранов. Единственным объектом на борту КА, который почти полностью поглощает 100-Мэвные протоны и рентгеновское излучение, есть человек.

Вместо данного обсуждения Robert A. Braeunig приводит иллюстрацию для невежественного обывателя - флюенс 1 Мэв протонов (илл. 16).

Илл. 16. Флюенс 1 Мэв протонных в поясе Ван Алена по НАСА. Жми, чтобы увеличить.

С точки зрения радиационной физики 1 Мэв и 10 Мэв протоны для космического аппарата то же, что слона чесать спичкой. Это показано в табл. 1.

Таблица 1.

Пробеги протонов в алюминии.

Энергия:
протонов, МэВ

1

3

5

10

20 40 100 1000

Пробег, см

1.3*10-3

7.8*10-3

1.8*10-2

6.2*10-2

2.7*10-1 7.0*10-1 3.6 148

Пробег, мг/см2

3.45 21 50 170 560 1.9*103 9.8*103 400*103

Из таблицы видим, что пробег протонов с энергией 1 Мэв в Al составляет 0,013 мм. 13 микрон, это в четыре раза тоньше человеческого волоса! Для человека без одежды такие потоки не имеют никакой опасности.

Основной вклад в радиационное облучение РПЗ вносят протоны с энергией 40-400 Мэв. Соответственно, правильно приводить данные по этим профилям.



Илл. 17. Усредненные по времени профили плотности потоков протонов и электронов в плоскости геомагнитного экватора по модели AP2005 (цифры у кривых соответствуют нижнему пределу энергии частиц в МэВ).
Жми, чтобы увеличить.

Илл. 17 позволяет рассчитать дозы радиации.

На пальцах так. Для протонов с энергией 100 Мэв интенсивность потока составляет 5·104 см-2с-1. Это соответствует потоку радиационной энергии 0,0064 Дж/м2с1.

Поглощенная доза (D) - основная дозиметрическая величина, равна отношению переданной энергии E ионизирующим излучением веществу с массой m:

D = E/m , единица Грей=Дж/кг,

через ионизационные потери излучения поглощенная доза за единицу времени равна:

D = n/p · dE/dx = n · E / L, единица Грей=Дж/(кг·сек),

где n - плотность потока излучения (частиц/м2с1); p - плотность вещества; dE/dx - ионизационные потери; L - длина пробега частицы с энергией E в биологической ткани (кг/м2).

Для человека получаем мощность поглощаемой дозы равна:

D = (1/2)·(6)·(5·104 см-2с-1)·(45 Мэв/(1,843 г/см2)), Гр/сек

множитель 1/2 - уменьшение интенсивности на половину после прохождения защиты командного модуля Аполлонов;
множитель 6 - степени свободы протонов в РПЗ - движение вверх, вниз, влево, вперед, назад и вращение вокруг осей;
множитель 1,843 г/см2 - пробег протонов с энергией 45 Мэв в биологической ткани после потери энергии в корпусе командного модуля.

Переведем все единицы к СИ, получим

D=0,00059 Грей/сек или 0,059 рад/сек, (здесь 1 Грей = 100 рад).

Такой же расчет проводят для протонов с энергией 40, 60, 80, 200 и 400 Мэв. Остальные потоки протонов дают малый вклад. И складывают. Поглощенная доза радиации увеличится в несколько раз и равна 0,31 рад/сек.

Для сравнения: за 1 секунду пребывания в протонном РПЗ экипаж Аполлонов получает дозу радиации 0,31 рад. За 10 сек - 3,1 рад, за 100 сек - 31 рад... НАСА же заявило для экипажей Аполлонов за все время полета и возвращения на Землю среднюю дозу радиации 0,46 рад.

Для оценки опасности излучения для здоровья человека вводится эквивалентная доза радиации Н, равная произведению поглощенной дозы Dr, созданной облучением - r , на весовой множитель wr(называемый - коэффициент качества излучения).

Н=∑wrDr

Единицей измерения эквивалентной дозы является Джоуль на килограмм. Она имеет специальное наименование Зиверт (Зв) и бэр (1 Зв = 100 бэр).

Для электронов и рентгеновского излучения коэффициент качества равен единице, для протонов с энергией 10-400 Мэв принимается 2-14 (определен на тонких пленках биологической ткани). Такой коэффициент связан с тем, что протон передает разную часть энергии электронам вещества, чем меньше энергия протона, тем выше передача энергии и выше коэффициент качества. Мы берем среднее w=5, так как человек полностью поглощает излучение и основная передача энергии происходит в пике Брэгга, за исключением высокоэнергичной части протонов.

В итоге получаем, мощность эквивалентной дозы радиации для протонов с энергией 40-400 Мэв в РПЗ

Н = 1,55 бэр/сек.

Более точный расчет мощности эквивалентной доза радиации дает меньшее значение:

Н=0,2wrnrErexp(-Lz/Lzr - Lp/Lpr), Зв/сек,

где wr - коэффициент качества излучения; nr - плотность потока излучения (частиц/м2с1); Er - энергия частиц излучения (Дж); Lz - толщина защиты (г/см2); Lzr - длина пробега частицы с энергией Er в защищающем материале z (г/см2); Lp - глубина внутренних органов человека (г/см2); Lpr - длина пробега частицы с энергией Er в биологической ткани (г/см2). Данная формула даёт среднее значение дозы радиации с ошибкой ¹25% (более точный расчет по Монте-Карло на много порядков энерго-интеллектуально затратный даст ошибку ¹10%, что связано с распределением пробегов протонов по Гауссу).
Множитель 0,2 перед знаком суммирования имеет размерность м2/кг и представляет собой обратное значение средней эффективной толщины биологической защиты человека в РПЗ. Грубо, данный множитель равен площади поверхности биологического объекта, деленная на шестую часть массы.
Знак суммирования означает, что эквивалентная доза радиации складывается из радиационных эффектов для всех видов излучения, которым подвержен человек.
Плотность потока nr и энергия частиц Er берутся из данных радиационного излучения.
Длины пробегов частицы с энергией Er в защищающем материале Lzr (г/см2) берут из ГОСТ РД 50-25645.206-84.

Из данной формулы можно рассчитать мощность эквивалентной дозы радиации для внутренних органов на глубине 1 см, которые получает астронавт при прохождении внутреннего протонного РПЗ, находясь в командном модуле Apollo:
  • для протонов с энергией 40 Мэв - 0,011 бэр/сек;
  • для протонов с энергией 60 Мэв - 0,097 бэр/сек;
  • для протонов с энергией 80 Мэв - 0,21 бэр/сек;
  • для протонов с энергией 100 Мэв - 0,26 бэр/сек;
  • для протонов с энергией 200 Мэв - 0,37 бэр/сек;
  • для протонов с энергией 400 Мэв - 0,18 бэр/сек.
Дозы радиации складывают. ИТОГО: H=1,12 бэр/сек.

Для сравнения 1,12 бэр/сек - это 56 процедур рентгенографии грудной клетки или пять процедур компьютерной томографии головы, которые сжаты в одну секунду; соответствует зоне очень опасного заражения при ядерном взрыве и на порядок больше природного фона на поверхности Земли за один год.

Аполлон 10 на транслунной траектории проходит через внутренний РПЗ за 60 секунд. Доза радиации равна H=1,12·60=67,2 бэр.
Аполлон 12
при возвращении на Землю проходит через внутренний РПЗ за 340 сек.  H=1,12·340=380,8 бэр.
Аполлон 14 на транслунной траектории проходит через внутренний РПЗ за 7 минут. H=1,12·7·60=470,4 бэр.
Аполлон 15 при возвращении на Землю проходит через внутренний РПЗ за 320 сек. H=1,12·320=358,4 бэр.
Аполлон 16 на транслунной траектории проходит через внутренний РПЗ за 60 секунд. H=1,12·60=67,2 бэр.
Аполлон 17 проходит через внутренний РПЗ за 9 минут. H=1,12·9·60=641,1 бэр.

Данные дозы радиации получены из усредненного значения профилей протонов в РПЗ. Для Аполлон 14 предшествовала умеренная магнитная буря за несколько дней, для Аполлон 17 за три месяца до старта предшествовало три магнитных бури. Соответственно, дозы радиации увеличивают, для Аполлон 14 в 3-4 раза, для Аполлон 17 в 1,5-2 раза.


ЭЛЕКТРОННАЯ СОСТАВЛЯЮЩАЯ РАДИАЦИОННОГО ПОЯСА ЗЕМЛИ

Табл. 2. Характеристика электронной составляющей РПЗ,
эффективный пробег электронов в Al,
время пролета РПЗ Аполлонами к Луне и при возвращении на Землю, отношение удельных радиационных и ионизационных потерь энергии,
коэффициенты поглощения рентгеновских лучей для Al и воды,
эквивалентная и поглощенная доза радиации*.

Данные потоков электронов в РПЗ и время пролётов Apollo

Доза радиации для Apollo от электронной составляющей РПЗ

E, МэВ проб в Al, см поток, /см2сек1 Дж/м2сек врем полет, *103 сек Энер, Дж/м2 доля рентг, % коэф ослаб в Al, см-1 коэф
ослаб
в орг,
см-1
Команд модуль Apollo Лунный модуль Apollo
0,05 0,002 6*107 0,00480 12 57,6 0,082 0,99 0,61 0,0000 0,0036
0,1 0,006 3*107 0,00480 14 67,2 0,164 0,46 0,46 0,0035 0,0153
0,3 0,027 1,5*107 0,00720 15 108,0 0,492 0,28 0,32 0,0426 0,0887
0,5 0,056 8*106 0,00640 12 76,8 0,82 0,23 0,26 0,0611 0,1091
1 0,151 1,5*106 0,00240 10 23,0 1,64 0,167 0,19 0,0448 0,0698
1,8 0,311 3*105 0,00086 8 6,910 2,952 0,121 0,14 0,0256 0,0363
3 0,551 8*104 0,00038 6 2,304 4,92 0,096 0,11 0,0150 0,0196
20 3,887 103 0,00003 1 0,032 32,8 0,057 0,05 0,0011 0,0014
  Итого:
0,194
Зв
Итого:
0,345 Зв
Итого:
19,38 рад
Итого:
34,55 рад
*Прим. - интегральный подсчет увеличит итоговые дозы радиации на 50-75%.
**Прим. - в расчете, как и для протонов, принимается шесть степеней свободы излучения.

Для Аполлонов, которые проходят дважды электронный РПЗ, средняя доза радиации составит 20-35 бэр.

Аполлон 13 и Аполлон 16 выполняют миссию весной и осенью, когда флюенсы электронов в РПЗ увеличены в 2-3 раза от средних (в 5-6 раз от зимних). Т.о., для Аполлон 13 доза радиации составит ~ 55 бэр. Для Аполлон 16 составит ~ 40 бэр.

Сезонные вариации потоков электронов в РПЗ

Илл. 18. Временной ход проинтегрированных за пролет спутника ГЛОНАСС через радиационный пояс потоков электронов с энергией 0.8-1.2 МэВ (флюенсов) за период с июня 1994 г. по июль 1996 г. Приведены также индексы геомагнитной активности: суточный Кр- индекс и Dst-вариация. Жирные линии – сглаженные значения флюенсов и Кр-индекса.


Аполлон 8, Аполлон 14 и Аполлон 17 предшествовали магнитные бури перед их миссиями. Электронная составляющая РПЗ расширится в 5-20 раз. Для этих миссий доза радиации от электронов РПЗ увеличится, соответственно, в 4, 10 и 7 раз.


Ралиационный пояс после магнитной бури

Илл. 19. Изменение профилей интенсивности электронов с энергией 290-690 кэВ до и после магнитной бури для различных моментов времени на оболочках радиационного пояса Земли от 1,5 до 2,5. Цифрами у кривых обозначено время в сутках, прошедшее после инжекции электронов.

И только для Аполлон 11 можно отметить уменьшение дозы радиации из-за летней миссии в 2-3 раза или 10 бэр.


СУММАРНЫЕ ЭКВИВАЛЕНТНЫЕ ДОЗЫ РАДИАЦИИ ПРИ ПОЛЕТЕ НА ЛУНУ ПО НАСА


Дозы радиации протонного и электронного РПЗ складывают. В табл. 3 приведены суммарные дозы радиации для Аполлонов с учетом особенностей РПЗ.

Табл. 3. Миссия Аполлонов, особенности РПЗ и эквивалентные дозы радиации*.
Миссия Аполлонов Особенности радиационного пояса Земли для миссии
Эквивалентные дозы радиации, бэр
Аполлон 8 Магнитный шторм за два месяца; двукратное прохождение внешнего РПЗ; зимняя миссия ~ 60
Аполлон 10 Прохождение на траектории TLI протонного РПЗ за 60 сек; двукратное прохождение внешнего РПЗ; конец весны ~97
Аполлон 11 Двукратное прохождение внешнего РПЗ; летняя миссия ~ 10
Аполлон 12 Прохождение при возвращении на Землю протонного РПЗ за 340 сек; двукратное прохождение внешнего РПЗ; зимняя миссия ~ 390
Аполлон 13 Двукратное прохождение внешнего РПЗ; весенняя миссия ~ 55
Аполлон 14 За несколько дней солнечная вспышка в направлении Земли; две магнитных бури; прохождение на траектории TLI протонного РПЗ за 7 мин; двукратное прохождение внешнего РПЗ; зимняя миссия ~ 1510-1980
Аполлон 15 Прохождение при возвращении на Землю протонного РПЗ за 320 сек; двукратное прохождение внешнего РПЗ; пребывание в хвосте магнитосферы Земли несколько суток; летняя миссия ~ 408
Аполлон 16 Прохождение на траектории TLI протонного РПЗ за 60 сек; двукратное прохождение внешнего РПЗ; осенняя миссия ~ 107
Аполлон 17 До старта предшествовало три мощных магнитных шторма: 1) 17-19 июня, 2) 4-8 августа после мощного солнечно-протонного события, 3) 31 октября по 1 ноября 1972 гг. Прохождение на траектории TLI протонного РПЗ за 9 мин; двукратное прохождение внешнего РПЗ; зимняя миссия ~ 1040-1350
*Прим. - пренебрежено дозой радиации солнечного ветра (0,2-0,9 бэр/сутки), рентгеновского излучения (в скафандре Apollo 1,1-1,5 бэр/сутки) и ГКЛ (0,1-0,2 бэр/сутки).


В таблице 4 приводятся значения эквивалентной дозы радиации, приводящих к возникновению определённых радиационных эффектов.

Таблица 4. Таблица радиационных рисков при однократном облучении

Доза, бэр*Вероятные эффекты
0,01-0,1 Низкая опасность для человека по МАГАТЭ. 0,02 бэр соответствует единичной рентгенография грудной клетки человека.
0,1-1 Нормальная ситуация для человека по МАГАТЭ.
1-10 Большая опасность для человека по МАГАТЭ. Влияние на нервную систему и психику. На 5% повышение риска заболевания лейкозом крови.
10-30 Очень серьезная опасность для человека по МАГАТЭ. Умеренные изменения в крови. Умственная отсталость у потомков родителей.
30-100 Радиационные заболевания из 5-10% облучённых людей. Рвота, временные угнетение кроветворения и олигоспермия, изменения в щитовидной железе. Смертность до 17 лет у потомков родителей.
100-150 Радиационные заболевания у ~25% облучённых людей. Увеличение в 10 раз риска лейкоза и смертность от рака.
150-200 Радиационные заболевания у ~50% облучённых людей. Рак легкого.
200-350 Радиационные заболевания почти у всех людей, ~20% с летальным исходом. 100% ожог кожи. У оставшихся в живых катаракта и постоянная стерильность семенника.
400 50% летальных исходов. У оставшихся в живых тотальные облысение и рентгеновская пневмония.
700 ~100% летальных исходов.


Таким образом, прохождение радиационного пояса Земли по схеме и официальным отчетам НАСА с учетом магнитных бурь и сезонной вариации РПЗ, приводит к радиационным заболеваниям с летальным исходом для экипажей Аполлон 14 и Аполлон 17. Для астронавтов Аполлон 12 и Аполлон 15 отмечается ожог кожи 100% в дальнейшем развитии катаракты и стерильности семенников. Для других миссий Аполлонов радиационный эффект приводит к онкологическим заболеваниям. В целом дозы радиации в 56-2000 раз выше тех значений, которые заявлены в официальном докладе НАСА!

Результаты воздейсвтия радиации

Илл. 20. Результат воздействия радиации. Хиросима и Нагасаки.


слева направо: Стюарт Руса, Алан Шепард, Эдгар МитчеллЭто противоречит НАСА, в частности, итогами полета Аполлон 14 было: 1) продемонстрирована отличная физическая подготовка и высокая квалификация астронавтов, в частности — физическая выносливость Шепарда, которому на момент полёта было 47 лет; 2) никаких болезненных явлений у астронавтов не наблюдалось; 3) Шепард прибавил в весе полкилограмма (первый случай в истории американской пилотируемой космонавтики); 4) за время полёта астронавты ни разу не принимали медикаментов...



ЗАКЛЮЧЕНИЕ

НАСА чужими руками Robert A. Braeunig создает свой положительный имидж - мол Аполлоны облетели радиационный пояс Земли, как Аполлон 11, используя прием подмены или Джельсомино в стране лжецов. При внимательном рассмотрении работы Robert A. Braeunig были найдены ошибки, которые ничем, как умышленным искривлением фактов назвать нельзя. Даже для Аполлон 11 доза радиации в 56 раз выше, чем официально заявлено.

В таблице 5 приведены суммарные и суточные дозы радиации пилотируемых полётов на космических кораблях и данные с орбитальных станций.

Таблица 5. Суммарные и суточные дозы радиации пилотируемых полётов
на космических кораблях и на орбитальных станциях.

миссия запуск и посадка продолжительность элементы орбиты сум. дозы радиации, рад [источ] среднее
за сутки, рад/сут
Аполлон 7 11.10.1968 / 22.10.1968 10 д 20 ч 09м 03 с орбитальный полёт, высота орбиты 231—297 км 0,16
[51]
0,015
Аполлон 8 21.12.1968 / 27.12.1968 6 д 03 ч 00 м полёт на Луну и возвращение на Землю согласно НАСА 0,16
[51]
0,026
Аполлон 9 03.03.1969 / 13.03.1969 10 д 01 ч 00 м 54 с орбитальный полёт, высота орбиты 189—192 км, на третьи сутки - 229—239 км 0,20
[51]
0,020
Аполлон 10 18.05.1969 / 26.05.1969 8 д 00 ч 03 м 23 с полёт на Луну и возвращение на Землю согласно НАСА 0,48
[51]
0,060
Аполлон 11 16.07.1969 / 24.07.1969 8 д 03 ч 18 м 00 с полёт на Луну и возвращение на Землю согласно НАСА 0,18
[51]
0,022
Аполлон 12 14.11.1969 / 24.11.1969 10 д 04 ч 25 м 24 с полёт на Луну и возвращение на Землю согласно НАСА 0,58
[51]
0,057
Аполлон 13 11.04.1970 / 17.04.1970 5 д 22 ч 54 м 41 с полёт на Луну и возвращение на Землю согласно НАСА 0,24
[51]
0,041
Аполлон 14 01.02.1971 / 10.02.1971 9 д 00 ч 05 м 04 с полёт на Луну и возвращение на Землю согласно НАСА 1,14
[51]
0,127
Аполлон 15 26.07.1971 / 07.08.1971 12 д 07 ч 11 м 53 с полёт на Луну и возвращение на Землю согласно НАСА 0,30
[51]
0,024
Аполлон 16 16.04.1972 / 27.04.1972 11 д 01 ч 51 м 05 с полёт на Луну и возвращение на Землю согласно НАСА 0,51
[51]
0,046
Аполлон 17 07.12.1972 / 19.12.1972 12 д 13 ч 51 м 59 с полёт на Луну и возвращение на Землю согласно НАСА 0,55
[51]
0,044
Скайлэб 2 25.05.1973 / 22.06.1973 28 д 00 ч 49 м 49 с орбитальный полёт, высота орбиты 428—438 км 2,90—3,66
[52]
0,103—0,131
Скайлэб 3 28.07.1973 / 25.09.1973 59 д 11 ч 09 м 01 с орбитальный полёт, высота орбиты 423— 441 км 5,87—6,74
[50]
0,099—0,113
Скайлэб 4 16.11.1973 / 08.02.1974 84 д 01 ч 15 м 30 с орбитальный полёт, высота орбиты 422—437 км 10,88—12,83
[50]
0,129—0,153
Shuttle Mission 41–C 06.04.1984 / 13.04.1984 6 д 23 ч 40 м 07 с орбитальный полёт, перигей: 222 км
апогей: 468 км
0,559 0,079
ОС "Мир" 1986-2001 15 лет орбитальный полёт, высота орбиты 385—393 км - - - 0,020—0,060
[7]
ОС "МКС" 2001-2004 4 года орбитальный полёт, высота орбиты 337—351 км - - - 0,010—0,020
[7]

 

Можно отметить, что дозы радиации Аполлон 0,022-0,114 рад/сут, получаемые астронавтами якобы при полёте на Луну, не отличаются от доз радиации 0,010-0,153 рад/сут при орбитальных полетах. Влияние радиационного пояса Земли (его сезонного характера, магнитных бурь и особенностей солнечной активности) равно нулю. В то время как при реальном полете на Луну по схеме НАСА дозы радиации вызывают в 50-500 раз больший эффект, чем на орбите Земли.

Можно так же отметить, что наиболее низкий радиационный эффект 0,010—0,020 рад/сут наблюдаются для орбитальной станции "МКС", имеющей эффективную защиту в два раза выше Аполлонов - 15 г/см2 и находящейся на низкой опорной орбите Земли. Наиболее высокие дозы радиации 0,099—0,153 рад/сут отмечены для ОС "Скайлэб", имеющий такую же защиту, как у Аполлонов - 7,5 г/см2, и осуществлявших полёт на высокой опорной орбите 480 км вблизи радиационного пояса Ван Алена.

Т.о., Аполлоны не летали на Луну, они кружили на низкой опорной орбите, находясь под защитой магнитосферы Земли, имитируя полёт к Луне, и получили дозы радиации обычного орбитального полёта.

Ошибка НАСА конца 60-ых годов прошлого века состоит в новом современном понимании радиационного пояса Земли, которое 1) на два порядка увеличивает его радиационную опасность для человека, 2) вводит сезонную зависимость и 3) вводит высокую зависимость от магнитных бурь и солнечной активности.

Работа полезна для определения безопасных условий и траектории полета человека к Луне.

 

Дозы радиации в окололунном пространстве. Солнечные протонные события по GOES
14:26
Дозы радиации в околунном пространствеПри освоении Луны важное значение имеет определение доз радиации, которые получает человек в окололунном пространстве, способы защиты от солнечной радиации и периоды окон для полета к Луне.

На околоземной орбите космонавты находятся под защитой магнитосферы Земли, которая запутывает внешние заряженные частицы в магнитном поле и отводит на полюса Земли. В результате стока частиц жители приполярных регионов Земли наблюдают авроральное (северное) сияние. В окололунном пространстве или на поверхности Луны весь поток солнечного ветра принимает корпус космического аппарата или лунного модуля.

Потоки протонов значительно возрастают во время солнечно-протонных событий. Высокоэнергетическая часть протонов прошивает корпус, как световые кванты обычное стекло, и вызывает повышенную радиацию внутри жилого отсека. Плотность потока электронов в солнечном ветре меняется на два-три порядка порой в течении одной только недели. При столкновении с обшивкой корабля или лунного модуля электроны останавливаются и рождают жесткое рентгеновское излучение, которое имеет огромную проникающую способность (толщина защиты 2,73 см алюминия уменьшит дозы радиации только в два раза).

Проект Европейского космического агенства - 3-D печать из реголита лунных поселений с помощью роботов.
Идея колонизации Луны окружена тайнами и загадками. И когда снимется эта завеса таинственности, пока неизвестно. Однозначно можно сказать только одно. Луна может предоставить человечеству огромный объем новых знаний. Исследование Луны — значащая глава для человечества и нашего спутника. И лунные базы вполне могут решить эту проблему. Остаётся только ждать, когда одно из государств решится на столь интригующий шаг. Тогда уже можно будет точно сказать, что колонизация Луны начата!

В настоящей работе рассмотрены данные солнечно-протононых событий, потоков солнечного ветра за 17 лет и рентгеновского излучения спутников GOES - ACE, определяются основные факторы радиационного риска в окололунном пространстве, радиационные требования к лунному скафандру и окна для безопасных пилотируемых полетов к Луне.


СОДЕРЖАНИЕ
  • Данные спутника GOES за 30 лет
  • Список протонных солнечных событий с 1996 по 2013 год
  • Дозы радиации от солнечных протонных событий для разных значений защиты модуля в окололунном пространстве
  • Радиационные требования к лунным поселениям
  • Данные спутника ACE с 1996 по 2013 год
  • Дозы радиации от солнечного ветра для разных значений защиты модуля в окололунном пространстве
  • Американские ученые о радиационном риске рентгеновского излучения от Солнца
  • Данные рентгеновского излучения Солнца по GOES с 2012 по 2013 год
  • Данные рентгеновского излучения Солнца по GOES за 30 лет
  • Дозы радиации от рентгеновского излучения в окололунном пространстве
  • Радиационные требования к лунному скафандру
  • Галактические космические лучи
  • Окна для безопасного освоения Луны



Данные спутника GOES за 30 лет

Спутники GOES выводятся на геостационарную орбиту (35 тыс. км или ~5,6 RE) с космодрома на мысе Канаверал (США) с 1975 года по настоящее время для обеспечения прогнозирования погоды, отслеживания метеорологических исследований и данных об окружающей околоземной среде.

На рис. 1 представлены данные GOES для 100 Мэв протонов за 17 лет [1].


Рис. 1.
Нелинейная шкала слева – флюенс протонов с энергией >100 Мэв с 1996 по 2013 год по данным спутника GOES. Нелинейная шкала справа – эквивалентная доза радиации в единицах Зв за сутки, которые получает астронавт при толщина внешней защиты 7,5 г/см2 в окололунном пространстве. Горизонтальные линии отмечают уровни для сравнения: жёлтая – доза при единичной рентгенографии грудной клетки, оранжевая – доза при томографии позвонков, алая - порог радиационных заболеваний, красная - смертельная доза для человека.Жми, чтобы увеличить.
Рис. 1 показывает, что наряду со средним фоном протонов около 4·103 (частиц/см2сутки1ср1) существуют пики флюенса протонов, когда их плотность потока увеличивается на несколько порядков. Это солнечно-протонные события или корональные выбросы протонов (электронов) с Солнца в направлении Земли. Излучение имеет высокую опасность для человека.


Рис. 2. Флюенс протонов с 1983 по 2013 год по данным спутника GOES. Обозначение P=3 (>10 МэВ), P=5 (>50 МэВ), P=7 (>100 МэВ)Жми, чтобы увеличить.

На рис. 2 приведены данные за тридцать лет для протонов с энергией 10 МэВ, 50 МэВ и 100 МэВ [2].


Список протонных солнечных событий с 1996 по 2013 год

Табл. 1. Список протонных солнечных событий с 1996 по 2013 год

YYYY MM DD

Proton/cm2day1ster1

1997 11 06

1997 11 07

1998 04 21

1998 05 02

1998 08 25

1998 11 14

2000 07 14

2000 07 15

2000 11 09

2000 11 10

2001 04 03

2001 04 15

2001 04 16

2001 04 18

2001 08 16

2001 09 24

2001 09 25

2001 09 26

2001 11 04

2001 11 05

2001 11 06

2001 11 23

2001 11 24

2001 12 26

2002 04 21

2002 04 22

2002 08 24

2003 10 28

2003 10 29

2003 10 30

2003 11 02

2003 11 03

2005 01 17

2005 01 18

2005 01 20

2005 01 21

2005 09 08

2005 09 09

2005 09 10

2006 12 07

2006 12 08

2006 12 13

2011 06 07

2012 01 27

2012 01 28

2012 03 07

2012 03 08

2012 03 09

2012 03 10

2012 05 17

1,40E+06

6,30E+05

2,70E+05

1,50E+05

1,30E+05

1,40E+05

1,10E+07

4,70E+06

1,30E+07

4,20E+05

2,10E+05

2,20E+06

3,20E+05

4,30E+05

6,00E+05

2,90E+05

1,80E+06

2,60E+05

1,10E+06

3,60E+06

3,30E+06

2,00E+05

1,60E+05

6,20E+05

1,20E+06

2,90E+05

4,00E+05

5,20E+06

4,20E+06

2,60E+06

5,00E+05

2,20E+05

6,70E+05

3,80E+05

6,10E+06

3,50E+05

2,60E+05

5,00E+05

4,30E+05

9,80E+05

3,10E+05

1,80E+06

1,50E+05

1,60E+05

2,80E+05

2,20E+06

2,50E+06

5,90E+05

1,10E+05

3,20E+05


Высокая плотность корональных выбросов протонов в определенный период связана с периодичностью солнечной активности. 2000-2003 года соответствуют пику 22-летнего периода солнечной активности, 2011-2013 года - максимуму 11-летнего периода солнечной активности.




Дозы радиации от солнечных протонных событий для разных значений защиты модуля в окололунном пространстве

Для расчета дозы радиации от глубины органов человека и защиты лунного модуля воспользуемся формулой поглощенной и эквивалентной дозы радиации [3], которая для одного вида излучения за единицу времени упростится:

D=0,033·n·E·exp(-Lz/Lzr - Lp/Lpr), Гр/сек,
Н=w·D, Зв/сек,

где n - плотность потока излучения (частиц/м2с1); E - энергия частиц излучения (Дж); Lz - толщина защиты (г/см2); Lzr - длина пробега частицы с энергией Er в защищающем материале z (г/см2); Lp - глубина внутренних органов человека (г/см2); Lpr - длина пробега частицы с энергией E в биологической ткани (г/см2), w=5 - коэффициент качества излучения. Данная формула даёт нижний предел дозы радиации с точностью не ниже 50%.
Множитель 0,033 перед знаком суммирования имеет размерность м2/кг и представляет собой обратное значение средней эффективной толщины биологической защиты человека в окололунном пространстве. Грубо, данный множитель равен площади поверхности биологического объекта, деленная на его массу (2 м2 / 60 кг).
Длины пробегов частицы (г/см2) с энергией E в защищающем и орг. материале берут из ГОСТ РД 50-25645.206-84.

Эквивалентная доза радиации линейно зависит от плотности потока протонов. Для 107 частиц/см2сутки1ср1 и энергии протонов 100 Мэв

Н=3,35·exp(-Lz/Lzr - Lp/Lpr), Зв/сутки,

На рис. 1 справа отмечена ось эквивалентной дозы радиации для экипажа при толщине защиты космического аппарата 7,5 г/см2. В целом, мы получаем примерно одно мощное протонное солнечное событие за год во время максимума солнечной активности, которое опасно для жизни человека. И имеем одно событие в месяц, которые вызывают радиационные заболевания человека. За 22-летний период солнечной активности опасный период составляет 60 суток или 1/134 часть. Защитой от радиационного ливня является укрытие толщиной не менее 40 г/см2, что соответствует толщине лунного реголита около 0,5 метров.
Очевидно, годы минимума солнечной активности являются наиболее безопасными для полетов человека к Луне.





Радиационные требования к лунным поселениям и радиационный риск


В таблице 2 приведены поглощенные и эквивалентные дозы радиации для разных значений защиты модуля на поверхности Луны или космического аппарата в окололунном пространстве.

Табл. 2. Поглощенная и эквивалентные дозы радиации
для разных значений защиты модуля на поверхности Луны
или космического аппарата в окололунном пространстве*.
Защита лунного модуля, г/см2
(эквивалент)
Поглощенная (мГр)
и эквивалентная
(мЗв) доза радиации
кожа органы на глубине 1 см органы на глубине 10 см примечание
0,25
(скафандр)
654 / 3268 573 / 2867 177 / 883 Радиационные заболевания почти у всех людей, ~20% с летальным исходом. 100% ожог кожи. У оставшихся в живых катаракта и постоянная стерильность семенника.
1,5
(лунный модуль Apollo)
577 / 2885 506 / 2530 156 / 779 Радиационные заболевания у ~50% облучённых людей. Рак кожи и легких.
7,5
(командный модуль Apollo)
316 / 1580 277 / 1386 85 / 427 Радиационные заболевания у ~25% облучённых людей. Увеличение в 10 раз риска лейкоза и смертность от рака.
15
(орбитальная станция "МКС")
149 / 745 131 / 654 40/ 201 Радиационные заболевания из 5-10% облучённых людей. Рвота, временные угнетение кроветворения и олигоспермия, изменения в щитовидной железе. Смертность до 17 лет у потомков родителей.
20
(около 0,2 м реголита)
90 / 451 79 / 396 24 / 122 Очень серьезная опасность для человека по МАГАТЭ. Умеренные изменения в крови. Умственная отсталость у потомков родителей.
40
(толщина топлива в баках КА; около 0,5 м реголита)
12,1 / 60,8 10,7 / 53,34 3,3 / 16,43 Большая опасность для человека по МАГАТЭ. Влияние на нервную систему и психику. На 5% повышение риска заболевания лейкозом крови.
60
(толщина топлива в баках КА; около 0,7 м реголита)
1,64 / 8,19 1,44 / 7,18 0,44 / 2,21 Нормальная ситуация для человека по МАГАТЭ.
80
(около 1 м реголита)
0,22 / 1,10 0,194 / 0,97 0,06 / 0,30  
100
(около 1,2 м реголита)
0,03 / 0,15 0,026 / 0,13 0,008 / 0,04 Низкая опасность для человека по МАГАТЭ или естественный природный фон. 0,2 мЗв соответствует единичной рентгенографии грудной клетки человека.
*Прим. - Данная таблица составлена для флюенса 107 частиц/см2сутки1ср1. Для других значений протонных солнечных событий умножают на значение флюенса потока протонов относительно 107 частиц/см2сутки1ср1. Для 9 ноября 2001 года умножают на 1,3. Для 10 ноября 2001 года умножают на 0,42. Для 8 марта 2012 года умножают на 0,25.

Указанные значения дозы радиации близкие к данным НАСА [4]. Для толщины защиты 20 г/см2, настоящий расчет для поглощенной дозы кожи составляет 90,3 мГр, по расчетам НАСА доза радиации для кожи - 87,8 мГр. Отличие составляет меньше 3%. Такое совпадение объясняется тем, что при данной толщине защиты в спектре потока протонов основной вклад вносят 100 Мэв протоны. Большое разногласие настоящего расчета от расчета НАСА заключается в эквивалентной дозе радиации, соответственно,  451 и 144 мЗв, и связано с разной оценкой опасности (качества) излучения. В настоящем расчете принимается w=5, по НАСА  w=1,6. Важно отметить, что после прохождения 20  г/см2, например, в алюминии, поток протонов упадет в несколько раз, энергия потока протонов снизится с 100 Мэв до среднего квадратичного 10 Мэв и облучает экипаж. Для 10 Мэв коэффициент качества экспериментально определен, как 5-10 [3]. Столь низкий коэффициент качества по НАСА противоречит экспериментальным данным. В том же отчете НАСА [4] коэффициент качества излучения галактических космических лучей с энергией 100-500 Mэв для экипажей орбитальных станций принимает значение 3,1-5,2.

При меньшем значении толщины защиты значение доз радиации настоящих расчетов занижено по отношению к расчетами НАСА, что связано с необходимостью учета спектра  потоков протонов - 80, 60, 40, 10 Мэв, особенно, для скафандра (дозы увеличивают в 1,5-2 раза от указанных в таблице).




В научном архиве солнечно-протонных событий отмечены события 4 августа 1972 года и 12 ноября 1960 года, которые близкие к протонному солнечному событию 9 ноября 2001 года [5]. Спорным является событие 23 февраля 1956 года, которое было на на порядок выше протонного солнечного события 9 ноября 2001 года.
Если его принять, как действительное, тогда эквивалентную дозу радиации умножают на ~10, соответственно. Для экипажа командного модуля Аполлонов дозы радиации составят более 15,8 Зв.

При таких потоках радиационного излучения без ущерба для здоровья человека и его потомков защищает 80 г/см2 или эквивалент толщиной 1 м реголита.


Лунная база по советской программе 60-ых годов прошлого века, защищающая от губительного радиационного излучения.



По проекту Европейского космического агентства лунная база состоит из четырёх жилых модулей, из них центральный и верхний левый модули уже закончены, а ещё два находятся в последней стадии строительства. Жилые модули соединены тоннелями, на каждом из них есть по четыре люка-иллюминатора. Примерный размер базы можно оценить в сравнении с астронавтом, который стоит рядом с центральным модулем.

Благодаря спутнику ACE протонные солнечные события можно предупредить за 50 секунд. За это время лунные поселенцы могут спуститься с приповерхностных регионов в подлунные помещения и укрыться от повышенной дозы радиации, а космические аппараты в окололунном пространстве способны развернуть корабль кормой с топливными баками к приближающемуся фронту высокоэнергетичных протонов.


Литература и ссылки:

  1. Daily Particle Data, GOES Proton Fluence, DPD.txt
  2. Space Weather Events. sxi.ngdc.noaa.gov/sxi_greatest.html
  3. Формула расчета эквивалентной дозы радиации и её тестирование. 2010.
  4. Space Radiation Cancer Risk Projections and Uncertainties – 2010. NASA/TP-2011-216155.
  5. Солнечные протонные события на фазе спада протонного цикла солнечной активности. Переяслова Н.К., Назарова М.Н.. Институт прикладной геофизики имени академика Е.К.Федорова Росгидромета. Москва. УДК 523.165.

 

Дозы радиации в окололунном пространстве. Солнечный ветер по данным ACE
12:28
Спутник Advanced Composition Explorer (ACE) — запущенный NASA в рамках программы исследования Солнца и космического пространства «Эксплорер» для изучения таких видов материи, как энергетические частицы солнечного ветра, межпланетная и межзвёздная среда, а также галактическая материя. Передаваемая в реальном времени информация с ACE используется Центром космического предсказания погоды (англ. Space Weather Prediction Center) для повышения достоверности прогнозов и предупреждения о солнечных бурях. Автоматический спутник был запущен 25 августа 1997 года и в настоящее время расположен вблизи точки Лагранжа L1, которая находится на прямой между Солнцем и Землёй на расстоянии примерно 1,5 миллиона километров от Земли.


СОДЕРЖАНИЕ
  • Данные спутника GOES за 30 лет
  • Список протонных солнечных событий с 1996 по 2013 год
  • Дозы радиации от солнечных протонных событий разных значений защиты модуля в окололунном пространстве
  • Радиационные требования к лунным поселениям
  • Данные спутника ACE с 1996 по 2013 год
  • Дозы радиации от солнечного ветра для разных значений защиты модуля в окололунном пространстве
  • Американские ученые о радиационном риске рентгеновского излучения от Солнца
  • Данные рентгеновского излучения Солнца по GOES с 2012 по 2013 год
  • Данные рентгеновского излучения Солнца по GOES за 30 лет
  • Дозы радиации от рентгеновского излучения в окололунном пространстве
  • Радиационные требования к лунному скафандру
  • Галактические космические лучи
  • Окна для безопасного освоения Луны



Данные спутника ACE с 1996 по 2013 год и дозы радиации от электронной составляющей солнечного ветра

На рис. 1 приведены профили изменения флюенса потока электронов с энергией 0,05-0,315 Мэв для ноября 2001 года по данным архива ACE [1].

Рис. 1. Профили электронов в солнечном ветре по данным ACE для ноября 2001 года. Жми, чтобы увеличить.
По профилям потоков электронов можно выполнить расчет дозы радиации, которые получает экипаж в зависимости от внешней защиты.




Дозы радиации от электронного излучения для разных значений защиты модуля в окололунном пространстве

В табл. 1 приведены результаты расчетов для внешний защиты 7,5 см2/г и 1,5 см2/г.

Табл. 1.   Данные  потоков электронов в солнечном ветре,
тормозного излучения,
коэффициенты ослабления в Al и организме,
толщина защиты,
результат расчета поглощенной и эквивалентной дозы радиации за сутки

Данные потоков электронов в солнечном ветре по ACE, 7 нояб 2001

Тормозное излучение от электронов

Поглощенная доза радиации, рад/сут

E, МэВ проб в Al, см поток, /см2сек1 энер, Дж
2сут1
доля рентг, % длина
волны,
А
энер.
рентг,
Дж
2сут1
коэф ослаб в Al, см-1 коэф
ослаб
в орг,
см-1
(защита
7,5 см2/г)
(защита
1,5 см2/г)
0,05 0,0022  2,5*106 17,28 0,082 0,3705 0,014 0,99 0,61 0,0056 0,0503
0,1 0,0059  2,6*106 35,94 0,164 0,1853 0,059 0,46 0,46 0,0771 0,2114
0,15 0,0104  3*106 62,21 0,492 0,1235 0,153 0,28 0,32 0,2142 0,4873
0,3 0,0275  2,5*106 103,68 0,82 0,0618 0,510 0,23 0,26 0,7534 1,4008
  Итого:
1,050
Итого:
2,150

Данный расчет позволяет сопоставить изменение флюенса потока электронов с изменением дозы радиации для экипажа.

На рис. 2 приведен график изменения флюенса потока электронов с энергией 0,175-0,315 Мэв и дозы радиации рад/сутки с 1997 по 2013 год, которые получает астронавт при толщина внешней защиты 1,5 г/см2 (для тормозного излучения 1 рад=0,01 Зв):


Рис. 2. Изменения изменения флюенса потока электронов с энергией 0,175-0,315 Мэв и дозы радиации рад/сутки с 1996 по 2013 год, которые получает астронавт при толщина внешней защиты 1,5 г/см2 в окололунном пространстве. Нелинейная шкала слева – уровни потока электронов для солнечного ветра по данным спутника ACE, нелинейная шкала справа – доза радиации в единицах рад за сутки. Горизонтальные линии отмечают уровни для сравнения: жёлтая – доза при единичной рентгенографии грудной клетки, оранжевая – доза при томографии позвонков. Жми, чтобы увеличить.


Из рис. 2 видно, что дозы радиации в окололунном пространстве и на поверхности Луны носят нерегулярный характер - при фоне 0,5-1 мрад/сутки (0,005-0,01 мЗв/сутки) существуют радиационные пики.

В год максимума солнечной активности изменяются от 0,003 до 1 рад/сутки. За месяц пребывания в окололунном пространстве астронавты для значения соответствующем 1-31 октября 2001 года получают дозы 0,5 рад, среднее 0,016 рад/сут; для значения соответствующем 1-30 ноября 2001 года получают дозы 3,4 рад, среднее 0,11 рад/сут; усредненное за два месяца составляет - 3,9 рад за 60 суток или 0,065 рад/сут. При боле высокой плотности потока электронов (100 суток) дозы могут приближаться к значениям радиационных заболеваний - 0,3 Зв.




Дозы радиации от протонной составляющей солнечного ветра

Пики флюенса электронов совпадают с пиками протонов во время корональных выбросов по данным GOES. Это так же показано на рис. 3, где приведены изменения флюенса потока протонов с энергией 30 Мэв по данным ACE [2].

Рис. 3. Изменения изменения флюенса потока протонов с энергией 30 Мэв и дозы радиации мЗв/сутки с 1996 по 2013 год, которые получает астронавт при толщина внешней защиты 1,5 г/см2 в окололунном пространстве. Нелинейная шкала слева – уровни потока протонов для солнечного ветра по данным спутника ACE, нелинейная шкала справа – доза радиации в единицах мЗв за сутки. Горизонтальные линии отмечают уровни для сравнения: оранжевая – доза при томографии позвонков, алая - порог радиационных заболеваний, красная - смертельная доза для человека.Жми, чтобы увеличить.


На рис. 3 на шкале справа указаны дозы радиации с 1996 по 2013 год. Расчет сделан для качества протонного излучения w=5. Можно отметить, что эквивалентные дозы радиации протонного фона составят 2-4 мЗв/сут для толщины защиты 1,5 г/см2 (соответствует толщине ЛМ Аполлонов согласно НАСА). Для поглощенной дозы радиации данные значения составляют 0,04-0,08 рад/сут.

В табл. 2 приведены дозы радиации от протонной составляющей солнечного ветра в зависимости от толщины защиты.

Табл. 2. Характеристика протонного фона солнечного ветра,
эффективный пробег протонов в Al,
коэффициенты поглощения протонов в организме,
толщина защиты,
результат расчета поглощенной и эквивалентной дозы радиации за сутки*.

Протонный фон солнечного ветра

Длина пробега

Поглощенная (рад/сут)
и эквивалентная (мЗв/сут) доза радиации от внешней защиты

E, МэВ сред. поток, мДж
2сут
Al, г/см2 орг.,
г/см2
7,5 г/см2 (KM) 1,5 г/см2
(LM-5)
0,35 г/см2 (скаф. Кречет) 0,25 г/см2 (скаф. ХА-25) 0,21 г/см2 (скаф. ОрланМ) 0,17 г/см2 (скаф. A7L) 0,14 г/см2
10 34,73 0,171 0,121 0 / 0 1,7·10-5 / 0,0009 0,0148 / 0,7430 0,0267 / 1,3357 0,0203 / 1,0145 0,0285 / 1,4135 0,0363 / 1,8128
30 52,088 1,18 0,874 0,0003 / 0,0151 0,0487 / 2,4351 0,1290 / 6,4532 0,1405 / 7,0240 0,1365 / 6,8270 0,1429 / 7,1468 0,1479 / 7,3964

Итого:

0,0003 / 0,0151 0,0487 / 2,4360 0,1438 / 7,1962 0,1672 / 8,4597 0,1568 / 7,8415 0,1714 / 8,5603 0,1842 / 9,2092
*Примечание - толщина защиты скафандра "Кречет" и "ХА-25" в алюминиевом эквиваленте, что соответствует 1,3 и 0,9 мм листового алюминия [3]; толщина защиты "Орлан-М" и A7L тканеэквивалентного вещества [4, 5], что соответствует 1,9 и 1,5 мм тканеэквивалента.

В скафандре на поверхности Луны эквивалентные дозы радиации от солнечного ветра увеличатся в 3-4 раза, по отношению к пребыванию в ЛМ-5, и составят 7-9 мЗв/сут. Для поглощенной дозы радиации данные значения составляют 0,14-0,18 рад/сут.

Важно отметить, что от протонного излучения защита скафандра в тканеэквивалентном веществе выше, чем в алюминиевом эквиваленте.

Для сравнения: один час пребывания на поверхности луны в скафандре под солнечным ветром соответствует двум процедурам рентгенографии грудной клетки. Согласно МАГАТЭ такой радиационный фон признан нормальным условием для человека.





Т.о., на поверхности Луны средний фон электронной составляющей солнечного ветра равен 0,005-0,01 мЗв/сутки. Протонный фон солнечного ветра составляет 7-10 мЗв/сут. Согласно МАГАТЭ радиационный фон солнечного ветра не представляет угрозы для человека (за исключением корональных выбросов в сторону Земли).

Кроме протонного и электронного излучения от Солнца идет интенсивный рентгеновский поток. Об этом далее.

Дозы радиации в окололунном пространстве. Рентгеновское излучение Солнца по данным GOES
21:19
Характерной особенностью рентгеновского излучения является очень короткая длина волны, что позволяет этому виду электромагнитных волн нести большую энергию и придает ему высокую проникающую способность. В отличие от света, рентгеновские лучи способны проникать сквозь тело человека ("просвечивать его").

Во время прохождения через организм человека рентгеновские лучи "разбивают" сложные молекулы и атомы ДНК человека на заряженные частицы и активные молекулы.

В отличие от протонного ливня и солнечного ветра, опасность которых можно предупредить за час, рентгеновское излучение распространяется со скоростью света. Заблаговременно предупредить об их "приближении" физически невозможно. По этой причине рентгеновские лучи могут представлять собой неожиданную и серьезную угрозу для человека на Луне.

Как и в случае других видов радиации, опасным считается только рентгеновское излучение определенной интенсивности, которое воздействует на организм человека в течение достаточно долгого промежутка времени.


СОДЕРЖАНИЕ
  • Данные спутника GOES за 30 лет
  • Список протонных солнечных событий с 1996 по 2013 год
  • Дозы радиации от солнечных протонных событий для разных значений защиты модуля в окололунном пространстве
  • Радиационные требования к лунным поселениям
  • Данные спутника ACE с 1996 по 2013 год
  • Дозы радиации от солнечного ветра для разных значений защиты модуля в окололунном пространстве
  • Американские ученые о радиационном риске рентгеновского излучения от Солнца
  • Данные рентгеновского излучения Солнца по GOES с 2012 по 2013 год
  • Данные рентгеновского излучения Солнца по GOES за 30 лет
  • Дозы радиации от рентгеновского излучения в окололунном пространстве
  • Радиационные требования к лунному скафандру
  • Галактические космические лучи
  • Окна для безопасного освоения Луны




Американские ученые о радиационном риске рентгеновского излучения от Солнца

Дэвид Смит (David Smith) из лаборатории лунных и планетных исследований в г. Таксон, штат Аризона, и Джон Скало (John Scalo) из техасского университета в г. Остин провели исследование по радиационному риску рентгеновского излучения [1].

Проведенные учеными расчеты показали, что астронавт в околоземном или окололунном космическом пространстве в  современном скафандре за 100 часов с вероятностью 10% получит опасную для здоровья и жизни дозу радиации. Пороговый уровень поглощенной дозы ионизирующего излучения был определен в 0,1 Грэй (10 рад). При дозе в 0,1 Грэй возможны внутренние кровоизлияния, растет риск развития злокачественных новообразований.

Рис. 1. Поглощенная доз радиации от массовой защиты полимера (представляющая защиту текущих скафандров) для рентгеновской вспышки 1031 эрг в зависимости от спектрального индекса. Доза радиации чувствительная к массовой защите и спектральному индексу вспышки.  Для снижения дозы рентгеновского излучения до уровня ниже наших приняты максимально допустимые острой дозы 0,1 Гр массовая толщина полимера должна быть выше 2 г/ см2.

В работе сравнивается эффективность защиты из трансэквивалентного вещества и алюминия.


Рис. 2. Поглощенная доз радиации от массовой защиты алюминия (представляющая  текущее исследование для защиты скафандров) для рентгеновской вспышки 1031 эрг в зависимости от спектрального индекса. Алюминий имеет более высокий атомный номер, чем углерод в полимерах (13 против 6) и поглощает рентгеновские лучи гораздо более эффективно. Для 2 г/ см2 из алюминия доза радиации уменьшается ниже 0,05 Гр.

Исследования показывают, что предпочтение имеет защита из алюминия, чем из полимеров.

В работе сделано заключение, что современные средств защиты от рентгеновского излучения представляет собой новую серьезную проблему – для ее существенного снижения в расчете на одного астронавта необходим, по расчетам ученых, алюминиевый «зонтик» площадью 2-3 квадратных метра и массой 14-21 кг.

Данная работа проводилась, как часть исследований NASA по астробиологии по программе Экзобиология, гранты NNG04GK43G 2007 г.





В настоящей работе проведено независимое исследование результатов американских ученых.


Данные рентгеновского излучения Солнца по GOES с 2012 по 2013 год

На рис. 3 приведены потоки рентгеновского излучения от Солнца за 2012 и 2013 года [2].


Рис. 3. Изменения интенсивности рентгеновского излучения и дозы радиации рад/сек с 2012 по 2013 год. Нелинейная шкала слева – уровни потока рентгеновского излучения от Солнца по данным спутника GOES, нелинейная шкала справа – доза радиации в единицах рад в секунду человека в скафандре с эффективной защитой 0,25 г/см2 тканеэквивалентного вещества. Жми, чтобы увеличить.
На рис. 3 приведены данные для точек через каждые 5 минут с сентября 2012 года по март 2013 года для рентгеновского излучения с длиной волны 1,0-8,0 А и 0,5-4,0 А. Средняя интенсивность составляет ~ 10-6 Ватт/м2 и 3·10-9 Ватт/м2, соответственно. Как и в случае пиков протонного и электронного излучения, рентгеновское излучение имеет пики за сутки, неделю, месяц. Резкое увеличение жесткого рентгеновского излучения продолжается 35-40 минут, пики мягкого рентгеновского излучения продолжаются 60-120 минут, затем они спадают.

За сутки средняя интенсивность мягкого рентгеновского излучения за 2012-2013 год составляет ~ 86 мВатт/м2сутки.

Это высокое радиационное излучение. Опасность данного излучения справедлива для орбитальных станций, околоземного и окололунного пространства.




Данные рентгеновского излучения Солнца по GOES за 30 лет

На рис. 4 приведены потоки мягкого рентгеновского излучения от Солнца с 1983 по 2013 года по данным GOES [3].



Рис. 4. Изменение интенсивности мягкого  рентгеновского излучения и дозы радиации рад/сут с 1983 по 2013 год. Нелинейная шкала слева – уровни потока рентгеновского излучения от Солнца по данным спутника GOES, нелинейная шкала справа – доза радиации в единицах рад в сутки человека в скафандре с эффективной защитой 0,25 г/см2 тканеэквивалентного вещества. Горизонтальные линии отмечают уровни для сравнения: жёлтая – доза при единичной рентгенографии грудной клетки, оранжевая – доза при томографии позвонков, алая - порог радиационных заболеваний, красная - смертельная доза для человека. Жми, чтобы увеличить.

Можно отметить, что в год максимума солнечной активности интенсивность мягкого рентгеновского излучения варьируется между 0,04 и 0,86 Ватт/м2сутки при среднем фоне ~0,150 Ватт/м2сутки.

В год минимума солнечной активности средний фон рентгеновского излучения уменьшается почти в 100 раз и составляет ~2 мВатт/м2сутки. При этом увеличивается вариация рентгеновского потока от 0,4 (порог чувствительности приборов) до 400 мВатт/м2сутки.



 

Дозы радиации от рентгеновского излучения в окололунном пространстве

Зная интенсивность рентгеновского излучения и длину волны, мы можем провести расчет дозы радиации, которые получает экипаж, в зависимости от защитных экранов, корпуса лунного модуля или скафандра.

Интенсивность рентгеновского излучения Io, проходя через слой материала толщиной х и плотностью ρ, ослабевает по экспоненциальному закону

I = Io exp[-μ(x/ρ)],

где μ -  массовый коэффициент ослабления рентгеновского излучения см2/г, х/ρ - массовая толщина зашиты г/см2. Если рассматривают несколько слоев, тогда под экспонентой находятся несколько слагаемых со знаком минус.

Мощность поглощенной доза радиации от рентгеновского излучения за единицу времени N определяется интенсивностью излучения I и массовым коэффициентом поглощения   μEN

N =  μEN I

Для расчетов массовые коэффициенты ослабления и поглощения для разных значений энергии рентгеновского излучения взяты согласно NIST X-Ray Mass Attenuation Coefficients [4].

В таблице 1 приведены используемые параметры и результаты расчетов для поглощенной и эквивалентной дозы радиации от защиты.

Табл. 1.   Характеристика рентгеновского излучения,
коэффициенты ослабления в Al и поглощения в организме,
толщина защиты,
результат расчета поглощенной и эквивалентной дозы радиации за сутки*

Рентгеновское излучение от Солнца

Коэф. ослаб. и поглощ.

Поглощенная и эквивалентная доза радиации от внешней защиты, рад/сут (мЗв/сут)

длина
волны,
А
E, кэВ сред. поток, Ватт/м2 Al, см2 орг.
кость,
см2
1,5 г/ см2 (LM-5) 0,35 г/ см2 (скаф. Кречет) 0,25 г/ см2 (скаф. XA-25) 0,15 г/ см2  (скаф. XA-15) 0,25 г/ см2 (скаф. XO-25) 0,21 г/ см2 (скаф. ОрланМ) 0,17 г/ см2 (скаф. A7L)
1,2560 10,0 1,0·10-6 26,2 28,5 0,0000 0,0006 0,0083 0,1114 1,0892 1,2862 1,5190
0,6280 20,0 3,0·10-9 3,44 4,00 0,0001 0,0038 0,0054 0,0075 0,0061 0,0063 0,0065
0,4189 30,0 1,0·10-9 1,13 1,33 0,0003 0,0010 0,0010 0,0012 0,0009 0,0009 0,0009

Итого рад/сут:

Итого мЗв/сут:

0,000

0,004

0,005

0,054

0,015

0,147

0,120

1,202

1,0961

10,961

1,2934

12,934

1,5263

15,263

*Примечание - толщина защиты LM-5 и скафандров "Кречет", "ХА-25" и "ХА-15" в алюминиевом эквиваленте, что соответствует 5,6, 1,3, 0,9 и 0,6 мм листового алюминия [5]; толщина защиты "ХО-25", "Орлан-М" и A7L тканеэквивалентного вещества [6], что соответствует 2,3, 1,9 и 1,5 мм тканеэквивалента.

Данную таблицу используют для оценки дозы радиации за сутки для других значений интенсивности рентгеновского излучения, умножая на коэффициент отношения между табличным значением потока и искомым усредненным за сутки. Результаты расчетов приведена на рис. 3 и 4 в виде шкалы поглощенной дозы радиации.

Расчет показывает, что лунный модуль с защитой 1,5 г/см2 (или 5,6 мм Al) полностью поглощает мягкое и жесткое рентгеновское излучение Солнца. Для  самой мощной вспышке от 4 ноября 2003 года (по состоянию на 2013 год и регистрируемых с 1976 года) интенсивность ее рентгеновского излучения в пике составляла 28·10−4 Вт/м2 для мягкого излучения и 4·10−4 Вт/м2 для жесткого излучения. За сутки усредненная интенсивность составит, соответственно, 10 Вт/м2сут и 1,3 Вт/м2. Доза радиации для экипажа за сутки равна 8 рад или 0,08 Гр, что безопасно для человека.

Вероятность подобных событий, как 4 ноября 2003 года, определяется как 30 минут за 37 лет. Или равна ~1/650000 час−1.  Это очень низкая вероятность. Для сравнения - среднестатистический человек проводит вне дома за всю свою жизнь ~300000 часов, что соответствует возможности быть очевидцем ренгеновского события от 4 ноября 2003 года с вероятностью 1/2.

Для определения радиационных  требований к скафандру мы рассматриваем рентгеновские вспышки на Солнце, когда их интенсивность увеличивается в 50 раз для мягкого излучения и 1000 раз для жесткого излучения по отношению к среднему суточному фону максимальной активности Солнца. Согласно рис. 4, вероятность таких событий - 3 вспышки за 30 лет. Интенсивность для мягкого рентгеновского излучения будет равна 4,3 Ватт/м2сутки и для жесткого - 0,26 Вт/м2.



Радиационные требования и параметры лунного скафандра

В скафандре на поверхности Луны эквивалентные дозы радиации от рентгеновского излучения увеличиваются.

При использовании скафандра "Кречет" для табличных значений интенсивности излучения доза радиации составит 5 мрад/сут. Защиту от рентгеновского излучения обеспечивает 1,2-1,3 мм листового алюминия [5], уменьшая интенсивность излучения в ~e9=7600 раз. При использовании меньшей толщины листового алюминия дозы радиации увеличиваются: для 0,9 мм Al - 15 мрад/сути, для 0,6 мм Al - 120 мрад/сути.

Согласно МАГАТЭ, такой радиационный фон признан нормальным условием для человека.

При увеличении мощности излучения от Солнца до значения 0,86 Ватт/м2сутки доза радиации для защиты 0,6 мм Al равна 1,2 рад/сути, что находится на границе нормальных и опасных условий для здоровья человека.

Скафандр Кречет

Лунный скафандр "Кречет". Вид на открытый ранцевый люк, через который космонавт входит в скафандр.
 В рамках советской лунной программы понадобилось создать скафандр, позволяющий достаточно длительное время работать непосредственно на Луне. Он имел название «Кречет» и стал прообразом скафандров «Орлан», которые используются сегодня на МКС для работы в открытом космосе [7].
Вес 106 кг.

Доза радиации увеличивается на порядок при использовании защиты  тканеэквивалентного вещества (полимеры, как майлар, капрон, фетр, стекловолокно). Так для скафандра "Орлан-М" при защите 0,21 г/смтканеэквивалентного вещества [5] интенсивность излучения уменьшается в ~e3=19 раз и доза радиации от рентгеновского излучения для костной ткани организма составит 1,29 рад/сути. Для защиты 0,25 г/см2 и 0,17 г/см2, соответственно, 1,01 и 1,53 рад/сути.



Экипаж Аполлон-16 Джон Янг (командир), Томас Маттингли (пилот командного модуля) и Чарльз Дьюк (пилот лунного модуля) в скафандре A7LB. Самостоятельно одеть такой скафандр сложно. Жми, чтобы увеличить.


Скафандр A7LB

Юджин Сернан в скафандре A7LB, миссия Аполлона-17.


Скафандр A7L

A7L — основной тип скафандра использовавшийся астронавтами НАСА в программе Аполлон до 1975 года.Вид с разрезом верхней одежды [8].
Верхняя одежда включала: 1) огнеупорная ткань из стекловолокна весом 2 кг, 2) экранно-вакуумная тепловая изоляция (ЭВТИ) для защиты человека от перегрева при нахождении на Солнце и от чрезмерной потери тепла на неосвещенной поверхности Луны, представляет собой пакет из 7 слоев тонкой пленки майлара и капрона с блестящей алюминированной поверхностью, между слоями проложена тончайшая вуаль волокон дакрона, вес составлял
0,5 кг; 3) противометеорный слой из нейлона с неопреновым покрытием (толщиной 3–5 мм) и весом 2–3 кг [9].
Внутренняя оболочка скафандра изготавливалась из прочной ткани,
пластика, прорезиненной ткани и резины. Масса внутренней оболочки ~20 кг. В комплект входили шлем, рукавицы, боты и СОЖ.
Масса комплекта скафандра A7L для внекорабельной деятельности 34,5 кг [10].


При увеличении интенсивности излучения от Солнца до значения 0,86 Ватт/м2сутки доза радиации для защиты 0,25 г/см2, 0,21 г/см2 и 0,17 г/см2 тканеэквивалентного вещества, соответственно, равна 10,9, 12,9 и 15,3 рад/сути. Такая доза равноценна 500-700 процедурам рентгенографии грудной клетки человека.

Однократная доза 10-15 рад влияет на нервную систему и психику, на 5% повышается риск заболевания лейкозом крови, наблюдают умственную отсталость у потомков родителей. По МАГАТЭ такой радиационный фон представляет очень серьезную опасность для человека.

При интенсивности рентгеновского излучения 4,3 Ватт/м2сутки дозы радиации за сутки имеет значение 50-75 рад и вызывает радиационные заболевания.


Скафандр Орлан-М

Космонавт Михаил Тюрин в скафандре Орлан-М [11]. Скафандр использовался на станции МИР и МКС с 1997 по 2009. Вес 112 кг. В настоящее время на МКС используется Орлан-МК (модернизированный, компьютеризированный). Вес 120 кг.


Самый простой выход - это снижение времени пребывания космонавта под прямыми лучами Солнца до 1 часа. Поглощенная доза радиации в скафандре Орлан-М уменьшится до 0,5 рад. Другой подход - работа в тени космической станции, в этом случае длительность внекорабельной деятельности можно значительно увеличить, несмотря на высокое внешнее рентгеновское излучение.

В случае пребывания на поверхности Луны далеко за пределами лунной базы быстрое возвращение и укрытие не всегда возможно. Можно воспользоваться тенью лунного ландшафта или зонтиком от ренгеновских лучей...

Простым  эффективным способом защиты от рентгеновского излучения Солнца является использование листового алюминия в скафандре. При 0,9 мм Al (толщина 0,25 г/см2 в алюминиевом эквиваленте) скафандр имеет 67-кратный запас от среднего рентгеновского фона. При 10 кратном увеличении фона до 0,86 Ватт/м2сутки доза радиации равна 0,15 рад/сути. Даже при внезапном 50-кратном увеличении рентгеновского потока от среднего фона до значения 4,3 Ватт/м2сутки поглощенная доза радиации за сутки не превысит  0,75 рад.

При 0,7 мм Al (толщина 0,20 г/см2 в алюминиевом эквиваленте) защита сохраняет 35-кратный радиационный запас. При 0,86 Ватт/м2сутки доза радиации составит не более 0,38 рад/сути. При 4,3 Ватт/м2сутки поглощенная доза радиации не превысит  1,89 рад.

Как показывают расчеты, для обеспечения радиационной защиты, как 0,25 г/см2 в алюминиевом эквиваленте, требуется тканеэквивалент в 1,4 г/см2. При таком значении массовой защиты скафандра возрастет его толщина в несколько раз и понижает его юзабилити.





ИТОГИ И ВЫВОДЫ

В случае протонного излучения тканеэквивалентная защита имеет преимущество перед алюминием на 20-30%.

При рентгеновском излучении предпочтение имеет защита скафандра в алюминиевом эквиваленте, чем из полимеров. Данный вывод совпадает с результатами исследований Дэвида Смита (David Smith) и Джона Скало.

Лунные скафандры должны иметь два параметра защиты:
1) параметр защиты скафандра тканеэквивалентного вещества от протонного излучения, не ниже 0,21 г/см2;
2) параметр защиты скафандра в алюминиевом эквиваленте от рентгеновского излучения, не ниже 0,20 г/см2.

При использовании во внешней оболочке скафандра с площадью 2,5-3 м2 защиты Al масса скафандра на базе Орлан-МК увеличится на 5-6 кг.

Для лунного скафандра суммарная поглощенная доза радиации от солнечного ветра и рентгеновских лучей Солнца в год максимума солнечной активности составит 0,19 рад/сут (эквивалентная доза радиации - 8,22 мЗв/сут). Такой скафандр имеет 4-кратный запас радиационной прочности для солнечного ветра и 35-кратный запас радиационной прочности для рентгеновского излучения. Никакие дополнительные меры защиты, как радиационные алюминиевые зонтики, не нужны.

Для скафандра Орлан-М, соответственно, 1,45 рад/сут (эквивалентная доза радиации - 20,77 мЗв/сут). Скафандр имеет 4-кратный запас радиационной прочности для солнечного ветра.

Для скафандра A7L (A7LB) миссии Аполлон, соответственно, 1,70 рад/сут (эквивалентная доза радиации - 23,82 мЗв/сут). Скафандр имеет 3-кратный запас радиационной прочности для солнечного ветра.

При непрерывном пребывание в течении 4 суток на поверхности Луны в современных скафандрах Орлан или типа A7L человек набирает дозу радиации 0,06-0,07 Гр, что представляет опасность для его здоровья. Это соответствует выводам Дэвида Смита (David Smith) и Джона Скало, что в окололунном космическом пространстве в  современном скафандре за 100 часов с вероятностью 10% человек получит опасную для здоровья и жизни дозу радиации выше 0,1 Грэй. Для скафандров Орлан или типа A7L необходимы дополнительные меры защиты от рентгеновского излучения, как радиационные алюминиевые зонтики.

Предлагаемый лунный скафандр на базе Орлан за 4 суток набирает дозу радиации 0,76 рад или 0,0076 Гр. (Один час пребывания на поверхности луны в скафандре под солнечным ветром соответствует двум процедурам рентгенографии грудной клетки). Согласно МАГАТЭ радиационный риск признан нормальным условием для человека.


Лунный скафандр НАСА
Новый лунный скафандр

NASA проводит испытания нового скафандра для готовящегося в 2020 году полета человека на Луну. Фото NASA




Кроме радиационного риска от солнечного ветра и рентгеновского излучения Солнца идет поток галактических космических лучей. Об этом далее.


Литература и ссылки:
  1. David S. Smith and John M. Scalo, Risks due to X-ray flares during astronaut extravehicular activity, SPACE WEATHER, VOL. 5, S06004, doi:10.1029/2006SW000300, 2007.
  2. Daily Particle Data, GOES X-ray Fluence, DPD.txt
  3. Space Weather Events. sxi.ngdc.noaa.gov/sxi_greatest.html
  4. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest
  5. Скафандры для советской лунной программы. Скафандры типа «Кречет» и «Орлан» по программе ЛЗ.
  6. Карташов Дмитрий Александрович, Радиационные нагрузки на космонавта при внекорабельной деятельности в скафандре «Орлан-М» на низких околоземных орбитах, 3 глава, Диссертация на соискание ученой степени кандидат технических наук.
  7. Кречет (скафандр). Материал из Википедии — свободной энциклопедии. 2013.
  8. UNITE DE MOBILITE EXTRAVEHICULAIRE* TYPE A7L
  9. Скафандры первых исследователей Луны. Скафандр мягкого типа.
  10.  US Spacesuits. — Chichester, UK: Praxis Publishing Ltd., 2006. — P. 32. 
  11. International Space Station Imagery.

Вернуться назад