ОКО ПЛАНЕТЫ > Космос > Энциклопедия Солнца. Солнечные вспышки
Энциклопедия Солнца. Солнечные вспышки20-07-2012, 08:46. Разместил: VP |
Характеристики солнечных вспышек
Солнечные вспышки - это уникальные по своей мощности процессы выделения энергии (световой, тепловой и кинетической), в атмосфере Солнца. Вспышки так или иначе охватывают все слои солнечной атмосферы: фотосферу, хромосферу и корону Солнца. Продолжительность солнечных вспышек часто не превышает нескольких минут, а количество энергии, высвобождаемой за это время, может достигать биллионов мегатон в тротиловом эквиваленте. Солнечные вспышки, как правило, происходят в местах взаимодействия солнечных пятен противоположной магнитной полярности или, более точно, вблизи нейтральной линии магнитного поля, разделяющей области северной и южной полярности. Частота и мощность солнечных вспышек зависят от фазы солнечного цикла.
Энергия солнечной вспышки проявляется во множестве форм: в виде излучения (оптического, ультрафиолетового, рентгеновского и даже гамма), в виде энергичных частиц (протонов и электрона), а также в виде гидродинамических течений плазмы. Мощность вспышек часто определяют по яркости производимого ими рентгеновского излучения. Самые сильные солнечные вспышки относятся к рентгеновскому классу X. К классу M относятся солнечные вспышки, которые имеют мощность излучения в 10 раз меньшую, чем вспышки класса X, а к классу C - вспышки с мощностью в 10 раз меньше, чем вспышки класса M. В настоящее время классификация солнечных вспышек осуществляется по данным наблюдений нескольких искусственных спутников Земли, главным образом по данным спутников GOES.
Наблюдения солнечных вспышек в линии H-альфа
Солнечные вспышки часто наблюдаются с помощью фильтров, позволяющих выделить из общего потока излучения линию атома водорода H-альфа, расположенную в красной области спектра. Телескопы, работающие в линиии H-альфа, в настоящее время установлены в большинстве наземных солнечных обсерваторий, причем на некоторых из них фотографии Солнца в этой линии получаются каждые несколько секунд. Примером такой фотографии является изображение Солнца, показанное над этим текстом, которое получено в линии H-альфа в солнечной обсерватории Big Bear Solar Observatory . На нем хорошо виден выброс солнечного протуберанца во время лимбовой солнечной вспышки 10 октября 1971 года.
Солнечные вспышки и магнитные поля
В настоящее время не вызывает сомнений, что ключ к пониманию солнечных вспышек следует искать в структуре и динамике магнитного поля Солнца. Известно, что если структура поля в окрестностях солнечных пятен становится очень сложной, то силовые линии могут начать пересоединяться друг с другом, что приводит к быстрому высвобождению магнитной энергии и энергии электрических токов, связанных с магнитным полем. В результате разнообразных физических процессов, эта первичная энергия поля превращается затем в тепловую энергию плазмы, энергию быстрых частиц и другие формы энергии, наблюдаемые в солнечной вспышке. Изучение этих процессов и установление причин, по которым начинается солнечная вспышка, является одной из основных задач современной физики Солнца, все еще далекой от окончательного ответа.
Протуберанцы, флоккулы и спикулы
Протуберанцы
Солнечный ветер
Солнечный ветер - это поток ионизованных частиц, выбрасываемых из Солнца во всех направлениях со скоростью около 400 км в секунду. Источником солнечного ветра является солнечная корона. Температура короны Солнца настолько высока, что сила гравитации не способна удержать ее вещество вблизи поверхности, и часть этого вещества непрерывно убегает в межпланетное пространство.
Вариации солнечного ветра
Солнечный ветер не однороден. Его скорость является высокой (800 км/с) над корональными дырами и низкой (300 км/с) над стримерами. Эти потоки быстрого и медленного солнечного ветра взаимодействуют друг с другом и попеременного пересекаются Землей по мере того, как Солнце вращается. Такие резкие изменения в скорости солнечного ветра негативно воздействуют на магнитное поле Земли и могут производить магнитные бури в земной магнитосфере.
Большое количество научной информации о солнечном ветре поступает с космических аппаратов. Один из них является спутник Улисс (Ulysses), орбита которого позволила ему пройти поочередно над солнечными южным и северным полюсами. Произведенные Улисс измерения скорости вытекающей с Солнца плазмы, ее химического состава и величины магнитного поля сильно изменили наши представления о солнечном ветре.
Еще одним космическим аппаратом, изучающим структуру и динамику солнечного ветрасолнечного ветра, и команда ACE предоставляет в реальном времени информацию о параметрах солнечного ветра в окрестностях точки L1. является спутник ACE ( Advanced Composition Explorer), запущенный в августе 1997 года на орбиту, расположенную вблизи точки Лагранжа L1 между Землей и Солнцем. Это одна из нескольких точек, в которой гравитационное притяжение Солнца и Земли уравновешивают друг друга. На борту спутника расположено несколько инстументов, осуществляющих круглосуточный мониторинг
Корональные дыры, петли и стримеры
Корональные дыры
Корональные петли
Корональные и вспышечные петли содержат более плотное и горячее вещество, чем окружающая корона и по этой причине выглядят как объекты повышенной яркости.
Стримеры
Петли, из которых состоят стримеры, представляют собой замкнутые магнитные структуры, которые могут удерживать внутри плазму и электрически заряженные частицы. По этой причине плотность вещества внутри стримеров обычно повышена и они выглядят более яркими, чем окружающая корона. Вытянутые вершины стримеров образуются из за действия солнечного ветра, который течет от поверхности Солнца и растягивает линии магнитного поля.
Полярные перья
Загадки Солнца
Нагрев солнечной короны
Природа солнечных вспышек
Происхождение солнечного цикла
Потерянные нейтрино Солнце должно производить количество нейтрино, которое более чем в два раза превышает их число, наблюдаемое в действительности. Эти "призрачные" субатомные частицы высвобождаются во время ядерных реакций, происходящих в солнечном ядре. Затем они проникают сквозь Солнце и уходят в окружающее пространство. Регистрация нейтрино чрезвычайно сложна, но результаты сразу нескольких независимых экспериментов подтверждают, что только приблизительно треть от ожидаемого числа нейтрино регистрируется на Земле. Ученые, специализирующиеся в области физики Солнца, пытались изменить модель строения Солнца и модель его эволюции, чтобы объяснить пониженное число нейтрино. Вернуться назад |