ОКО ПЛАНЕТЫ > Новости науки и техники > Нейросеть научилась распознавать узлы в полимерах

Нейросеть научилась распознавать узлы в полимерах


15-02-2020, 17:03. Разместил: Редакция ОКО ПЛАНЕТЫ

Ученые проверили способность нейросетей классифицировать возникающие в химии полимеров узлы. Исследователи протестировали несколько различных архитектур, лучшая из которых показала правильное распознавание в 99 процентов случаев при анализе циклических молекул из ста сегментов. Такой точности уже сегодня достаточно для некоторых применений, а в случае прогресса в будущем нейросетевое определение узлов может стать полноценным методом как в случае физико-химических систем, так и в контексте математики, пишут авторы в журнале Physical Review E.

Узлы повсеместны в окружающей реальности, от спутавшихся в кармане наушников до альпинисткой обвязки. Они также возникают во многих разделах науки, в том числе в физике, химии и биологии. Например, бывают заузленные течения в жидкости, в узлы также скручиваются многие молекулы - в частности, белки и ДНК.

С точки зрения математики узел — это вложение окружности в трехмерное пространство, при этом одинаковые с точностью до непрерывных преобразований (без разрывов) узлы считаются эквивалентными. Известно, что задача о классификации узлов алгоритмически разрешима, но пока не придумано алгоритма полиномиальной сложности даже для распознавания тривиальных узлов, то есть обычных окружностей с точностью до деформаций.

Стандартный подход заключается в поиске топологических инвариантов, по которым можно отличить узлы. Здесь выделяются два направления: полиномиальные инварианты (АлександераДжонса и другие) и гомотопические инварианты (ХовановаХегора — Флоера и другие). Однако все предложенные методы обладают недостатками. В частности, бесконечно много неодинаковых на самом деле узлов обладают одинаковым полиномом Александера, а гомотопии в общем случае нереалистично сложно подсчитать.

Исследователи из Китая и Сингапура под руководством Лян Дая (Liang Dai) из Городского университета Гонконга опробовали принципиально иной метод на основе нейросетей. В отличие от аналитических алгоритмов он не позволяет добиться абсолютной уверенности в ответе, но зато теоретически может работать в недоступных для других способов случаях. Авторы хотели проверить принципиальную возможность использования нейросетей для распознавания узлов, поэтому ограничились пятью разными узлами и двумя нейросетями.

Исследовали использовали нейросеть с прямой связью и рекуррентную нейросеть. Обучающей и тестовой выборкой были проведенные методом Монте-Карло симуляции конфигурации полимера в виде кольца из ста мономеров. В каждом случае тип узла определялся с помощью многочлена Александера, а для нейросетей выбиралось по 200 тысяч или 2 миллиона каждого из пяти видов получаемых узлов. В качестве дополнительного испытания нейросети также определяли тип узла у миллиона полимеров из 60 и 80 мономеров, которых не было в обучающей выборке.

 

Результаты обучения нейросетей

O. Vandans et al. / Physical Review E, 2020

Ранее ученые нашли среди миллионов молекулярных узлов шесть устойчивых, вывели прочность веревочного узла из его топологии и скрутили рекордно сложный молекулярный узел.

Тимур Кешелава

https://nplus1.ru/news/2020/02...


Вернуться назад