Если бы ко мне сегодня обратился бы за советом начинающий блоггер с вопросом “про что писать по ядерной тематике”, я бы точно отсоветовал бы ему писать про термоядерные и быстрые ядерные реакторы. Интересные новости здесь появляются настолько редко, что люди забудут о твоем существовании от публикации к публикации.
В частности, у меня новости по теме реакторов на быстрых нейтронах выходят примерно раз в полгода и пришлось подождать три годика, прежде чем неторопливая поступь этого направления привела к тому, что мне снова стало интересно написать что-то по теме в целом (а вам, надеюсь, прочитать).
Итак, три года назад, в благословенном 2015 году ситуация с мировой программой реакторов на быстрых нейтронах выглядела так:
-
Только что пущен крупнейший промышленный блок БН-800, символизирующий, что Россия все еще умеет строить и запускать промышленные быстрые реактора. Начинается строительство революционного БРЕСТ-300, идет жесткая битва по поводу того, какие реакторы более перспективны - натриевые или свинцовые. А может быстрые свинцово-висмутовые? Представитель этого направления СВБР-100 планируется к строительству в НИИАР недалеко от Ульяновска.
-
Франция, закрыв Phenix, проектирует возврат к тематике быстрых реакторов через проект натриевого БН ASTRID и участие в быстрых реакторах ALLEGRO (газоохлаждаемый), ALFRED (свинец) и MYRRHA (свинец-висмут с ускорительным драйвером). Однако сроки разрыва между рабочими установками начинают выглядеть тревожно
-
Индия 3 год тянет с запуском 500-мегаваттного PFBR, но все ждут его пуска с минуты на минуту. Все планы по быстрой программы крутятся вокруг этого быстрого реактора и его серийного развития CFBR-500.
-
Из Китая приходят новости о проблемах на небольшом исследовательском быстровике CEFR, спроектированного и построенного с частичной российской помощью. Хотя в конце 2014 года реактор был выведен на номинал, проблемы остаются, и сроки быстрой натриевой начинают плыть. Появляется информации по интересу Китая к свинцовым/свинцово-висмутовым реакторам.
-
В Японии оба быстрых реактора остановлены много лет, и находятся в состоянии между небом и землей - то ли закрывать, то ли развивать. Ситуация эта сложилась еще до аварии на Фукусимской АЭС, но еще сильнее усугубилась после нее.
-
США не имеют ни одной быстрой исследовательской/промышленной установки, и похоже не особо горят желанием менять эту ситуацию. Иногда всплывают разговоры о восстановлении могучего исследовательского реактора FFTF, но действия скорее направлены в противоположную сторону - установку потихоньку разбирают.
Загрузочная машина БН-800, способная работать с плутониевыми сборками. Справа в полу - люки для передачи ТВС на барабан свежих сборок реактора. Спасибо Дмитрию Горчакову за фото.
Что же изменилось в этой картине за прошедшие 3 года? Многое. Давайте пойдем в обратном порядке.
Позиция США в отношении быстрой программы, фактически отказывающая ей в существовании, на самом деле, имела свои причины. Во-первых, владельцы АЭС США - это в основном частные компании (с такими исключениями, например, как TVA), и они не видят коммерческих преимуществ в быстрых реакторах по сравнению с тепловыми. Во-вторых государственная политика США заключается в максимальному противодействию переработки отработанного топлива в мире, для замедления распространения ядерно-оружейных технологий, как в самой США, как и в государствах, до которых США может дотянуться с этим вопросом.
Понятно, что в таких условиях быстрая программа в США могла существовать только в виде военных или научных установок/задач. Откат военного финансирования в 1990х и конкуренция за деньги привела к полному закрытию быстрых реакторов в США. После остановки французского Phenix в 2010 американским исследователям-прикладникам даже теоретически не осталось места в мире для своей работы…. кроме России, где на быстром натриевом реакторе БОР-60 можно было купить время облучения за деньги. Именно так поступили исследователи из финансируемой Биллом Гейтсом TerraPower.
В целом, к 2016 году дихотомия в виде государственного неприятия быстрых реакторов и интереса отдельных команд к этому направлению достигла впечатляющих масштабов. Вкупе с к возобновлением, в некотором роде, холодной войны и опасениям, что вместе перемещением экспериментальной работы по перспективным ядерным реакторам в холодную северную страну могут утечь и какие-то секретные вещи, в США назрело желание восстановить хотя бы свой исследовательский реактор (т.к. ограничения на промышленный, перечисленные раньше, никуда не делись).
Корпус последнего (в 1980 году) построенного в США быстрого натриевого реактора - исследовательского FFTF
На рубеже 2017/2018 стартовала программа строительства новой исследовательской установки в США, крупной и дорогой. Совсем не ясно, доживет ли она до реализации, но мотивы “за” установились, похоже, надолго.
Можно также отметить множество команд, которые существуют в США и Канаде и разрабатывают различные концепции в том числе быстрых реакторов или реакторов с регулируемым спектром. Сюда можно отнести Transatomic Power, TerraPower, Hyperion Power, Advanced Reactor Concepts, GE/Hitachi и некоторые другие. Напомню, речь идет только о быстрых реакторах, еще больше команд работает с концептами с тепловым спектром.
Так вот, несмотря на обилие проектов, все они испытывают в США одинаковые сложности
-
Получить лицензию на строительство (т.е. проверить концепт на безопасность) от NRC невероятно сложно, долго и дорого. При этом, в обоснование безопасности нужны эксперименты, что приводит ко второй проблеме
-
Облучать топливо и экспериментально доказывать безопасность инженерных решений в США негде (для быстрых реакторов)
-
Коммерческий интерес к атомной энергетике вообще и быстрым реакторам в частности довольно ограничен.
Формальным наследником программы строительства быстрых натриевых реакторов в США является 300-мегаваттный GE/Hitachi PRISM, предназначенный для атомных станций малой мощности.
Как я уже писал, все эти проблемы дополнились также закрытием окна возможностей работы с Россией, хотя взамен американское государство подкинуло немножко грантов своим разработчикам. В целом получается, что американской быстрой программе, несмотря на довольно высокий уровень специалистов и большое количество команд, не хватает системности и инфраструктуры. И вот, в этом году конгресс США взял и выделил 2 миллиарда долларов на создание мощного исследовательского быстрого реактора VTR (ранее известного как FASTER). Сроки и цена еще могут сползти, но сам факт показывает, что США все еще видят перспективы в технологиях реакторов с быстрым спектром, несмотря на социальные и политические барьеры.
Единственный оставшийся в Японии на сегодня быстрый натриевый реактор - 140 мегаваттный (тепловых мегаватт) Joyo. После закрытия многострадального Mondju эта исследовательская установка (тоже с непростой судьбой) должна быть снова введена в строй к 2020 году.
Союзник США - Япония за прошедшее время практически не сдвинулась из непонятной ситуации, когда программа по развитию быстрых реакторов вроде и есть и в то же время стоит на месте. Было принято решение закрыть многострадальный Monju (который 10 лет восстанавливали после серьезной аварии, чтобы через несколько месяцев попасть на другую серьезную аварию) и восстановить быстрый исследовательский реактор Joyo. Хотя, если эта работа будет выполнена, и Япония окажется на ступеньку выше США, перспективы развития быстрых реакторов в будущем в этой стране весьма неясные. Кроме общего неприятия атомной энергетике в этой стране, есть еще и какой-то злой рок - оба быстрых реактора поймали кучу проблем и аварий, что и привело к нынешнему тупику - закрывать жалко, а продолжать страшно. Есть правда накопленный объем плутония из переработанного ОЯТ, для ликвидации которого (на этом настаивает США) лучше всего подошел бы быстрый реактор. Но можно и без него. Аккуратно спрогнозирую, что новости по прогрессу быстрых реакторов из Японии появятся не раньше 2030х годов.
Дозиметрическая разведка на реакторе Mondju после большого натриевого пожара в 1995 году. Натриевые пожары на БН сочетают в себе разнос радионуклидов, собственно сам пожар, опасность взрывов при взаимодействии с водой и еще и "пепел" в виде гидрооксида натрия.
Соседка Японии - Южная Корея, в которой было запланировано строительство быстрого натриевого реактора KALIMER-600 и шла программа его разработки (включая облучение прототипов топлива в БОР-60) также столкнулась с разворотом отношения к атомной энергетике от сугубо позитивного к слабо негативному с приходом в прошлом году нового президента. Даже удешевленная и уменьшенная версия KALIMER - 150 мегаваттный PGSFR в настоящий момент не имеет финансирования. Как и в Японии, перспективы развития неясны, но в отличии от Японии, в ЮК нет построенных быстрых реакторов и “прибить” всю программу гораздо проще.
В свою очередь Индия, 15 лет назад выглядевшая самым перспективным новичком, запускавшая весьма продвинутый проект PFBR-500 в строительство, в итоге, похоже, попала на еще один национальный долгострой, а-ля национальный танк или истребитель. PFBR не запущен до сих пор, со сдвигом сроков уже на 8 лет. Причины не называются, но по слухам, проблемы с разнообразными элементами реакторной установки, выполненных или изготовленных с ошибками. Хотя предыдущий (он же первый) исследовательский быстрый натриевый реактор Индии FTBR в начале своей карьеры тоже собрал массу сложностей, сроки той программы получились гораздо более сжатыми.
Монтаж страховочного корпуса PFBR-500 с красивой теплоизоляцией в конце 200х годов.
Активная зона PFBR-500, набитая имитаторами ТВС.
Не слышно ничего и про какие-то альтернативные ветви в быстрой программе Индии, кроме PFBR/CFBR.
Завершая абзац про Индию, хочется добавить, что сами индийцы признают, что снятие санкций по атомной программе и приход иностранных реакторных технологий расслабило отечественных разработчиков и менеджеров, поэтому все своеобразные программы (а тут, кроме PFBR стоит вспомнить о тяжеловодных ториевых бридерах AHWR) замедлились или зависли.
Даже сегодня, через 33 года после пуска и через 23 года после закрытия, французский быстрый натриевый реактор Superphenix мощностью 1200 мегаватт остается самым продвинутым представителем этой реакторной технологии.
Франция. Некогда безусловно передовая в области быстрых реакторов страна, обладавшая 1200-мегаваттным промышленным быстрым реактором, производством и использованием МОКС-топлива, переработкой уранового и МОКС-ОЯТ, развитой экспериментальной базой откатывается все дальше. После закрытия Phenix атомщики явно хотели “пересидеть” отсутствие большой быстрой программы в разработке и строительстве (а потом и эксплуатации) больших общеевропейских исследовательских реакторов - ALLEGRO, ALFRED, MYRRHA и строительстве национального опытно-промышленного натриевого ASTRID мощность в 600 МВт электрических. С точки зрения программ 80х годов это был натянутый компромисс, но это позволяло сохранить кадры и технологии. Однако реальность получилась еще хуже. Вслед за невнятным Олландом к власти пришел внятно-зеленый Макрон, а параллельно тому французский атомный гигант Areva прошел через серьезнейший финансовый кризис, потребовавший денежных вливаний и деления фирмы на части. В такой ситуации 600 мегаваттный ASTRID стоимость в 4-5 миллиарда евро стал слишком дорогим, и к 2018 году проект был урезан до 250 мегаватт электрических (как Phenix, построенный в 1975 году). Одновременно старт строительства уехал с ~2020 на 2025, т.е. разрыв по наличию быстрого реактора в французской быстрой программе составит не менее 20 лет.
Другие перечисленные проекты, в которых участвуют французы в Европе также затягиваются. В итоге от былого величия к 2030 году может остаться неплохая наука и горы отчетов, но даже если Франция решит сдуть пыль со своих планов по замене текущего поколения PWR на быстрые реакторы в 2040х - сделать это будет крайне сложно и дорого.
Французы продемонстрировали на Phenix реальный ЗЯТЦ, с двухкратным проходом плутония через цикл "бридер-переработка ОЯТ-фабрикация"
В то время, как французская быстрая программа закукливается и усыхает, на другой стороне континента - в Китае, все быстро развивается и расширяется. Китай как будто не в курсе всемирного уныния по поводу перспектив быстрых реакторов, считая, что после 2030 года для обеспечения топливной устойчивости многосотгигаваттного флота китайской атомной энергетики основной упор в новом строительстве будет сделан на быстрые реакторы (с ЗЯТЦ). Основная линия - повторение французской и советской программ: линейка быстрых натриевых реакторов с урановым а затем МОКС топливом. Первый опытный реактор, CEFR, мощностью 65 мегаватт тепловыхз (20 электрических) проектировался в 90х годах в России, но строился китайцами самостоятельно. Пущенная в 2010 году, эта установка стала для Китая чем-то вроде полигона, где нарабатывается опыт и понимание, каким образом надо строить и эксплуатировать быстрые натриевые реакторы. Фактически с 2011 года и до сих пор CEFR находится в полурабочем состоянии, работая на мощности всего несколько десятков дней в году. Не выполнена и задача перевода реактора на МОКС топливо (оригинальное урановое китайцы закупают у ТВЭЛ).
Тем не менее, в декабре 2017 года стартовало строительство гораздо большего энергоблока CFR-600, который является аналогом БН-800 по идеологии и даже конструкции некоторых элементов (например парогенераторов, что дало повод слухам, что и здесь в проектировании не обошлось без России). Такая спешка со строительством объясняется конкуренцией с другими быстрыми программами, о которой ниже. Опытно-промышленный CFR-600, который хотят пустить в 2023 году должен открыть дорогу массовому строительству 1200-мегаваттных CCFR, которые и будут решать задачу топливообеспечения и уменьшения количества ОЯТ - в общем планы тут традиционная китайская копипаста французских и/или советских.
Секционно-модульное исполнение второго контура CFR-600 намекает на его близость к советской/российской линейке БН. Так же есть мысль, что наличие всего двух петель (а не 3 или 4) означает, что потом этот дизайн вырастет в мощности до 900 или 1200 мегаватт.
Однако на одной натриевой “классике” Китай не останавливается, и с каждым годом все больше денег вкладывает в альтернативы. Лучше всего известно о свинцово-висмутовом проекте CLEAR-0/I/II, первый из которых представляет сборку 0 мощности (или критсборку, позволяющую исследовать вопросы нейтронно-физических характеристик будущего реактора), а второй - проект 10 мегаваттного(т) реактора с внешним нейтронным приводом (ADS-система). Ходят слухи о военных применениях этой разработки.
Кроме того, Китай в 2017 году поймал удачу за хвост - договорился с американской Terra Power о строительстве быстрого натриевого реактора TWR-300 на территории поднебесной. Terra Power, долгое время финансируемая Биллом Гейтсом (но в последнее время лишившаяся этих денег) в свое время собрала сильнейших американских разработчиков быстрых реакторов под своим крылом, и если проект 300-мегаваттного (электрических) реактора будет реализован - это будет важный впрыск американского опыта в китайскую программу.
Концептуальное изображение TWR-300 напоминает классические быстрые натриевые реакторы Phenix или БН-600, однако в конструкции активной зоны вполне может скрываться множество "фишек".
Наконец, Китай активно развивает тему жидкосолевых реакторов, впрочем тут до конца не известно, идет ли речь о реакторах с замедлителем или все же быстрых. Думается, в пределе нескольких лет эта тема станет яснее. Жидкосолевые реакторы часто рассматриваются в рамках большого парка БН с ЗЯТЦ как “дожигатели”, реализующие трансмутацию минорных актиноидов и долгоживущих продуктов деления, тем самым окончательно решая проблему невероятно длинных сроков выдержки ОЯТ или остатков от переработки ОЯТ.
***
Ну вот мы и добрались до Российской быстрой программы. В России и в 2015 и в 2018 году для разработчиков быстрых реакторов одни из самых лучших в мире условий: есть большой парк экспериментальных и промышленных реакторов, есть финансирование программ, оператор АЭС заинтересован во внедрении быстрых реакторов хотя бы для сжигания плутония, который будет образовываться при переработке ОЯТ ВВЭР.
В России продолжаются строится гражданские быстрые реакторы - на фото стройка 150 мегаваттного МБИР
Казалось бы, в таких условиях мы давно уже должны были увидеть вытеснение новых ВВЭР-строек БН/БРЕСТ-стройками.
Однако, не все так радужно. Вырвавшись в лидеры в мире, быстрая программа России столкнулась с тремя проблемами: снижение мотивации что-то делать, внутренняя конкуренция и снижение финансирования.
Первой жертвой этих проблем стал проект СВБР-100. Как известно, тяжелометаллические теплоносители для быстрых реакторов имеют некоторые плюсы перед натрием (и натрий-калием): негорючесть и инертность при взаимодействии с воздухом и водой, высокую температуру кипения, хорошие нейтронно-физические качества. Проект “Свинцово-висмутовый быстрый реактор” должен был использовать имеющийся опыт работы с свинцово-висмутовой эвтектикой (свинцово-висмутовые реакторы в количестве 7 штук эксплуатировались ВМФ СССР, и как минимум 1 опытный реактор работал на суше).
Реакторная установка СВБР-100 (в центре), второй контур (парогенераторы внутри реактора, снаружи сепараторы)
При этом, для разведения проектов быстрых реакторов по “разным углам”, Росатом привлек к финансированию разработки фирму “En+” Олега Дерипаски, а сам реактор решили сделать малым и в перспективе модульным с целью занять соответствующую нишу (вообще я хочу написать подробный рассказ про историю этого проекта). К 2016 году проект дошел до стадии, когда стала понятна стоимость сооружения и значит - цена киловатт*часа. Стоимость и цена получались запредельно высокими (100+ долларов за МВт*ч), без возможности отбиться на рынке России, да и в мире было не так много мест, где хотя бы потенциально этот проект бы отбивался. Разработчики от Росатома и Дерипаски кулуарно обвиняли друг друга в неумении проектировать малые АЭС, но так или иначе - проект был заморожен и пребывает в этом состоянии до сих пор. Такой “некомандный” подход, думается, надолго отбил желание у частных инвесторов вкладывать деньги в совместные с Росатомом проекты.
Оставшиеся две ветки - БРЕСТ и БН, хотя формально и были объединены в один проект “Прорыв”, смертельно воевали друг с другом за место под финансовым солнцем. В частности, флагманский БН-1200, который должен был вобрать в себя весь опыт натриевых быстрых реакторов и приблизиться по цене к ВВЭР-1200 регулярно подвергался критике и отправлялся на доработки, где пребывает до сих пор. Хотя, по сути, если заказчику (например концерну Росэнергоатом) нужен быстрый энергетический реактор, альтернативы БН-1200 у него нет, рефреном звучала мысль, что нужно построить БРЕСТ и БН и сравнить их. А поскольку БН-800 у нас уже есть, то возможно не стоит строить и новый.
Кстати, мало кто знает, но вплотную с ПО "Маяк" располагается площадка Южно-Уральской АЭС с двумя котлованами под БН-800, строительство которых было остановлено в начале 90х годов.
Впрочем, годы доработок БН-1200 привели к довольно удивительному результату. Проект был фантастически оптимизирован по строительным объемам, металлоемкости реакторной установки, количеству арматуры и т.п. и сейчас позиционируется, как равный по строительной стоимости с ВВЭР-1200. Равный на бумаге, но с учетом того, что БН-800 обошелся в почти в полтора раза дороже ВВЭР-1200 в расчете на мегаватт, это большое достижение. В итоге, хотя решение о строительстве блока БН-1200 не принято, и в условиях значительного сокращения инвестиций в строительство новых энергоблоков АЭС в России принять его будет крайне сложно, позиции натриевой классики как никогда сильны. Видимо, следующей важной точкой будет освоение МОКС-топлива на БН-800, т.к. именно оно планируется основным в текущем проекте БН-1200. Но тем не менее, сияя невероятной перспективностью, сегодня БН-1200 - бумажный проект.
Проект БН-1200 (теперь он БН-1200М) удалось фантастически ужать в размерах и удельных расходах. Главное, что бы за это не пришлось заплатить тяжелую цену эксплуатации.
БРЕСТ-300-ОД в то же время провел эти три года в тяжелых позиционных боях, постепенно теряя финансирование и позиции. Хотя в 2014 году началось строительство модуля фабрикации топлива (одна из трех единиц БРЕСТ наряду с реактором и модулем переработки топлива) и сегодня эта очередь почти достроена и даже начат кое-какой монтаж оборудования фабрикации, дальнейшее строительство так и не началось. В том числе, на лабораторной стадии вскрылось, что получить нужные характеристики от пиропереработки ОЯТ не удается, а значит надо менять проект модуля переработки (довольно существенно - вводить большое хранилище для выдержки ОЯТ, цех PUREX и т.п.), хотя бы пока ученые не доведут пиро.
Одной из проблематичных особенностей свинцовых теплоносителей является шлакообразование/коррозия сталей. Оба процесса запускаются "неправильной" концентрацией кислорода в теплоносителе, которую надо удерживать в пределе 10^-5...10^-6 массовых процентов. Можно ли это технически в объеме десятков кубометров разогретого бурлящего свинца - никто не знает доподлинно.
Укрепилась критика и проекта реактора, т.к. даже весьма обширный НИОКР БРЕСТ с многочисленными стендами не может перепрыгнуть отсутствие хотя бы маленького, но реализующего все проблемные эффекты реактора. При этом на стендах всплыли некоторые неприятные особенности, которыми реальность всегда отличается от идей: насосы разрушались в свинцовом потоке, обеспечить точно заданную концентрацию кислорода в большом объеме свинца оказалось как минимум “очень непросто” и т.п.
Сегодня БРЕСТ остается в подвешенном состоянии. Модуль фабрикации, видимо, будет достроен и запущен, а вот на дальнейшее денег пока нет, и неясно - появятся ли. Как будто отражая вечное российское следование за европейскими странами, проекты превращаются в бесконечные и бесцельные процессы.
Стройплощадка БРЕСТ-300-ОД по состоянию на лето 2018 года. Кроме совсем вспомогательных зданий построен административно-бытовой комплекс, санпропускник (2 здания внизу и по центру) и комплекс модуля фабрикации-рефабрикации и зданий по обращению с радиоактивными отходами (справа вверху). Реактор планировался к строительству в пустом месте слева вверху.
Однако во всем этом сомне бредущих в тумане есть одно яркое пятно. Это исследовательский реактор МБИР. Его задача - замена БОР-60, который доживает последние годы. Этот реактор сооружается в НИИАР, рядом со своим предшественником, и хотя так же как и БРЕСТ, не получил пока финансирования на полное сооружение (в частности, не согласованы деньги на второй контур, турбину и научную часть), не очень большой масштаб проекта скорее всего позволит эти деньги получить либо от государства, либо от заинтересованных разработчиков со всего мира. На данный момент это единственный гражданский быстрый реактор, сооружаемый в России.
***
В сложившейся ситуации, когда у быстрых программ нет коммерческих потребителей, а государственный интерес капризен и непостоянен, наличие современного быстрого реактора помогает сохранить эту технологическую ветвь от забвения и кто знает - может быть в какой-то момент общество снова станет благосклонным к атомной энергетике, а той, в свою очередь понадобятся быстрые реакторы и замыкание топливного цикла.