ОКО ПЛАНЕТЫ > Новости науки и техники > Создан полностью оптический транзистор, потенциально пригодный для квантовых компьютеров

Создан полностью оптический транзистор, потенциально пригодный для квантовых компьютеров


7-07-2013, 16:52. Разместил: Редакция ОКО ПЛАНЕТЫ

Создан полностью оптический транзистор, потенциально пригодный для квантовых компьютеров

 

 

Хотя пока он требует охлаждения полости оптического резонатора до сверхнизких температур, разработчики уверены, что смогут ликвидировать это неудобство.

 

     

Оптические микросхемы и компьютеры требуют, чтобы фотоны, составляющие свет, каким-то образом могли влиять на поведение друг друга. В природе эти частицы избегают подобного: столкните два фотона в космосе — и они просто пройдут один через другой.

Удастся ли задействовать оптические транзисторы в квантовых компьютерах? (Иллюстрация Christine Daniloff.)


Теперь исследователи под руководством Владана Вулетича (Vladan Vuletić) из Массачусетского технологического института (США) попробовали создать оптический ключ, контролируемый единичным фотоном, что наконец-то позволило бы регулировать передачу света при помощи света. Иными словами, речь идёт о разработке полностью оптического аналога транзистора.

Когда ключ находится в положении «включено», луч света может пройти через оба его зеркала, а если он выключен, то вероятность такого прохождения — из-за использования обоих зеркал — снижается до 20%. Зеркала образуют то, что можно назвать оптическим резонатором, — и если бы зеркало было одно, то свет просто возвращался бы обратно.

С двумя зеркалами всё меняется. Хотя как частица фотон, казалось бы, должен останавливаться первым же зеркалом, как «волночастица», в своей, так сказать, волновой ипостаси, электромагнитное поле проникает в пространство между первым и вторым зеркалами. Если расстояние между ними тщательно откалибровано под определённую длину волны входящего фотона, то в этой резонаторной полости создаётся значительное электромагнитное поле, отменяющее поле, идущее назад от первого зеркала, и свет распространяется вперёд — несмотря на пару зеркал на своём пути.

В нынешнем эксперименте полость оптического резонатора была заполнена ультрахолодными атомами цезия, в норме не взаимодействующего с фотонами. Если же одиночный «затворный» фотон выстреливается в середину этой группы атомов под особым углом и затрагивает лишь один электрон всего одного атома, переводя его в более высокоэнергетическое состояние, то физические условия внутри оптического резонатора слегка меняются, позволяя блокировать дальнейшее распространение света по вышеописанному механизму через сам ключ.

Как видим, изготовленный в MIT оптический транзистор всё-таки заработал (хотя 20%...). Правда, не без издержек в виде необходимости охлаждения атомов цезия до температур, близких к абсолютному нулю. Это из минусов.

Но есть и плюсы. Если для обычных компьютеров оптические транзисторы просто снизят перегрев и одновременно энергопотребление, то описанная выше схема благодаря однофотонному вводу имеет некоторый потенциал и для квантовых компьютеров. Более того, г-н Вулетич полагает, что, используя преднамеренно созданные включения в оптоволокне, эффектов сходного рода можно добиться при более практичных температурах.

Отчёт об исследовании опубликовано в журнале Science.

Подготовлено по материалам MIT News.


Вернуться назад