ОКО ПЛАНЕТЫ > Теории и гипотезы > Тяжелые мезоны по-разному плавятся в кварк-глюонной плазме
Тяжелые мезоны по-разному плавятся в кварк-глюонной плазме4-06-2011, 13:11. Разместил: Редакция ОКО ПЛАНЕТЫ |
||||||||||
Тяжелые мезоны по-разному плавятся в кварк-глюонной плазме
Если взять атомное ядро и нагреть его выше критической температуры, равной примерно 2 трлн градусам (175 МэВ в энергетических единицах), ядерная материя превратится в особое состояние вещества — кварк-глюонную плазму. В этом состоянии уже нет отдельных протонов и нейтронов, а есть лишь кварки и глюоны, свободно гуляющие по всему объему плазмы. Это очень необычное состояние материи, которое одинаково интересно и теоретикам, и экспериментаторам. Первые благодаря нему развивают новые математические подходы к изучению сложных систем с сильной связью, а вторые получают возможность увидеть ядерную физику — со всеми ее многочисленными приложениями — в новом свете. В эксперименте облачко кварк-глюонной плазмы можно создать на очень короткое время в лобовом столкновении двух тяжелых ядер с большой энергией. Такие исследования вот уже десять лет ведутся на американском Релятивистском коллайдере тяжелых ионов (RHIC), а в прошлом году в игру вступил и Большой адронный коллайдер. В ноябре 2010 года на LHC происходили столкновения ядер свинца с энергией 287 ТэВ (то есть 1,38 ТэВ в расчете на каждый протон и нейтрон), и накопленная за тот месяц статистика до сих пор изучается экспериментальными группами. Время от времени коллаборации публикуют результаты этих анализов, которые один за другим вскрывают интересные особенности кварк-глюонной плазмы. Мы уже подробно описывали некоторые из этих результатов, например измерение эллиптического потока коллаборацией ALICE и сильный дисбаланс адронных струй, зарегистрированный детектором ATLAS. Оба этих измерения убедительно доказывают, что кварк-глюонная плазма — это самая настоящая сплошная среда, в которой есть коллективные потоки вещества. А на днях в архиве электронных препринтов появилась статья коллаборации CMS, в которой описывается еще один, гораздо более тонкий, эффект кварк-глюонной плазмы — «плавление» тяжелых мезонов. В этой работе речь идет о рождении и распаде частиц из семейства ипсилон-мезонов (обозначаются греческой буквой Υ), о которых стоит рассказать чуть подробнее. Это тяжелые мезоны с массой около 10 ГэВ, состоящие из «прелестного» кварка (b) и его же антикварка (то есть связанные b-анти-b-состояния). На замысловатом физическом жаргоне такие состояния называются боттомониями (от англ. bottom, одного из названий b-кварка), или — несколько более поэтично — «мезонами со скрытой прелестью» (beauty «прелестный» — другое его название). В некоторых отношениях эти мезоны отдаленно напоминают обычные атомы. Прелестный кварк и его антикварк притягиваются друг к другу почти по закону Кулона, только вызвано это притяжение не электрическими силами, а сильным взаимодействием. У связанного состояния (то есть у Υ-частицы) есть энергия связи, которая намного меньше энергии покоя самих кварков, из-за чего кварки движутся относительно друг друга с нерелятивистскими скоростями. И наконец, у семейства Υ-частиц есть своя спектроскопия: кварки могут по-разному располагаться относительно друг друга, а значит, образовывать разные уровни энергии. Физики тут даже пользуются стандартной классификацией энергетических уровней, принятой в химии: основное состояние называется 1s-состоянием, Υ(1S), радиально-возбужденные состояния — Υ(2S), Υ(3S) и так далее. Имеются также и орбитально-возбужденные уровни энергии, и состояния с другим спином, которые, впрочем, уже обозначаются иными буквами. В физике элементарных частиц каждое такое возбужденное состояние, в отличие от атомной физики, считается отдельной частицей. На рис. 2 на диаграмме энергетических уровней показаны несколько частиц из этого семейства. Для дальнейшего рассказа полезно отметить, что так же, как и в случае атомов и их возбужденных состояний, ипсилон-мезоны обладают разными размерами и энергиями связи. Основное состояние, Υ(1S), довольно компактно (его радиус примерно 0,2 фемтометра) и имеет большую энергию связи, а возбужденные состояния имеют больший размер (0,4–0,5 фм), и кварки в них связаны слабее.
Аналогия с атомной спектроскопией касается не только строения, но переходов между разными энергетическими уровнями в семействе ипсилон-частиц. Как и в атомах, возбужденные уровни энергии могут переходить на более низкие уровни, излучая при этом фотон (в физике частиц такие превращения называются радиационными распадами мезонов, некоторые из них показаны на рис. 2). Однако у кварк-антикварковых состояний есть своя особенность, которой нет в атомах: кварк и антикварк могут проаннигилировать, превратившись в пару легких частиц, например в мюон-антимюонную пару Υ → μ–μ+ или в пару пи-мезонов Υ → π–π+. Именно такие распады наиболее удобны для измерения энергетических уровней (то есть масс ипсилон-мезонов) в детекторах.
На рис. 3 показан «спектр» ипсилон-системы в распаде на π–π+-пары. Эти распады наблюдались и на Большом адронном коллайдере уже буквально в первые недели работы; пики, отвечающие Υ(1S), Υ(2S) и Υ(3S), хорошо видны на графике, приведенном на странице Результаты работы LHC в 2010 году. Описанные выше свойства касались ипсилон-мезонов в вакууме. Однако при столкновении ядер высокой энергии прелестные кварки рождаются и пытаются объединяться в мезоны не в пустоте, а прямо внутри кварк-глюонной плазмы. И тут оказывается, что плазма влияет на этот процесс самым непосредственным образом — она мешает b-кваркам объединяться в ипсилон-мезоны. С точки зрения детектора это приводит к нехватке ипсилон-мезонов по сравнению с другими частицами. Объяснить этот эффект нетрудно. Прелестные кварки, конечно, притягиваются друг к другу, пытаясь объединиться в ипсилон-мезон, но плазма из свободных кварков, в которую всё это погружено, экранирует силы притяжения. В результате экранированные силы оказываются намного слабее, и прелестные кварки уже не могут связаться в устойчивый мезон, как прежде. Поэтому в кварк-глюонной среде у тяжелых мезонов есть намного меньше шансов вылететь из облачка плазмы: даже если мезон и образуется, его энергия связи будет так низка, что он тут же развалится из-за высокой температуры плазмы. Иными словами, мезоны плавятся внутри кварк-глюонной плазмы. Надо подчеркнуть, что тут нет никакой особой специфики элементарных частиц, это совершенно естественное поведение любых свободных зарядов. Например, если в обычную электропроводящую среду поместить электрический заряд, то противоположно заряженные частицы среды притянутся к нему, нейтрализуя заряд. Поэтому сила между двумя электрическими зарядами, погруженными в проводящую среду, окажется заметно слабее, чем в вакууме, а значит, связанное состояние может попросту распасться на отдельные частицы. Это схематично показано на рис. 4.
Последний штрих касается зависимости этого эффекта от размера мезона. Нейтрализация силового поля кварка становится тем полнее, чем дальше мы отходим от него. Поэтому при температуре, скажем, в два раза выше критической все крупные мезоны, включая Υ(2S) и Υ(3S), уже расплавились, но Υ(1S), самый компактный из известных мезонов, всё еще выживает. При более высокой температуре, в четыре раза превышающей критическую, расплавится и он, но такие температуры трудно достичь даже на LHC. Описанная закономерность — чем компактнее мезон, тем при более высокой температуре он плавится — называется последовательное плавление мезонов. Экспериментальное наблюдение этого эффекта является одним из самых надежных доказательств образования кварк-глюонной плазмы и позволяет изучать ее свойства. Интересно провести аналогию между этим исследованием и... астрономией, когда по отношению яркости разных спектральных линий в далеких звездах или туманностях удается вычислить температуру и плотность вещества в них. После этого длинного введения результаты исследования, проведенного CMS, должны стать более понятными. В этой работе изучалось, как пропорции родившихся Υ(1S), Υ(2S) и Υ(3S)-частиц меняются при переходе от протон-протонных столкновений к ядерным. Количество ипсилон-частиц измерялось «спектроскопически» через их распад на μ–μ+-пары.
На рис. 5 приведены получившиеся распределения μ–μ+-пар по инвариантной массе в столкновении протонов (вверху) и ядер свинца (внизу). Сильный пик на обоих графиках — это Υ(1S)-мезон, пики послабее при чуть большей массе отвечают Υ(2S) и Υ(3S). Черные точки — это реальные данные со своими погрешностями, а синей линией показано наилучшее приближение, которое учитывает три ипсилон-частицы и остаточный фон. Видно, что в случае ядерных столкновений «сила» вторичных пиков резко просела по сравнению с Υ(1S). Подсчет показал, что если в протонных столкновения суммарное количество Υ(2S) и Υ(3S) составляет примерно 80% от Υ(1S), то в ядерных столкновениях эта величина падает до 25%. Таким образом, наличие кварк-глюонной плазмы подавляет втрое сильнее процесс рождения возбужденных ипсилон-мезонов, чем основного состояния. Это первые подобные данные в ипсилон-семействе (хотя аналогичные эффекты в семействе чармониев, связанных состояний c-кварка и его антикварка, изучались и раньше). Пока они имеют достаточно большие погрешности, но по мере накопления статистики измерения станут существенно точнее и детальнее. Будет, в частности, изучено, как подавление сказывается на мезонах, вылетающих с разными поперечными импульсами (у теоретиков есть интересные предсказания на этот счет). Все эти измерения позволят еще более детально «прощупать» свойства кварк-глюонной плазмы и проверить теоретические модели. Напоследок стоит подчеркнуть пару важных методических аспектов этой работы. Во-первых, как можно заметить на этом примере, свойства кварк-глюонной плазмы извлекаются не из ядерных столкновений самих по себе, а из сравнения ядерных столкновений с протонными. При этом важно, чтобы все параметры в этих двух типах столкновений оставались по возможности одинаковыми. Именно для этого использовались столкновения протонов не с полной достижимой сейчас энергией 3,5 ТэВ, а с уменьшенной энергией 1,38 ТэВ — ведь именно такую энергию несут отдельные протоны и нейтроны в столкновениях ядер. Эти данные были накоплены во время короткого специального сеанса работы на пониженной энергии, который состоялся в конце марта. Во-вторых, ключевая величина, измеренная в этом эксперименте, — это не просто отношение, а двойное отношение: Υ(2S+3S)/Υ(1S) в ядерных столкновениях, поделенное на Υ(2S+3S)/Υ(1S) в протонных столкновениях. Такой подход позволяет уменьшить погрешности и отсечь модели без кварк-глюонной плазмы, в которых предсказывается одинаковое уменьшение всех ипсилон-частиц при переходе от протонов к ядрам. Источник: CMS Collaboration. Suppression of Upsilon excited states in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV [http://arxiv.org/abs/arXiv:1105.4894] // препринт arXiv:1105.4894 [hep-ex] (24 May 2011). См. также: Вернуться назад |