ОКО ПЛАНЕТЫ > Теории и гипотезы > Открытие года в физике

Открытие года в физике


6-09-2010, 18:43. Разместил: Редакция ОКО ПЛАНЕТЫ
Постоянная тонкой структуры, фундаментальная константа, меняется со временем

 

ТЕКСТ: Николай Подорванюк

ФОТО: iop.org

 

Физическая константа, постоянная тонкой структуры, описывающая электромагнитное взаимодействие, миллиарды лет назад была различной в разных концах Вселенной. К такому выводу пришла группа австралийских физиков, которая изучала свет от далеких квазаров.

 

Обнаружено, что постоянная тонкой структуры, которая обозначается греческой буквой α, менялась в пространстве и времени, начиная с момента Большого взрыва. Это открытие специалисты, не участвовавшие в работе, уже назвали «новостью года в физике». Если данный факт справедлив, то это будет означать нарушение основополагающего принципа общей теории относительности Эйнштейна.

При этом характер асимметрии постоянной тонкой структуры может помочь ученым создать одну единую теорию физики, описывающую четыре фундаментальных взаимодействия (гравитацию, электромагнетизм, а также сильные и слабые ядерные силы), а также лучше понять природу нашей Вселенной.

Работа опубликована в журнале Physical Review Letters, о ней также рассказывает сайт Physics World.

 

Постоянная тонкой структуры α является безразмерной, приблизительно равна 1/137. Впервые она была описана в 1916 году немецким физиком Арнольдом Зоммерфельдом. Он интерпретировал ее как отношение скорости электрона на первой круговой орбите в боровской модели атома (это самая простая модель атома, в которой электроны движутся вокруг положительно заряженного ядра, словно планеты вокруг Солнца) к скорости света. В квантовой электродинамике постоянная тонкой структуры характеризует силу взаимодействия между электрическими зарядами и фотонами. Её значение не может быть предсказано теоретически и вводится на основе экспериментальных данных. Постоянная тонкой структуры является одним из двадцати странных «внешних параметров» стандартной модели в физике элементарных частиц, и существовали некоторые теоретические признаки ее возможного изменения.

Признаки изменения α Джон Уэбб, Виктор Фламбаум и их коллеги из Университета Нового Южного Уэльса стали искать с 1998 года, изучая излучение далеких квазаров. Это излучение миллиарды лет шло до Земли сквозь облака газа.

 

Часть его поглотилась на определенных длинах волн, по которым можно сделать выводы о химическом составе облаков и из этого уже определить, какой была постоянная тонкой структуры миллиарды лет назад. По данным австралийских исследователей, которые изучали объекты в северном полушарии, эта величина раньше была на 1/100 000 меньше, чем сейчас. Этот результат, полученный несколько лет назад, был признан не всеми физиками.

Проанализировав 153 квазара на небе Южного полушария с помощью телескопа VLT в Чили, ученые обнаружили, что постоянная тонкой структуры миллиарды лет назад была на 1/100 000 больше, чем сейчас.

Эта асимметрия, которая получила название «австралийский диполь», определена с точностью 4 сигма, что означает: есть только один шанс из пятнадцати тысяч, что данный результат является ошибочным. Пространственное изменение α является доказательством того, что электромагнитное взаимодействие нарушает принцип эквивалентности Эйнштейна, согласно которому постоянная тонкой структуры должна быть одной и той же, независимо от того где и когда она измеряется.

Спектроскопист из Университета Амстердама (Нидерланды) Вим Убахс назвал работу австралийских физиков «новостью года в физике» и добавил, что она дает «новый поворот проблеме».

 

Постоянная тонкой структуры и другие фундаментальные параметры определяются массами и энергиями элементарных частиц, в том числе и тех, которые составляют темную материю. Если эти константы меняются, отношение степени распространенности нормальной материи, темной материи и темной энергии могут быть различными в разных частях Вселенной. Это можно было бы рассматривать в качестве дополнительной анизотропии космического микроволнового фона или асимметрии в скорости расширения Вселенной.

Самый интригующий аспект данного открытия связан с так называемым «антропным принципом», который звучит следующим образом: «Мы видим Вселенную такой, потому что только в такой Вселенной мог возникнуть наблюдатель, человек». То есть из антропного принципа следует, что фундаментальные константы имеют значения, которые позволяют веществу и энергии быть в форме звезд, планет и наших собственных тел. Если α изменяется с течением времени и в пространстве, вполне возможно, что мы обязаны своим существованием специальному месту и времени во Вселенной.

 

«Тёмная сила» новой физики

 

В двух крупных экспериментах появились признаки «новой физики». Адронный коллайдер «Тэватрон» зафиксировал рождение частиц там, где они не должны рождаться, а космический эксперимент PAMELA нашёл следы распада частиц тёмной материи. Но оба факта удивительно хорошо ложатся в единую теорию, предполагающую существование в мире «тёмной силы».

Пока на Большом адронном коллайдере (LHC) готовятся к ремонту после крупной сентябрьской аварии, доживающий последние месяцы в статусе самого мощного ускорителя планеты американский «Тэватрон» преподнёс физикам неожиданный сюрприз. В конце прошлой недели сотрудники коллаборации CDF, работающие на одноимённом гигантском детекторе частиц «Тэватрона», опубликовали препринт, где описывают нечто, выходящее за рамки почти священной для физиков Стандартной модели элементарных частиц.

Если этот сигнал окажется не каким-то неучтённым фоновым эффектом, это открытие станет первым земным свидетельством ограниченности Стандартной модели.

Земным в том смысле, что астрофизикам уже давно известны тёмная материя и тёмная энергия, также в Стандартную модель не вписывающиеся. Правда, о свойствах частиц, из которых состоит тёмная материя, практически ничего не известно.

«Тэватрон» и лишние мюоны

 

С помощью детектора CDF физики изучают частицы, возникающие при столкновении протонов – положительно заряженных частиц, входящих в состав всех атомных ядер, и антипротонов – их отрицательно заряженных антиподов. В ускорителе «Тэватрон», как и подсказывает его имя, эти частицы ускорены до энергий почти в 1 ТэВ, или 1000 ГэВ – тысячу миллиардов электронвольт, а энергия столкновения составляет, соответственно, почти 2000 ГэВ, что позволяет рождать самые разные, даже очень массивные элементарные частицы.

Однако даже просто зафиксировать факт существования большинства интересующих частиц не получается. Как правило, они неустойчивы и за ничтожные доли секунды превращаются в несколько частиц полегче. Именно свойства продуктов распада и измеряет детектор, а физики потом в соответствии с известной метафорой «пытаются восстановить устройство часового механизма, рассматривая осколки шестерёнок часов, столкнувшихся на околосветовой скорости».

Одна из самых популярных «шестерёнок» такого рода – мюон. По своим свойствам мюоны очень похожи на обыкновенные электроны, вращающиеся вокруг атомных ядер. Однако мюоны гораздо массивнее, а потому для физиков-экспериментаторов представляют особую ценность. Во-первых, их труднее «сбить с пути» при встречах с протонами и электронами детектора, а во-вторых, в самих столкновениях их рождается меньше, и разобрать их следы в детекторе проще, чем запутанные траектории многочисленных электронов.

Одна из частиц, которую активно изучали с помощью мюонов, – это так называемый B-мезон, в состав которого входит тяжёлый b-кварк (или антикварк).

И здесь мюоны долгое время водили экспериментаторов за нос.

Теория устройства и взаимодействия кварков – квантовая хромодинамика – позволяет вычислить вероятность рождения B-мезонов и их участия в различных взаимодействиях. Отсюда можно оценить и количество мюонов, которые родятся при распаде этих частиц. Однако в эксперименте мюонов рождалось существенно больше, чем планировалось. Более того, другой метод измерения свойств B-мезонов показывал результаты, всё лучше и лучше согласующиеся с теорией. Так что оснований обвинять теоретиков в том, что они не умеют считать (а расчёты в квантовой хромодинамике – вещь предельно сложная), у экспериментаторов оставалось всё меньше.

Причина этих расхождений долгое время оставалось загадкой, пока учёные не выяснили, что часть мюонов, которые физики долгое время принимали за продукты распада B-мезонов, на деле не имеют к ним отношения. Дело в том, что живёт B-мезон очень недолго и, родившись при столкновении протонов и антипротонов, успевает отлететь от оси вакуумной трубы, где происходят столкновения, лишь на 1–2 мм. Здесь он распадается на мюоны. Когда учёные разобрались, где рождаются те мюоны, которые фиксировал их детектор, проблема B-мезонов решилась: как оказалось, часть их возникала гораздо дальше от оси, и вклад этих «лишних мюонов» в финальный результат как раз и объяснял расхождение с теорией.

Но откуда берутся те самые «лишние» мюоны?

Некоторые из них зарождаются и в 3 мм от оси, и в пяти, и в семи; некоторые и вовсе вне вакуумной трубы, что уж совсем ни в какие ворота не лезет.

С этими частицами и связана зарождающаяся физическая «сенсация». Это редкое для почтенной науки слово на самом деле как нельзя лучше характеризует возбуждение теоретиков и экспериментаторов. На профессиональных блогах физиков уже вовсю бушуют дискуссии о реальности найденных коллаборацией CDF сигналов, а на сайте электронных препринтов Корнельского университета уже третий день подряд появляются всё новые и новые теоретические объяснения увиденному.

Новые частицы?

 

В принципе, причин для появления лишних, или, как говорят физики, «фоновых», частиц может быть великое множество, и большая часть статьи коллаборации CDF как раз и посвящена разбору возможных причин появления сигнала, не апеллирующих к «новой физике» за пределами стандартной модели. Может быть, мы не учли какие-то другие частицы, из которых рождаются мюоны, – например, космические лучи, а может, мы принимаем за мюоны другие продукты распада частиц, рождающихся в «Тэватроне»? Наконец, может, сами сигналы в детекторе, которые мы принимаем за следы мюонов, таковыми не являются – шум, статистические флуктуации, артефакты зубодробительных методов математической обработки результатов эксперимента?

По словам авторов последней работы, найти «стандартного» объяснения им не удалось.

Всё выглядит так, будто найти удалось признаки существования какой-то новой частицы, живущей гораздо дольше B-мезона, и ей нет места в известной нам физике. Впрочем, от такого прямого утверждения учёные всё-таки воздерживаются: опыт целого поколения физиков, раз за разом убеждавшихся в применимости стандартной модели к, казалось бы, совсем необъяснимым явлениям, даёт о себе знать. Но просто игнорировать почти 100 тысяч событий, зарегистрированных одним из самых лучших приборов всё ещё самого мощного ускорителя Земли, нельзя.

Свойства «лишних» мюонов удивительны и сами по себе. Одно из самых поразительных состоит в том, что они очень часто рождались «пачками» – не по одной частице, а по две, по три, даже по восемь штук разом. Кроме того, как правило, из точки, в которой родились, они вылетали не во все стороны, а примерно в одном направлении – учёные даже употребляют термин «мюонная струя». А характерная масса новой неведомой частицы – если она действительно существует – составляет несколько ГэВ. Иначе говоря, «новая физика» – если мы действительно начинаем различать её в мюонном тумане – начинается на энергиях не в тысячи ГэВ, на которые устремлены монстры вроде LHC, а гораздо раньше.

И вот эти свойства поразительным образом сближают результаты с земного ускорителя с опубликованными буквально несколькими днями ранее данными с космического детектора античастиц PAMELA.

 


Доля позитронов, как функция энергии // Группа PAMELA, arXiv.org

 

По мнению многих астрофизиков, избыток высокоэнергичных позитронов (античастиц к электронам) в составе космических лучей возникает из-за распада или аннигиляции частиц загадочной тёмной материи. Это другой элемент физики за пределами Стандартной модели, о существовании которого (и даже доминировании по массе) астрономы давно знают, но ничего путного сказать не могут: на то она и тёмная материя, что её не видно, и своё присутствие выдаёт лишь через гравитацию.

Тёмная сила

Как оказалось, у квартета теоретиков из Принстона, Гарварда и Нью-Йорка уже готово объяснение результатам PAMELA, которое пришлось как нельзя кстати к новым данным с «Тэватрона». По мнению Нимы Арканихамеда и его коллег, в рамках их суперсимметричной модели единое и естественное объяснение получают избыток позитронов, надёжно измеренный аппаратом PAMELA, едва различимый избыток гамма-лучей, приходящих, казалось бы, из ниоткуда, и туманное свечение центра галактики в гамма- и радиолучах, зафиксированные другими астрофизическими спутниками.

В соответствии с моделью частицы тёмной материи имеют массу порядка 1000 ГэВ и не участвуют в известных нам взаимодействиях. Однако они действуют друг на друга с помощью короткодействующей «тёмной» силы, которую переносит другая тёмная частица с массой около 1 ГэВ. Иными словами, к трём обычным видам взаимодействия, действующим лишь на обычное вещество (электромагнитному и ядерному, слабому и сильному), добавляется ещё одно, действующее лишь в мире тёмной материи. Гравитация, как водится, стоит особняком, связывая оба мира.

«Тёмная» сила понадобилась теоретикам для того, чтобы связать частицы тёмной материи в своего рода «атомы», в которых одна из тёмных частиц имеет отрицательный «тёмный заряд», а другая – положительный «тёмный заряд». Только наличие подобного заряда позволяет тёмной материи аннигилировать достаточно интенсивно, чтобы объяснить результаты астрофизических наблюдений (это так называемый механизм Зоммерфельда).

Однако частица – переносчик «тёмной» силы уже может напрямую распадаться с испусканием обычных частиц, и именно она может быть ответственна за появление «лишних» мюонов.

Более того, распад заряженных тёмным зарядом тёмных частиц естественным образом идёт каскадом, пока не упрётся в самую лёгкую стабильную тёмную частицу, распадаться которой уже не во что. В каждый шаг этого каскада вовлечена частица – переносчик тёмной силы, и потому на каждом шаге может появиться лишний мюон. Вот вам и мюоны «пачками». Ну а тот факт, что все они вылетают в одном направлении, связан просто с тем, что распадающаяся частица движется быстро – так заряды праздничного салюта, взрывающиеся, не долетев до высшей точки своей траектории, выбрасывают вперёд целые фонтаны ярких огней. Вот вам и «струи».

Правда, как отмечает специалист по физике высоких энергий Игорь Иванов, лишних мюонных событий на CDF получается слишком много – Арканихамед и его коллеги предполагали, что появление мюонных струй будет крайне редким сигналом. Но нет сомнений, что публикация данных коллаборациями CDF и PAMELA приведёт к появлению в ближайшие месяцы десятков, а может, и сотен возможных объяснений. Так что зацикливаться на модели Арканихамеда, может быть, и не стоит. Пока её выделяет лишь то, что она оказалась ко двору при интерпретации и тех и других данных.

Конечно, не исключено, что оба экспериментальных результата получат более тривиальные объяснения. «Лишние мюоны» могут оказаться не более чем неучтённым инструментальным эффектом гигантской установки CDF, а «лишние позитроны» – генерироваться в окрестностях нейтронных звёзд нашей Галактики.

Но перспективы интригуют. В мире тёмной материи, ещё недавно казавшейся бесформенной мутью, за которой астрономы прячут своё непонимание устройства мира, начала вырисовываться структура – какие-то взаимодействия, «тёмные заряды», «тёмные атомы». Может быть, физика не кончилась, и новым поколениям учёных будет что изучать в «тёмном мире».

 

Стандартная модель

ТЕКСТ: WIKIPEDIA

физики элементарных частиц – теоретическая конструкция, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не включает в себя гравитацию.

Стандартная модель состоит из следующих положений.

1. Всё вещество состоит из 12 фундаментальных частиц-фермионов: 6 лептонов (электрон, мюон, тау-лептон, и три сорта нейтрино) и 6 кварков (u, d, s, c, b, t), которые можно объединить в три поколения фермионов.

2. Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряженные лептоны (электрон, мюон, тау-лептон) – в слабых и электромагнитных; нейтрино – только в слабых взаимодействиях.

3. Все три типа взаимодействий возникают как следствие постулата, что наш мир симметричен относительно трёх типов калибровочных преобразований. Частицами-переносчиками взаимодействий являются:
8 глюонов для сильного взаимодействия (группа симметрии SU(3));
3 тяжелых калибровочных бозона (W+, W, Z0) для слабого взаимодействия (группа симметрии SU(2));
один фотон для электромагнитного взаимодействия (группа симметрии U(1)).

4. В отличие от электромагнитного и сильного, слабое взаимодействие может смешивать фермионы из разных поколений, что приводит к нестабильности всех частиц, за исключением легчайших, и к таким эффектам, как нарушение CP-инвариантности и нейтринные осцилляции.

До сих пор все предсказания Стандартной модели подтверждались экспериментом, иногда с фантастической точностью в миллионные доли процента. Только в последние годы стали появляться результаты, в которых предсказания Стандартной модели слегка расходятся с экспериментом. С другой стороны, очевидно, что Стандартная модель не может являться последним словом в физике элементарных частиц, ибо она содержит слишком много внешних параметров, а также не включает гравитацию.


Вернуться назад