ОКО ПЛАНЕТЫ > Размышления о науке > Логические парадоксы
Логические парадоксы9-11-2010, 12:02. Разместил: pl |
Содержание:
1. Король логических парадоксов 2. Парадокс Рассела 3. Парадоксы Греллинга и Берри 4. Неразрешимый спор 5. Другие парадоксы 6. Что такое логический парадокс
1. Король логических парадоксов Известно, что сформулировать проблему часто важнее и труднее, чем решить ее. «В науке, – писал английский химик Ф. Содди, – задача, надлежащим образом поставленная, более чем наполовину решена. Процесс умственной подготовки, необходимый для выяснения того, что существует определенная задача, часто отнимает больше времени, чем само решение задачи». Формы, в которых проявляется и осознается проблемная ситуация, очень разнообразны. Далеко не всегда она обнаруживает себя в виде прямого вопроса, вставшего в самом начале исследования. Мир проблем так же сложен, как и порождающий их процесс познания. Выявление проблем связано с самой сутью творческого, мышления. Парадоксы представляют собой наиболее интересный случай неявных, безвопросных способов постановки проблем. Парадоксы обычны на ранних стадиях развития научных теорий, когда делаются первые шаги в еще неизученной области и нащупываются самые общие принципы подхода к ней. Парадоксы и логика В широком смысле парадокс – это положение, резко расходящееся с общепринятыми, устоявшимися, ортодоксальными мнениями. «Общепризнанные мнения и то, что считают делом давно решенным, чаще всего заслуживают исследования» (Г.Лихтенберг). Парадокс – начало такого исследования. Парадокс в более узком и специальном значении – это два противоположных, несовместимых утверждения, для каждого из которых имеются кажущиеся убедительными аргументы. Наиболее резкая форма парадокса – антиномия, рассуждение, доказывающее эквивалентность двух утверждений, одно из которых является отрицанием другого. Особой известностью пользуются парадоксы в самых строгих и точных науках – математике и логике. И это не случайно. Логика – абстрактная наука. В ней нет экспериментов, нет даже фактов в обычном смысле этого слова. Строя свои системы, логика исходит в конечном счете из анализа реального мышления. Но результаты этого анализа носят синтетический, нерасчленённый характер. Они не являются констатациями каких-либо отдельных процессов или событий, которые должна была бы объяснить теория. Такой анализ нельзя, очевидно, назвать наблюдением: наблюдается всегда конкретное явление. Конструируя новую теорию, ученый обычно отправляется от фактов, от того, что можно наблюдать в опыте. Как бы ни была свободна его творческая фантазия, она должна считаться с одним непременным обстоятельством: теория имеет смысл только в том случае, когда она согласуется с относящимися к ней фактами. Теория, расходящаяся с фактами и наблюдениями, является надуманной и ценности не имеет. Но если в логике нет экспериментов, нет фактов и нет самого наблюдения, то чем сдерживается логическая фантазия? Какие если не факты, то факторы принимаются во внимание при создании новых логических теорий? Расхождение логической теории с практикой действительного мышления нередко обнаруживается в форме более или менее острого логического парадокса, а иногда даже в форме логической антиномии, говорящей о внутренней противоречивости теории. Этим как раз объясняется то значение, которое придается парадоксам в логике, и то большое внимание, которым они в ней пользуются. Варианты парадокса «Лжеца» Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс «Лжец». Он-то главным образом и прославил имя открывшего его Евбулида из Милета. Имеются варианты этого парадокса, или антиномии, многие из которых являются только по видимости парадоксальными. В простейшем варианте «Лжеца» человек произносит всего одну фразу: «Я лгу». Или говорит: «Высказывание, которое я сейчас произношу, является ложным». Или: «Это высказывание ложно». Если высказывание ложно, то говорящий сказал правду, и значит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то это его высказывание ложно. Оказывается, таким образом, что, если говорящий лжет, он говорит правду, и наоборот. В средние века распространенной была такая формулировка: – Сказанное Платоном – ложно, – говорит Сократ. – То, что сказал Сократ, – истина, – говорит Платон. Возникает вопрос, кто из них высказывает истину, а кто ложь? А вот современная перефразировка этого парадокса. Допустим, что на лицевой стороне карточки написаны только слова: «На другой стороне этой карточки написано истинное высказывание». Ясно, что эти слова представляют собой осмысленное утверждение. Перевернув карточку, мы должны либо обнаружить обещанное высказывание, либо его нет. Если оно написано на обороте, то оно является либо истинным, либо нет. Однако на обороте стоят слова: «На другой стороне этой карточки написано ложное высказывание» – и ничего более. Допустим, что утверждение на лицевой стороне истинно. Тогда утверждение на обороте должно быть истинным и, значит, утверждение на лицевой стороне должно быть ложным. Но если утверждение на лицевой стороне ложно, тогда утверждение на обороте также должно быть ложным, и, следовательно, утверждение на лицевой стороне должно быть истинным. В итоге – парадокс. Парадокс «Лжец» произвел громадное впечатление на греков. И легко понять почему. Вопрос, который в нем ставится, с первого взгляда кажется совсем простым: лжет ли тот, кто говорит только то, что он лжет? Но ответ «да» приводит к ответу «нет», и наоборот. И размышление ничуть не проясняет ситуацию. За простотой и даже обыденностью вопроса оно открывает какую-то неясную и неизмеримую глубину. Ходит даже легенда, что некий Филит Косский, отчаявшись разрешить этот парадокс, покончил с собой. Говорят также, что один из известных древнегреческих логиков, Диодор Кронос, уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет решение «Лжеца», и вскоре умер, так ничего и не добившись. В средние века этот парадокс был отнесен к так называемым неразрешимым предложениям и сделался объектом систематического анализа. В новое время «Лжец» долго не привлекал никакого внимания. В нем не видели никаких, даже малозначительных затруднений, касающихся употребления языка. И только в наше, так называемое новейшее время развитие логики достигло наконец уровня, когда проблемы, стоящие, как представляется, за этим парадоксом, стало возможным формулировать уже в строгих терминах. Теперь «Лжец» – этот типичный бывший софизм – нередко именуется королем логических парадоксов. Ему посвящена обширная научная литература. И тем не менее, как и в случае многих других парадоксов, остается не вполне ясным, какие именно проблемы скрываются за ним и как следует избавляться от него. Язык и метаязык Сейчас «Лжец» обычно считается характерным примером тех трудностей, к которым ведет смешение двух языков: языка, на котором говорится о лежащей вне его действительности, и языка, на котором говорят о самом первом языке. В повседневном языке нет различия между этими уровнями: и о действительности, и о языке мы говорим на одном и том же языке. Например, человек, родным языком которого является русский язык, не видит никакой особой разницы между утверждениями: «Стекло прозрачно» и «Верно, что стекло прозрачно», хотя одно из них говорит о стекле, а другое – о высказывании относительно стекла. Если бы у кого-то возникла мысль о необходимости говорить о мире на одном языке, а о свойствах этого языка – на другом, он мог бы воспользоваться двумя разными существующими языками, допустим русским и английским. Вместо того, чтобы просто сказать: «Корова – это существительное», сказал бы «Корова is a noun», а вместо: «Утверждение „Стекло не прозрачно“ ложно» произнес бы «The assertion „Стекло не прозрачно“ is false». При таком использовании двух разных языков сказанное о мире ясно отличалось бы от сказанного о языке, с помощью которого говорят о мире. В самом деле, первые высказывания относились бы к русскому языку, в то время как вторые – к английскому. Если бы далее нашему знатоку языков захотелось высказаться по поводу каких-то обстоятельств, касающихся уже английского языка, он мог бы воспользоваться еще одним языком. Допустим немецким. Для разговора об этом последнем можно было бы прибегнуть, положим, к испанскому языку и т.д. Получается, таким образом, своеобразная лесенка, или иерархия, языков, каждый из которых используется для вполне определенной цели: на первом говорят о предметном мире, на втором – об этом первом языке, на третьем – о втором языке и т.д. Такое разграничение языков по области их применения – редкое явление в обычной жизни. Но в науках, специально занимающихся, подобно логике, языками, оно иногда оказывается весьма полезным. Язык, на котором рассуждают о мире, обычно называют предметным языком. Язык, используемый для описания предметного языка, именуют метаязыком. Ясно, что, если язык и метаязык разграничиваются указанным образом, утверждение «Я лгу» уже не может быть сформулировано. Оно говорит о ложности того, что сказано на русском языке, и, значит, относится к метаязыку и должно быть высказано на английском языке. Конкретно оно должно звучать так: «Everything I speak in Russian is false» («Все сказанное мной по-русски ложно»); в этом английском утверждении ничего не говорится о нем самом, и никакого парадокса не возникает. Различение языка и метаязыка позволяет устранить парадокс «Лжеца». Тем самым появляется возможность корректно, без противоречия определить классическое понятие истины: истинным является высказывание, соответствующее описываемой им действительности. Понятие истины, как и все иные семантические понятия, имеет относительный характер: оно всегда может быть отнесено к определенному языку. Как показал польский логик А.Тарский, классическое определение истины должно формулироваться в языке более широком, чем тот язык, для которого оно предназначено. Иными словами, если мы хотим указать, что означает оборот «высказывание, истинное в данном языке», нужно, помимо выражений этого языка, пользоваться также выражениями, которых в нем нет. Тарский ввел понятие семантически замкнутого языка. Такой язык включает, помимо своих выражений, их имена, а также, что важно подчеркнуть, высказывания об истинности формулируемых в нем предложений. Границы между языком и метаязыком в семантически замкнутом языке не существует. Средства его настолько богаты, что позволяют не только что-то утверждать о внеязыковой реальности, но и оценивать истинность таких утверждений. Этих средств достаточно, в частности, для того, чтобы воспроизвести в языке антиномию «Лжец». Семантически замкнутый язык оказывается, таким образом, внутренне противоречивым. Каждый естественный язык является, очевидно, семантически замкнутым. Единственно приемлемый путь для устранения антиномии, а значит, и внутренней противоречивости, согласно Тарскому, – отказ от употребления семантически замкнутого языка. Этот путь приемлем, конечно, только в случае искусственных, формализованных языков, допускающих ясное подразделение на язык и метаязык. В естественных же языках с их неясной структурой и возможностью говорить обо всем на одном и том же языке такой подход не очень реален. Ставить вопрос о внутренней непротиворечивости этих языков не имеет смысла. Их богатые выразительные возможности имеют и свою обратную сторону – парадоксы. Другие решения парадокса Итак, существуют высказывания, говорящие о своей собственной истинности или ложности. Идея, что такого рода высказывания не являются осмысленными, очень стара. Ее отстаивал еще древнегреческий логик Хрисипп. В средние века английский философ и логик У.Оккам заявлял, что утверждение «Всякое высказывание ложно» бессмысленно, поскольку оно говорит в числе прочего и о своей собственной ложности. Из этого утверждения прямо следует противоречие. Если всякое высказывание ложно, то это относится и к самому данному утверждению; но то, что оно ложно, означает, что не всякое высказывание является ложным. Аналогично обстоит дело и с утверждением «Всякое высказывание истинно». Оно также должно быть отнесено к бессмысленным и также ведет к противоречию: если каждое высказывание истинно, то истинным является и отрицание самого этого высказывания, то есть высказывание, что не всякое высказывание истинно. Почему, однако, высказывание не может осмысленно говорить о своей собственной истинности или ложности? Уже современник Оккама, французский философ XIV в. Ж. Буридан, не был согласен с его решением. С точки зрения обычных представлений о бессмысленности, выражения типа «Я лгу», «Всякое высказывание истинно (ложно)» и т.п. вполне осмысленны. О чем можно подумать, о том можно высказаться, – таков общий принцип Буридана. Человек может думать об истинности утверждения, которое он произносит, значит, он может и высказаться об этом. Не все утверждения, говорящие о самих себе, относятся к бессмысленным. Например, утверждение «Это предложение написано по-русски» является истинным, а утверждение «В этом предложении десять слов» ложно. И оба они совершенно осмысленны. Если допускается, что утверждение может говорить и о самом себе, то почему оно не способно со смыслом говорить и о таком своем свойстве, как истинность? Сам Буридан считал высказывание «Я лгу» не бессмысленным, а ложным. Он обосновывал это так. Когда человек утверждает какое-то предложение, он утверждает тем самым, что оно истинно. Если же предложение говорит о себе, что оно само является ложным, то оно представляет собой только сокращенную формулировку более сложного выражения, утверждающего одновременно и свою истинность, и свою ложность. Это выражение противоречиво и, следовательно, ложно. Но оно никак не бессмысленно. Аргументация Буридана и сейчас иногда считается убедительной. Имеются и другие направления критики того решения парадокса «Лжец», которое было в деталях развито Тарским. Действительно ли в семантически замкнутых языках – а таковы ведь все естественные языки – нет никакого противоядия против парадоксов этого типа? Если бы это было так, то понятие истины можно было бы определить строгим образом только в формализованных языках. Только в них удается разграничить предметный язык, на котором рассуждают об окружающем мире, и метаязык, на котором говорят об этом языке. Эта иерархия языков строится по образцу усвоения иностранного языка с помощью родного. Изучение такой иерархии привело ко многим интересным выводам, и в определенных случаях она существенна. Но ее нет в естественном языке. Дискредитирует ли это его? И если да, то в какой именно мере? Ведь в нем понятие истины все-таки употребляется, и обычно без всяких осложнений. Является ли введение иерархии единственным способом исключения парадоксов, подобных «Лжецу?» В 30-е годы ответы на эти вопросы представлялись несомненно утвердительными. Однако сейчас былого единодушия уже нет, хотя традиция устранять парадоксы данного типа путем «расслаивания» языка остается господствующей. В последнее время все больше внимания привлекают эгоцентрические выражения. В них встречаются слова, подобные «я», «это», «здесь», «теперь», и их истинность зависит от того, когда, кем, где они употребляются. В утверждении «Это высказывание является ложным» встречается слово «это». К какому именно объекту оно относится? «Лжец» может говорить о том, что слово «это» не относится к смыслу данного утверждения. Но тогда к чему оно относится, что обозначает? И почему данный смысл не может быть все-таки обозначен словом «это»? Не вдаваясь здесь в детали, стоит отметить только, что в контексте анализа эгоцентрических выражений «Лжец» наполняется совершенно иным содержанием, чем ранее. Оказывается, он уже не предостерегает от смешения языка и метаязыка, а указывает на опасности, связанные с неправильным употреблением слова «это» и подобных ему эгоцентрических слов. Проблемы, связывавшие на протяжении веков с «Лжецом», радикально менялись в зависимости от того, рассматривался ли он как пример двусмысленности, или же как выражение, внешне представляющееся как образец смешения языка и метаязыка, или же, наконец, как типичный пример неверного употребления эгоцентрических выражений. И нет уверенности в том, что с этим парадоксом не окажутся связанными в будущем и другие проблемы. Известный современный финский логик и философ Г. фон Вригт писал в своей работе, посвященной «Лжецу», что данный парадокс ни в коем случае не должен пониматься как локальное, изолированное препятствие, устранимое одним изобретательным движением мысли. «Лжец» затрагивает многие наиболее важные темы логики и семантики. Это и определение истины, и истолкование противоречия и доказательства, и целая серия важных различий: между предложением и выражаемой им мыслью, между употреблением выражения и его упоминанием, между смыслом имени и обозначаемым им объектом. Аналогично обстоит дело и с другими логическими парадоксами. «Антиномии логики, – пишет фон Вригт, – озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения, сколько как неисчерпаемый сырой материал для размышления. Они важны, поскольку размышление о них затрагивает наиболее фундаментальные вопросы всей логики, а значит, и всего мышления». В заключение этого разговора о «Лжеце» можно вспомнить курьезный эпизод из того времени, когда формальная логика еще преподавалась в школе. В учебнике логики, изданном в конце 40-х годов, школьникам восьмого класса предлагалось в качестве домашнего задания – в порядке, так сказать, разминки – найти ошибку, допущенную в этом простеньком на вид утверждении: «Я лгу». И, пусть это не покажется странным, считалось, что школьники в большинстве своем успешно справлялись с таким заданием. 2. Парадокс Рассела Самым знаменитым из открытых уже в нашем веке парадоксов является антиномия, обнаруженная Б. Расселом и сообщенная им в письме к Г. Ферге. Эту же антиномию обсуждали одновременно в Геттингене немецкие математики 3. Цермело и Д. Гильберт. Идея носилась в воздухе, и ее опубликование произвело впечатление разорвавшейся бомбы. Этот парадокс вызвал в математике, по мнению Гильберта, эффект полной катастрофы. Нависла угроза над самыми простыми и важными логическими методами, самыми обыкновенными и полезными понятиями. Сразу же стало очевидным, что ни в логике, ни в математике за всю долгую историю их существования не было выработано решительно ничего, что могло бы послужить основой для устранения антиномии. Явно оказался необходимым отход от привычных способов мышления. Но из какого места и в каком направлении? Насколько радикальным должен был стать отказ от устоявшихся способов теоретизирования? С дальнейшим исследованием антиномии убеждение в необходимости принципиально нового подхода неуклонно росло. Спустя полвека после ее открытия специалисты по основаниям логики и математики Л. Френкель и И.Бар-Хиллел уже без всяких оговорок утверждали: «Мы полагаем, что любые попытки выйти из положения с помощью традиционных (то есть имевших хождение до XX столетия) способов мышления, до сих пор неизменно проваливавшихся, заведомо недостаточны для этой цели». Современный американский логик X. Карри писал немного позднее об этом парадоксе: «В терминах логики, известной в XIX в., положение просто не поддавалось объяснению, хотя, конечно, в наш образованный век могут найтись люди, которые увидят (или подумают, что увидят), в чем же состоит ошибка». Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса. Можно говорить о множествах различных объектов, например, о множестве всех людей или о множестве натуральных чисел. Элементом первого множества будет всякий отдельный человек, элементом второго – каждое натуральное число. Допустимо также сами множества рассматривать как некоторые объекты и говорить о множествах множеств. Можно ввести даже такие понятия, как множество всех множеств или множество всех понятий. Множество обычных множеств Относительно любого произвольно взятого множества представляется осмысленным спросить, является оно своим собственным элементом или нет. Множества, не содержащие себя в качестве элемента, назовем обычными. Например, множество всех людей не является человеком, так же как множество атомов – это не атом. Необычными будут множества, являющиеся собственными элементами. Например, множество, объединяющее все множества, представляет собой множество и, значит, содержит само себя в качестве элемента. Рассмотрим теперь множество всех обычных множеств. Поскольку оно множество, о нем тоже можно спрашивать, обычное оно или необычное. Ответ, однако, оказывается обескураживающим. Если оно обычное, то, согласно своему определению, должно содержать само себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что наше множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит само себя в качестве элемента, а элементами нашего множества являются только обычные множества. В итоге приходим к заключению, что множество всех обычных множеств не может быть ни обычным, ни необычным множеством. Итак, множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Это явное противоречие. И получено оно на основе самых правдоподобных предположений и с помощью бесспорных как будто шагов. Противоречие говорит о том, что такого множества просто не существует. Но почему оно не может существовать? Ведь оно состоит из объектов, удовлетворяющих четко определенному условию, причем само условие не кажется каким-то исключительным или неясным. Если столь просто и ясно заданное множество не может существовать, то в чем, собственно, заключается различие между возможными и невозможными множествами? Вывод о несуществовании рассматриваемого множества звучит неожиданно и внушает беспокойство. Он делает наше общее понятие множества аморфным и хаотичным, и нет гарантии, что оно не способно породить какие-то новые парадоксы. Парадокс Рассела замечателен своей крайней общностью. Для его построения не нужны какие-либо сложные технические понятия, как в случае некоторых других парадоксов, достаточно понятий «множество» и «элемент множества». Но эта простота как раз и говорит о его фундаментальности: он затрагивает самые глубокие основания наших рассуждений о множествах, поскольку говорит не о каких-то специальных случаях, а о множествах вообще. Другие варианты парадокса Парадокс Рассела не имеет специфически математического характера. В нем используется понятие множества, но не затрагиваются какие-то особые, связанные именно с математикой его свойства. Это становится очевидным, если переформулировать парадокс в чисто логических терминах. О каждом свойстве можно, по всей вероятности, спрашивать, приложимо оно к самому себе или нет. Свойство быть горячим, например, неприложимо к самому себе, поскольку само не является горячим; свойство быть конкретным тоже не относится к самому себе, ибо это абстрактное свойство. Но вот свойство быть абстрактным, являясь абстрактным, приложимо к самому себе. Назовем эти неприменимые к самим себе свойства неприложимыми. Применимо ли свойство быть неприложимым к самому себе? Оказывается, неприложимость является неприложимой только в том случае, если она не является таковой. Это, конечно, парадоксально. Логическая, касающаяся свойств разновидность антиномии Рассела, столь же парадоксальна, как и математическая, относящаяся к множествам, ее разновидность. Рассел предложил также следующий популярный вариант открытого им парадокса. Представим, что совет одной деревни так определил обязанности парикмахера: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно. Рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно, и нет такого жителя деревни, который брил бы всех тех и только тех ее жителей, которые не бреются сами. Обязанности парикмахера не кажутся на первый взгляд противоречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является все-таки парадоксальным. Условие, которому должен удовлетворять деревенский брадобрей, на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой в ней нет человека, который был бы старше самого себя или который родился бы до своего рождения. Рассуждение о парикмахере может быть названо псевдопарадоксом. По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно все-таки не является подлинным парадоксом. Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге. Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя? Нетрудно показать, что идея создания такого каталога неосуществима; он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать. Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс. Допустим, что в какой-то момент был составлен каталог, скажем К1, включающий, все отличные от него каталоги, не содержащие ссылки на себя. С созданием К1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что К1 не является ее решением. Он не упоминает один из таких каталогов – самого себя. Включив в К1 это упоминание о нем самом, получим каталог К2. В нем упоминается К1, но не сам К2. Добавив к К2 такое упоминание, получим КЗ, который опять-таки не полон из-за того, что не упоминает самого себя. И далее без конца. 3. Парадоксы Греллинга и Берри Интересный логический парадокс был открыт немецкими логиками К. Греллингом и Л. Нельсоном (парадокс Греллинга). Этот парадокс можно сформулировать очень просто. Аутологические и гетерологические слова Некоторые слова, обозначающие свойства, обладают тем самым свойством, которое они называют. Например, прилагательное «русское» само является русским, «многосложное» – само многосложное, а «пятислоговое» само имеет пять слогов. Такие слова, относящиеся к самим себе, называются самозначными, или аутологическими. Подобных слов не так много, в подавляющем большинстве прилагательные не обладают свойствами, которые они называют. «Новое» не является, конечно, новым, «горячее» – горячим, «однослоговое» – состоящим из одного слога, а «английское» – английским. Слова, не имеющие свойства, обозначаемого ими, называются инозначными, или гетерологическими. Очевидно, что все прилагательные, обозначающие свойства, неприложимые к словам, будут гетерологическими. Это разделение прилагательных на две группы кажется ясным и не вызывает возражений. Оно может быть распространено и на существительные: «слово» является словом, «существительное» – существительным, но «часы» – это не часы и «глагол» – не глагол. Парадокс возникает, как только задается вопрос: к какой из двух групп относится само прилагательное «гетерологическое»? Если оно аутологическое, оно обладает обозначаемым им свойством и должно быть гетерологическим. Если же оно гетерологическое, оно не имеет называемого им свойства и должно быть поэтому аутологическим. Налицо парадокс. По аналогии с этим парадоксом легко сформулировать другие парадоксы такой же структуры. Например, является или не является самоубийцей тот, кто убивает каждого несамоубийцу и не убивает ни одного самоубийцу? Оказалось, что парадокс Греллига был известен еще в средние века как антиномия выражения, не называющего самого себя. Можно представить себе отношение к софизмам и парадоксам в новое время, если проблема, требовавшая ответа и вызывавшая оживленные споры, оказалась вдруг забытой и была переоткрыта только пятьсот лет спустя! Еще одна, внешне простая антиномия была указана в самом начале нашего века Д. Берри. Множество натуральных чисел бесконечно. Множество же тех имен этих чисел, которые имеются, например, в русском языке и содержат меньше, чем, допустим, сто слов, является конечным. Это означает, что существуют такие натуральные числа, для которых в русском языке нет имен, состоящих менее чем из ста слов. Среди этих чисел есть, очевидно, наименьшее число. Его нельзя назвать посредством русского выражения, содержащего менее ста слов. Но выражение: «Наименьшее натуральное число, для которого не существует в русском языке его сложное имя, слагающееся менее чем из ста слов» является как раз именем этого числа! Это имя только что сформулировано в русском языке и содержит только девятнадцать слов. Очевидный парадокс: названным оказалось то число, для которого нет имени! 4. Неразрешимый спор В основе одного знаменитого парадокса лежит как будто небольшое происшествие, случившееся две с лишним тысячи лет назад и не забытое до сих пор. У знаменитого софиста Протагора, жившего в V в. до нашей эры, был ученик по имени Еватл, обучавшийся праву. По заключенному между ними договору Еватл должен был заплатить за обучение лишь в том случае, если выиграет свой первый судебный процесс. Если же он этот процесс проиграет, то вообще не обязан платить. Однако, закончив обучение, Еватл не стал участвовать в процессах. Это длилось довольно долго, терпение учителя иссякло, и он подал на своего ученика в суд. Таким образом, для Еватла это был первый процесс. Свое требование Протагор обосновал так: – Каким бы ни было решение суда, Еватл должен будет заплатить мне. Он либо выиграет этот свой первый процесс, либо проиграет. Если выиграет, то заплатит в силу нашего договора. Если проиграет, то заплатит согласно этому решению. Судя по всему, Еватл был способным учеником, поскольку он ответил Протагору: – Действительно, я либо выиграю процесс, либо проиграю его. Если выиграю, решение суда освободит меня от обязанности платить. Если решение суда будет не в мою пользу, значит, я проиграл свой первый процесс и не заплачу в силу нашего договора. Решения парадокса «Протагор и Еватл» Озадаченный таким оборотом дела, Протагор посвятил этому спору с Еватлом особое сочинение «Тяжба о плате». К сожалению, оно, как и большая часть написанного Протагором, не дошло до нас. Тем не менее нужно отдать должное Протагору, сразу почувствовавшему за простым судебным казусом проблему, заслуживающую специального исследования. Г. Лейбниц, сам юрист по образованию, также отнесся к этому спору всерьез. В своей докторской диссертации «Исследование о запутанных казусах в праве» он пытался доказать, что все случаи, даже самые запутанные, подобно тяжбе Протагора и Еватла, должны находить правильное разрешение на основе здравого смысла. По мысли Лейбница, суд должен отказать Протагору за несвоевременностью предъявления иска, но оставить, однако, за ним право потребовать уплаты денег Еватлом позже, а именно после первого выигранного им процесса. Было предложено много других решений данного парадокса. Ссылались, в частности, на то, что решение суда должно иметь большую силу, чем частная договоренность двух лиц. На это можно ответить, что не будь этой договоренности, какой бы незначительной она ни казалась, не было бы ни суда, ни его решения. Ведь суд должен вынести свое решение именно по ее поводу и на ее основе. Обращались также к общему принципу, что всякий труд, а значит, и труд Протагора, должен быть оплачен. Но ведь известно, что этот принцип всегда имел исключения, тем более в рабовладельческом обществе. К тому же он просто неприложим к конкретной ситуации спора: ведь Протагор, гарантируя высокий уровень обучения, сам отказывался принимать плату в случае неудачи своего ученика в первом процессе. Иногда рассуждают так. И Протагор и Еватл – оба правы частично, и ни один из них в целом. Каждый из них учитывает только половину возможностей, выгодную для себя. Полное или всестороннее рассмотрение открывает четыре возможности, из которых только половина выгодна для одного из спорящих. Какая из этих возможностей реализуется, это решит не логика, а жизнь. Если приговор судей будет иметь большую силу, чем договор, Еватл должен будет платить, только если проиграет процесс, т.е. в силу решения суда. Если же частная договоренность будет ставится выше, чем решение судей, то Протагор получит плату только в случае проигрыша процесса Еватлу, т.е. в силу договора с Протагором. Эта апелляция к жизни окончательно все запутывает. Чем, если не логикой, могут руководствоваться судьи в условиях, когда все относящиеся к делу обстоятельства совершенно ясны? И что это будет за руководство, если Протагор, претендующий на оплату через суд, добьется ее, лишь проиграв процесс? Впрочем, и решение Лейбница, кажущееся вначале убедительным, немного лучше, чем неясное противопоставление логики и жизни. В сущности, Лейбниц предлагает задним числом заменить формулировку договора и оговорить, что первым с участием Еватла судебным процессом, исход которого решит вопрос об оплате, не должен быть суд по иску Протагора. Мысль эта глубокая, но не имеющая отношения к конкретному суду. Если бы в исходной договоренности была такая оговорка, нужды в судебном разбирательстве вообще не возникло бы. Если под решением данного затруднения понимать ответ на вопрос, должен Еватл уплатить Протагору или нет, то все эти, как и все другие мыслимые решения, являются, конечно, несостоятельными. Они представляют собой не более чем уход от существа спора, являются, так сказать, софистическими уловками и хитростями в безвыходной и неразрешимой ситуации. Ибо ни здравый смысл, ни какие-то общие принципы, касающиеся социальных отношений, не способны разрешить спор. Невозможно выполнить вместе договор в его первоначальной форме и решение суда, каким бы последнее ни было. Для доказательства этого достаточно простых средств логики. С помощью этих же средств можно также показать, что договор, несмотря на его вполне невинный внешний вид, внутренне противоречив. Он требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение, и вместе с тем не платить. Правила, заводящие в тупик Человеческому уму, привыкшему не только к своей силе, но и к своей гибкости и даже изворотливости, трудно, конечно, смириться с этой абсолютной безвыходностью и признать себя загнанным в тупик. Это особенно трудно тогда, когда тупиковая ситуация создается самим умом: он, так сказать, оступается на ровном месте и угождает в свои собственные сети. И тем не менее приходится признать, что иногда, и впрочем, не так уж редко, соглашения и системы правил, сложившиеся стихийно или введенные сознательно, приводят к неразрешимым, безвыходным положениям. Пример из недавней шахматной жизни еще раз подтвердит эту мысль. Международные правила проведения шахматных соревнований обязывают шахматистов записывать партию ход за ходом ясно и разборчиво. До недавнего времени в правилах было указано также, что шахматист, пропустивший из-за недостатка времени запись нескольких ходов, должен, «как только его цейтнот закончится, немедленно заполнить свой бланк, записав пропущенные ходы». На основе этого указания один судья на шахматной олимпиаде 1980 г. (Мальта) прервал проходившую в жестком цейтноте партию и остановил часы, заявив, что контрольные ходы сделаны и, следовательно, пора привести в порядок записи партий. – Но позвольте, – вскричал участник, находившийся на грани проигрыша и рассчитывавший только на накал страстей в конце партии, – ведь ни один флажок еще не упал и никто никогда (так тоже записано в правилах) не может подсказывать, сколько сделано ходов. Судью поддержал, однако, главный арбитр, заявивший, что, действительно, поскольку цейтнот закончился, надо, следуя букве правил, приступить к записи пропущенных ходов. Спорить в этой ситуации было бессмысленно: сами правила завели в тупик. Оставалось только изменить их формулировку таким образом, чтобы подобные случаи не могли возникнуть в будущем. Это и было сделано на проходившем в то же время конгрессе Международной шахматной федерации: вместо слов «как только цейтнот закончится» в правилах теперь записано: «как только флажок укажет на окончание времени». Этот пример наглядно показывает, как следует поступать в тупиковых ситуациях. Спорить о том, какая сторона права, бесполезно: спор неразрешим, и победителя в нем не будет. Остается только смириться с настоящим и позаботиться о будущем. Для этого нужно так переформулировать исходные соглашения или правила, чтобы они не заводили более никого в такую же безвыходную ситуацию. Разумеется, подобный способ действий – никакое не решение неразрешимого спора и не выход из безвыходного положения. Это скорее остановка перед непреодолимым препятствием и дорога в обход его. Парадокс «Крокодил и мать» В Древней Греции пользовался большой популярностью рассказ о крокодиле и матери, совпадающий по своему логическому содержанию с парадоксом «Протагор и Еватл». Крокодил выхватил у египтянки, стоявшей на берегу реки, ее ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил: – Твое несчастье растрогало меня, и я дам тебе шанс получить назад ребенка. Угадай, отдам я его тебе или нет. Если ответишь правильно, я верну ребенка. Если не угадаешь, я его не отдам. Подумав, мать ответила: – Ты не отдашь мне ребенка. – Ты его не получишь, – заключил крокодил. – Ты сказала либо правду, либо неправду. Если то, что я не отдам ребенка, – правда, я не отдам его, так как иначе сказанное не будет правдой. Если сказанное – неправда, значит, ты не угадала, и я не отдам ребенка по уговору. Однако матери это рассуждение не показалось убедительным. – Но ведь если я сказала правду, то ты отдашь мне ребенка, как мы и договорились. Если же я не угадала, что ты не отдашь ребенка, то ты должен мне его отдать, иначе сказанное мною не будет неправдой. Кто прав: мать или крокодил? К чему обязывает крокодила данное им обещание? К тому, чтобы отдать ребенка или, напротив, чтобы не отдать его? И к тому и к другому одновременно. Это обещание внутренне противоречиво, и, таким образом, оно не выполнимо в силу законов логики. Миссионер очутился у людоедов и попал как раз к обеду. Они разрешают ему выбрать, в каком виде его съедят. Для этого он должен произнести какое-нибудь высказывание с условием, что, если это высказывание окажется истинным, они его сварят, а если оно окажется ложным, его зажарят. Что следует сказать миссионеру? Разумеется, он должен сказать: «Вы зажарите меня». Если его действительно зажарят, окажется, что он высказал истину, и значит, его надо сварить. Если же его сварят, его высказывание будет ложным, и его следует как раз зажарить. Выхода у людоедов не будет: из «зажарить» вытекает «сварить», и наоборот. Этот эпизод с хитрым миссионером является, конечно, еще одной из перефразировок спора Протагора и Еватла. Парадокс Санчо Пансы Один старый, известный еще в Древней Греции парадокс обыгрывается в «Дон Кихоте» М.Сервантеса. Санчо Панса сделался губернатором острова Баратария и вершит суд. Первым к нему является какой-то приезжий и говорит: – Сеньор, некое поместье делится на две половины многоводной рекой… Так вот, через эту реку переброшен мост, и тут же с краю стоит виселица и находится нечто вроде суда, в коем обыкновенно заседает четверо судей, и судят они на основании закона, изданного владельцем реки, моста и всего поместья, каковой закон составлен таким образом: «Всякий проходящий по мосту через сию реку долженствует объявить под присягою: куда и зачем он идет, и кто скажет правду, тех пропускать, а кто солжет, тех без всякого снисхождения отправлять на находящуюся тут же виселицу и казнить». С того времени, когда этот закон во всей своей строгости был обнародован, многие успели пройти через мост, и как скоро судьи удовлетворялись, что прохожие говорят правду, то пропускали их. Но вот однажды некий человек, приведенный к присяге, поклялся и сказал: он-де клянется, что пришел за тем, чтобы его вздернули вот на эту самую виселицу, и ни за чем другим. Клятва сия привела судей в недоумение, и они сказали: «Если позволить этому человеку беспрепятственно следовать дальше, то это будет означать, что он нарушил клятву и согласно закону повинен смерти; если же мы его повесим, то ведь он клялся, что пришел только за тем, чтобы его вздернули на эту виселицу, следовательно, клятва его, выходит, не ложна, и на основании того же самого закона надлежит пропустить его». И вот я вас спрашиваю, сеньор губернатор, что делать судьям с этим человеком, ибо они до сих пор недоумевают и колеблются… Санчо предложил, пожалуй, не без хитрости: ту половину человека, которая сказала правду, пусть пропустят, а ту, которая соврала, пусть повесят, и таким образом правила перехода через мост будут соблюдены по всей форме. Этот отрывок интересен в нескольких отношениях. Прежде всего он является наглядной иллюстрацией того, что с описанным в парадоксе безвыходным положением вполне может столкнуться – и не в чистой теории, а на практике – если не реальный человек, то хотя бы литературный герой. Выход, предложенный Санчо Панса, не был, конечно, решением парадокса. Но это было как раз то решение, к которому только и оставалось прибегнуть в его положении. Когда-то Александр Македонский вместо того, чтобы развязывать хитрый гордиев узел, чего еще никому не удалось сделать, просто разрубил его. Подобным же образом поступил и Санчо. Пытаться решить головоломку на ее собственных условиях было бесполезно – она попросту неразрешима. Оставалось отбросить эти условия и ввести свое. И еще один момент. Сервантес этим эпизодом явно осуждает непомерно формальный, пронизанный духом схоластической логики масштаб средневековой справедливости. Но какими распространенными в его время – а это было около четырехсот лет назад – были сведения из области логики! Не только самому Сервантесу известен данный парадокс. Писатель находит возможным приписать своему герою, безграмотному крестьянину, способность понять, что перед ним неразрешимая задача! 5. Другие парадоксы Приведенные парадоксы – это рассуждения, итог которых – противоречие. Но в логике есть и другие типы парадоксов. Они также указывают на какие-то затруднения и проблемы, но делают это в менее резкой и бескомпромиссной форме. Таковы, в частности, парадоксы, рассматриваемые далее. Парадоксы неточных понятий Большинство понятий не только естественного языка, но и языка науки являются неточными, или, как их еще называют, размытыми. Нередко это оказывается причиной непонимания, споров, а то и просто ведет к тупиковым ситуациям. Если понятие неточное, граница области объектов, к которым оно приложимо, лишена резкости, размыта. Возьмем, к примеру, понятие «куча». Одно зерно (песчинка, камень и т.п.) – это еще не куча. Тысяча зерен – это уже, очевидно, куча. А три зерна? А десять? С прибавлением какого по счету зерна образуется куча? Не очень ясно. Точно так же, как не ясно, с изъятием какого зерна куча исчезает. Неточными являются эмпирические характеристики «большой», «тяжелый», «узкий» и т.д. Неточны такие обычные понятия, как «мудрец», «лошадь», «дом» и т.п. Нет песчинки, убрав которую мы могли бы сказать, что с ее устранением оставшееся уже нельзя назвать домом. Но ведь это означает как будто, что ни в какой момент постепенной разборки дом – вплоть до полного его исчезновения – нет оснований заявлять, что дома нет! Вывод явно парадоксальный и обескураживающий. Нетрудно заметить, что рассуждение о невозможности образования кучи проводится с помощью хорошо известного метода математической индукции. Одно зерно не образует кучи. Если n зерен не образуют кучи, то n+1 зерно не образуют кучи. Следовательно, никакое число зерен не может образовать кучи. Возможность этого и подобных ему доказательств, приводящих к нелепым заключениям, означает, что принцип математической индукции имеет ограниченную область приложения. Он не должен применяться в рассуждениях с неточными, расплывчатыми понятиями. Хорошим примером того, что эти понятия способны приводить к неразрешимым спорам, может служить любопытный судебный процесс, состоявшийся в 1927 г. в США. Скульптор К. Бранкузи обратился в суд с требованием признать свои работы произведениями искусства. В числе работ, отправляемых в Нью-Йорк на выставку, была и скульптура «Птица», которая сейчас считается классикой абстрактного стиля. Она представляет собой модулированную колонну из полированной бронзы около полутора метров высоты, не имеющую никакого внешнего сходства с птицей. Таможенники категорически отказались признать абстрактные творения Бранкузи художественными произведениями. Они провели их по графе «Металлическая больничная утварь и предметы домашнего обихода» и наложили на них большую таможенную пошлину. Возмущенный Бранкузи подал в суд. Таможню поддержали художники – члены Национальной академии, отстаивавшие традиционные приемы в искусстве. Они выступали на процессе свидетелями защиты и категорически настаивали на том, что попытка выдать «Птицу» за произведение искусства – просто жульничество. Этот конфликт рельефно подчеркивает трудность оперирования понятием «произведение искусства». Скульптура по традиции считается видом изобразительного искусства. Но степень подобия скульптурного изображения оригиналу может варьироваться в очень широких пределах. И в какой момент скульптурное изображение, все более удаляющееся от оригинала, перестает быть произведением искусства и становится «металлической утварью»? На этот вопрос так же трудно ответить, как на вопрос о том, где проходит граница между домом и его развалинами, между лошадью с хвостом и лошадью без хвоста и т.п. К слову сказать, модернисты вообще убеждены, что скульптура – это объект выразительной формы и она вовсе не обязана быть изображением. Обращение с неточными понятиями требует, таким образом, известной осторожности. Не лучше ли тогда вообще отказаться от них? Немецкий философ Э.Гуссерль был склонен требовать от знания такой крайней строгости и точности, какая не встречается даже в математике. Биографы Гуссерля с иронией вспоминают в связи с этим случай, произошедший с ним в детстве. Ему был подарен перочинный ножик, и, решив сделать лезвие предельно острым, он точил его до тех пор, пока от лезвия ничего не осталось. Более точные понятия во многих ситуациях предпочтительнее неточных. Вполне оправдано обычное стремление к уточнению используемых понятий. Но оно должно, конечно, иметь свои пределы. Даже в языке науки значительная часть понятий неточна. И это связано не с субъективными и случайными ошибками отдельных ученых, а с самой природой научного познания. В естественном языке неточных понятий подавляющее большинство; это говорит, помимо всего прочего, о его гибкости и скрытой силе. Тот, кто требует от всех понятий предельной точности, рискует вообще остаться без языка. «Лишите слова всякой двусмысленности, всякой неопределенности, – писал французский эстетик Ж. Жубер, – превратите их… в однозначные цифры – из речи уйдет игра, а вместе с нею – красноречие и поэзия: все, что есть подвижного и изменчивого в привязанностях души, не сможет найти своего выражения. Но что я говорю: лишите… Скажу больше. Лишите слова всякой неточности – и вы лишитесь даже аксиом». Долгое время и логики, и математики не обращали внимания на трудности, связанные с размытыми понятиями и соответствующими им множествами. Вопрос ставился так: понятия должны быть точными, а все расплывчатое недостойно серьезного интереса. В последние десятилетия эта чрезмерно строгая установка потеряла, однако, привлекательность. Построены логические теории, специально учитывающие своеобразие рассуждений с неточными понятиями. Активно развивается математическая теория так называемых размытых множеств, нечетко очерченных совокупностей объектов. Анализ проблем неточности – это шаг на пути сближения логики с практикой обычного мышления. И можно предполагать, что он принесет еще многие интересные результаты. Парадоксы индуктивной логики Нет, пожалуй, такого раздела логики, в котором не было бы своих собственных парадоксов. В индуктивной логике есть свои парадоксы, с которыми активно, но пока без особого успеха борются уже почти полвека. Особенно интересен парадокс подтверждения, открытый американским философом К.Гемпелем. Естественно считать, что общие положения, в частности научные законы, подтверждаются своими положительными примерами. Если рассматривается, скажем, высказывание «Все А есть В», то положительными его примерами будут объекты, обладающие свойствами А и В. В частности, подтверждающие примеры для высказывания «Все вороны черные» – это объекты, являющиеся и воронами, и черными. Данное высказывание равносильно, однако, высказыванию «Все предметы, не являющиеся черными, не вороны», и подтверждение последнего должно быть также подтверждением первого. Но «Все не черное не ворона» подтверждается каждым случаем не черного предмета, не являющегося вороной. Выходит, таким образом, что наблюдения «Корова белая», «Ботинки коричневые» и т.п. подтверждают высказывание «Все вороны черные». Из невинных, казалось бы, посылок вытекает неожиданный парадоксальный результат. В логике норм беспокойство вызывает целый ряд ее законов. Когда они формулируются в содержательных терминах, несоответствие их обычным представлениям о должном и запрещенном становится очевидным. Например, один из законов говорит, что из распоряжения «Отправьте письмо!» вытекает распоряжение «Отправьте письмо или сожгите его!». Другой закон утверждает, что, если человек нарушил одну из своих обязанностей, он получает право делать все, что угодно. С такого рода «законами долженствования» наша логическая интуиция никак не хочет мириться. В логике знания усиленно обсуждается парадокс логического всеведения. Он утверждает, что человек знает все логические следствия, вытекающие из принимаемых им положений. Например, если человеку известны пять постулатов геометрии Евклида, то, значит, он знает и всю эту геометрию, поскольку она вытекает из них. Но это не так. Человек может соглашаться с постулатами и вместе с тем не уметь доказать теорему Пифагора и потому сомневаться, что она вообще верна. 6. Что такое логический парадокс Никакого исчерпывающего перечня логических парадоксов не существует, да он и невозможен. Рассмотренные парадоксы – это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем откроют и многие другие парадоксы, и даже совершенно новые их типы. Само понятие парадокса не является настолько определенным, чтобы удалось составить список хотя бы уже известных парадоксов. «Теоретико-множественные парадоксы являются очень серьезной проблемой, не для математики, однако, а скорее для логики и теории познания», – пишет австрийский математик и логик К.Гедель. «Логика непротиворечива. Не существует никаких логических парадоксов», – утверждает математик Д.Бочвар. Такого рода расхождения иногда существенны, иногда словесны. Дело во многом в том, что именно понимается под логическим парадоксом. Своеобразие логических парадоксов Необходимым признаком логических парадоксов считается логический словарь. Парадоксы, относимые к логическим, должны быть сформулированы в логических терминах. Однако в логике нет четких критериев деления терминов на логические и нелогические. Логика, занимающаяся правильностью рассуждений, стремится свести понятия, от которых зависит правильность практически применяемых выводов, к минимуму. Но этот минимум не предопределен однозначно. Кроме того, в логических терминах можно сформулировать и нелогические утверждения. Использует ли конкретный парадокс только чисто логические посылки, далеко не всегда удается определить однозначно. Логические парадоксы не отделяются жестко от всех иных парадоксов, подобно тому как последние не отграничиваются ясно от всего непарадоксального и согласующегося с господствующими представлениями. На первых порах изучения логических парадоксов казалось, что их можно выделить по нарушению некоторого, еще не исследованного положения или правила логики. Особенно активно претендовал на роль такого правила введенный Б.Расселом принцип порочного круга. Этот принцип утверждает, что совокупность объектов не может содержать членов, определимых только посредством этой же совокупности. Все парадоксы имеют одно общее свойство – самоприменимость, или циркулярность. В каждом из них объект, о котором идет речь, характеризуется посредством некоторой совокупности объектов, к которой он сам принадлежит. Если мы выделяем, например, самого хитрого человека, мы делаем это при помощи совокупности людей, к которой относится и данный человек. И если мы говорим: «Это высказывание ложно», мы характеризуем интересующее нас высказывание путем ссылки на включающую его совокупность всех ложных высказываний. Во всех парадоксах имеет место самоприменимость понятий, а значит, есть как бы движение по кругу, приводящее в конце концов к исходному пункту. Стремясь охарактеризовать интересующий нас объект, мы обращаемся к той совокупности объектов, которая включает его. Однако оказывается, что сама она для своей определенности нуждается в рассматриваемом объекте и не может быть ясным образом понята без него. В этом круге, возможно, и кроется источник парадоксов. Ситуация осложняется, однако, тем, что такой круг имеется во многих совершенно непарадоксальных рассуждениях. Циркулярным является огромное множество самых обычных, безвредных и вместе с тем удобных способов выражения. Такие примеры, как «самый большой из всех городов», «наименьшее из всех натуральных чисел», «один из электронов атома железа» и т.п., показывают, что далеко не всякий случай самоприменимости ведет к противоречию и что она важна не только в обычном языке, но и в языке науки. Простая ссылка на использование самоприменяемых понятий недостаточна, таким образом, для дискредитации парадоксов. Необходим еще какой-то дополнительный критерий, отделяющий самоприменимость, ведущую к парадоксу, от всех иных ее случаев. Было много предложений на этот счет, но удачного уточнения циркулярности так и не было найдено. Невозможным оказалось охарактеризовать циркулярность таким образом, чтобы каждое циркулярное рассуждение вело к парадоксу, а каждый парадокс был итогом некоторого циркулярного рассуждения. Попытка найти какой-то специфический принцип логики, нарушение которого было бы отличительной особенностью всех логических парадоксов, ни к чему определенному не привела. Несомненно полезной была бы какая-то классификация парадоксов, подразделяющая их на типы и виды, группирующая одни парадоксы и противопоставляющая их другим. Однако и в этом деле ничего устойчивого не было достигнуто. Английский логик Ф.Рамсей, умерший в 1930 г., когда ему еще не исполнилось и двадцати семи лет, предложил разделить все парадоксы на синтаксические и семантические. К первым относится, например, парадокс Рассела, ко вторым – парадоксы «Лжеца», Греллинга и др. По мнению Рамсея, парадоксы первой группы содержат только понятия, принадлежащие логике или математике. Вторые включают такие понятия, как «истина», «определимость», «именование», «язык», не являющиеся строго математическими, а относящиеся скорее к лингвистике или даже теории познания. Семантические парадоксы обязаны, как кажется, своим возникновением не какой-то ошибке в логике, а смутности или двусмысленности некоторых нелогических понятий, поэтому поставленные ими проблемы касаются языка и должны решаться лингвистикой. Рамсею казалось, что математикам и логикам незачем интересоваться семантическими парадоксами. В дальнейшем оказалось, однако, что некоторые из наиболее значительных результатов современной логики были получены как раз в связи с более глубоким изучением именно этих нелогических парадоксов. Предложенное Рамсеем деление парадоксов широко использовалось на первых порах и сохраняет некоторое значение и теперь. Вместе с тем становится все яснее, что это деление довольно-таки расплывчато и опирается по преимуществу на примеры, а не на углубленный сопоставительный анализ двух групп парадоксов. Семантические понятия сейчас получили точные определения, и трудно не признать, что эти понятия действительно относятся к логике. С развитием семантики, определяющей свои основные понятия в терминах теории множеств, различие, проведенное Рамсеем, все более стирается. Парадоксы и современная логика Какие выводы для логики следуют из существования парадоксов? Прежде всего наличие большого числа парадоксов говорит о силе логики как науки, а не о ее слабости, как это может показаться. Обнаружение парадоксов не случайно совпало с периодом наиболее интенсивного развития современной логики и наибольших ее успехов. Первые парадоксы были открыты еще до возникновения логики как особой науки. Многие парадоксы были обнаружены в средние века. Позднее они оказались, однако, забытыми и были вновь открыты уже в нашем веке. Средневековым логикам не были известны понятия «множество» и «элемент множества», введенные в науку только во второй половине XIX в. Но чутье на парадоксы было отточено в средние века настолько, что уже в то давнее время высказывались определенные опасения по поводу самоприменимых понятий. Простейшим их примером является понятие «быть собственным элементом», фигурирующее во многих нынешних парадоксах. Однако такие опасения, как и вообще все предостережения, касающиеся парадоксов, не были до нашего века в должной мере систематическими и определенными. Они не вели к каким-либо четким предложениям о пересмотре привычных способов мышления и выражения. Только современная логика извлекла из забвения саму проблему парадоксов, открыла или переоткрыла большинство конкретных логических парадоксов. Она показала далее, что способы мышления, традиционно исследовавшиеся логикой, совершенно недостаточны для устранения парадоксов, и указала принципиально новые приемы обращения с ними. Парадоксы ставят важный вопрос: в чем, собственно, подводят нас некоторые обычные методы образования понятий и методы рассуждений? Ведь они представлялись совершенно естественными и убедительными, пока не выявилось, что они парадоксальны. Парадоксами подрывается вера в то, что привычные приемы теоретического мышления сами по себе и без всякого особого контроля за ними обеспечивают надежное продвижение к истине. Требуя радикальных изменений в излишне доверчивом подходе к теоретизированию, парадоксы представляют собой резкую критику логики в ее наивной, интуитивной форме. Они играют роль фактора, контролирующего и ставящего ограничения на пути конструирования дедуктивных систем логики. И эту их роль можно сравнить с ролью эксперимента, проверяющего правильность гипотез в таких науках, как физика и химия, и заставляющего вносить в эти гипотезы изменения. Парадокс в теории говорит о несовместимости допущений, лежащих в ее основе. Он выступает как своевременно обнаруженный симптом болезни, без которого ее можно было бы и проглядеть. Разумеется, болезнь проявляется многообразно, и ее в конце концов удается раскрыть и без таких острых симптомов, как парадоксы. Скажем, основания теории множеств были бы проанализированы и уточнены, если бы даже никакие парадоксы в этой области не были обнаружены. Но не было бы той резкости и неотложности, с какой поставили проблему пересмотра теории множеств обнаруженные в ней парадоксы. Парадоксам посвящена обширная литература, предложено большое число их объяснений. Но ни одно из этих объяснений не является общепризнанным, и сколь-нибудь полного согласия в вопросе о происхождении парадоксов и способах избавления от них нет. «За последние шестьдесят лет сотни книг и статей были посвящены цели разрешения парадоксов, однако результаты поразительно бедны в сравнении с затраченными усилиями», – пишет А.Френкель. «Похоже на то, – заключает свой анализ парадоксов Х.Карри, – что требуется полная реформа логики, и математическая логика может стать главным инструментом для проведения этой реформы». Устранение и объяснение парадоксов Следует обратить внимание на одно важное различие. Устранение парадоксов и их разрешение – это вовсе не одно и то же. Устранить парадокс из некоторой теории – значит перестроить ее так, чтобы парадоксальное утверждение оказалось в ней недоказуемым. Каждый парадокс опирается на большое число определений, допущений и аргументов. Его вывод в теории представляет собой некоторую цепочку рассуждений. Формально говоря, можно подвергнуть сомнению любое ее звено, отбросить его и тем самым разорвать цепочку и устранить парадокс. Во многих работах так и поступают и этим ограничиваются. Но это еще не разрешение парадокса. Мало найти способ, как его исключить, надо убедительно обосновать предлагаемое решение. Само сомнение в каком-то шаге, ведущем к парадоксу, должно быть хорошо обосновано. Прежде всего решение об отказе от каких-то логических средств, используемых при выводе парадоксального утверждения, должно быть увязано с нашими общими соображениями относительно природы логического доказательства и другими логическими интуиция-ми. Если этого нет, устранение парадокса оказывается лишенным твердых и устойчивых оснований и вырождается в техническую по преимуществу задачу. Кроме того, отказ от какого-то допущения, даже если он и обеспечивает устранение некоторого конкретного парадокса, вовсе не гарантирует автоматически устранения всех парадоксов. Это говорит о том, что за парадоксами не следует «охотиться» поодиночке. Исключение одного из них всегда должно быть настолько обосновано, чтобы появилась определенная гарантия, что этим же шагом будут устранены и другие парадоксы. Каждый раз, как обнаруживается парадокс, пишет А.Тарский, «мы должны подвергнуть наши способы мышления основательной ревизии, отвергнуть какие-то посылки, в которые верили, и усовершенствовать способы аргументации, которыми пользовались. Мы делаем это, стремясь не только избавиться от антиномий, но и с целью не допустить возникновения новых». И наконец, непродуманный и неосторожный отказ от слишком многих или слишком сильных допущений может привести просто к тому, что получится хотя и не содержащая парадоксов, но существенно более слабая теория, имеющая только частный интерес. Каким может быть минимальный, наименее радикальный комплекс мер, позволяющих избежать известных парадоксов? Логическая грамматика Один путь – это выделение наряду с истинными и ложными предложениями также бессмысленных предложений. Этот путь был принят Б.Расселом. Парадоксальные рассуждения были объявлены им бессмысленными на том основании, что в них нарушаются требования логической грамматики. Не всякое предложение, не нарушающее правил обычной грамматики, является осмысленным – оно должно удовлетворять также правилам особой, логической грамматики. Рассел построил теорию логических типов, своеобразную логическую грамматику, задачей которой было устранение всех известных антиномий. В дальнейшем эта теория была существенно упрощена и получила название простой теории типов. Основная идея теории типов – выделение разных в логическом отношении типов предметов, введение своеобразной иерархии, или лестницы, рассматриваемых объектов. К низшему, или нулевому, типу относятся индивидуальные объекты, не являющиеся множествами. К первому типу относятся множества объектов нулевого типа, т.е. индивидов; ко второму – множества множеств индивидов и т.д. Иными словами, проводится различие между предметами, свойствами предметов, свойствами свойств предметов и т.д. При этом вводятся определенные ограничения на конструирование предложений. Свойства можно приписывать предметам, свойства свойств – свойствам и т.д. Но нельзя осмысленно утверждать, что свойства свойств имеются у предметов. Возьмем серию предложений: Этот дом – красный. Красное – это цвет. Цвет – это оптическое явление. В этих предложениях выражение «этот дом» обозначает определенный предмет, слово «красный» указывает на свойство, присущее данному предмету, «являться цветом» – на свойство этого свойства («быть красным») и «быть оптическим явлением» – указывает на свойство свойства «быть цветом», принадлежащего свойству «быть красным». Здесь мы имеем дело не только с предметами и их свойствами, но и со свойствами свойств («свойство быть красным имеет свойство быть цветом»), и даже со свойствами свойств свойств. Все три предложения из приведенной серии являются, конечно, осмысленными. Они построены в соответствии с требованиями теории типов. А скажем, предложение «Этот дом есть цвет» нарушает данные требования. Оно приписывает предмету ту характеристику, которая может принадлежать только свойствам, но не предметам. Аналогичное нарушение содержится и в предложении «Этот дом является оптическим явлением». Оба эти предложения должны быть отнесены к бессмысленным. Простая теория типов устраняет парадокс Рассела. Однако для устранения парадоксов «Лжеца» и Берри простое разделение рассматриваемых объектов на типы уже недостаточно. Необходимо вводить дополнительно некоторое упорядочение внутри самих типов. Исключение парадоксов может быть достигнуто также на пути отказа от использования слишком больших множеств, подобных множеству всех множеств. Этот путь был предложен немецким математиком Е.Цермело, связавшим появление парадоксов с неограниченным конструированием множеств. Допустимые множества были определены им некоторым списком аксиом, сформулированных так, чтобы из них не выводились известные парадоксы. Вместе с тем эти аксиомы были достаточно сильны для вывода из них обычных рассуждений классической математики, но без парадоксов. Ни эти два, ни другие предлагавшиеся пути устранения парадоксов не являются общепризнанными. Нет единого убеждения, что какая-то из предложенных теорий разрешает логические парадоксы, а не просто отбрасывает их без глубокого объяснения. Проблема объяснения парадоксов по-прежнему открыта и по-прежнему важна. Будущее парадоксов У Г.Фреге, величайшего логика прошлого века, был, к сожалению, очень скверный характер. Кроме того, он был безоговорочен и даже жесток к своей критике современников. Возможно, поэтому его вклад в логику и обоснование математики долго не получал признания. И вот когда известность начала приходить к нему, молодой английский логик Б.Рассел написал ему, что в системе, опубликованной в первом томе его книги «Основные законы арифметики», возникает противоречие. Второй том этой книги был уже в печати, и Фреге смог лишь добавить к нему специальное приложение, в котором изложил это противоречие (позднее названное «парадоксом Рассела») и признал, что он не способен его устранить. Однако последствия этого признания были для Фреге трагическими. Он испытал сильнейшее потрясение. И хотя ему тогда было всего 55 лет, он не опубликовал больше ни одной значительной работы по логике, хотя прожил еще более двадцати лет. Он не откликнулся даже на оживленную дискуссию, вызванную парадоксом Рассела, и никак не прореагировал на многочисленные предлагавшиеся решения этого парадокса. Впечатление, произведенное на математиков и логиков только что открытыми парадоксами, хорошо выразил Д.Гильберт: «…Состояние, в котором мы находимся сейчас в отношении парадоксов, на продолжительное время невыносимо. Подумайте: в математике – этом образце достоверности и истинности – образование понятий и ход умозаключений, как их всякий изучает, преподает и применяет, приводит к нелепости. Где же искать надежность и истинность, если даже само математическое мышление дает осечку?» Фреге был типичным представителем логики конца XIX в., свободной от каких бы то ни было парадоксов, логики, уверенной в своих возможностях и претендующей на то, чтобы быть критерием строгости даже для математики. Парадоксы показали, что абсолютная строгость, достигнутая якобы логикой, была не более чем иллюзией. Они бесспорно показали, что логика – в том интуитивном виде, какой она имела на рубеже веков, – нуждается в глубоком пересмотре. Прошло около века с тех пор, как началось оживленное обсуждение парадоксов. Предпринятая ревизия логики так и не привела, однако, к недвусмысленному их разрешению. И вместе с тем такое состояние вряд ли кого волнует сегодня. С течением времени отношение к парадоксам стало более спокойным и даже более терпимым, чем в момент их обнаружения. Дело не только в том, что парадоксы сделались чем-то привычным. И, разумеется, не в том, что с ними смирились. Они все еще остаются в центре внимания логиков, поиски их решений активно продолжаются. Ситуация изменилась прежде всего потому, что парадоксы оказались, так сказать, локализованными. Они обрели свое определенное, хотя и неспокойное место в широком спектре логических исследований. Стало ясно, что абсолютная строгость, какой она рисовалась в конце прошлого века и даже иногда в начале нынешнего, – это в принципе недостижимый идеал. Было осознано также, что нет одной-единственной, стоящей особняком проблемы парадоксов. Проблемы, связанные с ними, относятся к разным типам и затрагивают, в сущности, все основные разделы логики. Обнаружение парадокса заставляет глубже проанализировать наши логические интуиции и заняться систематической переработкой основ науки логики. При этом стремление избежать парадоксов не является ни единственной, ни даже, пожалуй, главной задачей. Они являются хотя и важным, но только поводом для размышления над центральными темами логики. Продолжая сравнение парадоксов с особо отчетливыми симптомами болезни, можно сказать, что стремление немедленно исключить парадоксы было бы подобно желанию снять такие симптомы, не особенно заботясь о самой болезни. Требуется не просто разрешение парадоксов, необходимо их объяснение, углубляющее наши представления о логических закономерностях мышления. Литература Байиф Ж.К. Логические задачи. – М., 1983. Бурбаки Н. Очерки по истории математики. – М., 1963. Гарднер М. А ну-ка догадайся! – М.: 1984. Ивин А.А. По законам логики. – М., 1983. Клини С.К. Математическая логика. – М., 1973. Смаллиан P.M. Как же называется эта книга? – М.: 1982. Смаллиан P.M. Принцесса или тигр? – М.: 1985. Френкель А., Бар-Хиллел И. Основания теории множеств. – М., 1966. Вернуться назад |