ОКО ПЛАНЕТЫ > Размышления о науке > В поле мирно пашет трактор, за холмом горит реактор

В поле мирно пашет трактор, за холмом горит реактор


31-07-2013, 16:34. Разместил: Князь

В мире птиц есть уникумы. Различные страусы, курицы, павлины, эму или киви. Эти птицы летают плохо и неуклюже, а иногда и вообще не могут подняться в воздух, используя крылья только для устрашения противника и во время ухаживаний за самкой.
Это и есть проклятие почти всех сложных природных и инженерных систем — чем сложнее устроена система внутри, тем более она приспособлена к каким-то внешним условиям обитания. Ведь именно приспособленность к внешним условиям среды и двигает вперёд эволюцию природных и инженерных систем — иначе бы мы так и оставались беззаботными и позитивными комочками первобытной слизи в глубинах земного протоокеана.
Но, одновременно, вместе с улучшением приспособленности — всё труднее и труднее становится такой усложняющейся системе согласовать все разнообразные связи, которые возникают уже между различными элементами внутри самой системы.

Так и произошло с нелетающими птицами. Или ты быстро бегаешь — или ты хорошо летаешь. Как в старом мультике про "крылья, ноги и хвост".

Однако, к сожалению, многие считают, что в случае инженерных систем об ограничениях мира можно легко забыть. И что адамантиевая броня, титаниумный корпус, плутониевый реактор, и хрендостаниумный каркас позволяют обойти всё и вся, что ограничивает наш смелый полёт инженерной мысли.
Ну и, конечно же, на выходе процесса у нас получаются они. Шушпанцеры.
Жуткие агрегаты, которые успешно сочетают в себе "гибрид ужа и ежа", но при этом не являются колючей проволокой.

801

Тяга к шушпанцерам (вундервафлям, мирным советским тракторам и американским бульдозерам) у человечества неистребима, как и поиск "философского камня" и рецепта вечной молодости.
Более того, часто именно очередной удачный шушпанцер и становился зачинателем очередного прорывного технического решения, которое и двигало вперёд какую-нибудь отрасль инженерного дела.

Мало кто знает сейчас, что изначально двигатель Дизеля пытались приспособить для сжигания угольной пыли и измельчённых опилок.
В 1871 году будущий изобретатель дизельного двигателя, Рудольф Дизель едет в Аугсбург, чтобы учиться у профессора Линде, изобретателя современного холодильника. На лекциях Линде Дизеля очаровал термодинамический цикл великого француза Сади Карно, позволяющий обратить в работу до 70 % тепла сжигаемого топлива.
На полях студенческой тетради Дизеля появляется надпись: "Изучить возможность применения изотермы на практике". Эта фраза становится программой всей его жизни. В своей брошюре, вышедшей через несколько лет после окончания учёбы,  Дизель так описывает свою машину-мечту: "сжатие в цилиндре достигает 250 атмосфер, топливом станет угольная пыль, а водяное охлаждение перестанет быть необходимым." Смотря на дизельный двигатель спустя век, нам стоит сказать, что ни один из пунктов этой программы так и не был выполнен.

Однако, несмотря на это, человечество благодаря Дизелю получило в своё распоряжение самый массовый и эффективный поршневой двигатель внутреннего сгорания.
Однако разговор у нас сегодня не о дизеле, а об АЭС.
Ну ведь и в самом деле — надо же попытаться рассказать о современных АЭС как-то так, чтобы читатели не заснули во время этого рассказа и не сказали, что автор сухарь и ботан, который не может доступно рассказать о столь простом агрегате, как АЭС.
Который, на деле, , совсем не простой.

В прошлой записи, рассказав о начале реакторной эры, я лишь эскизно обрисовал основные направления развития реакторов, которые во всех странах были заложены ещё во второй половине 1950-х годов.
Надо сказать, что когда говорят о том, что термояд, возникший в то же время "не оправдал возлагавшихся на него надежд", то комментаторы немного кривят душой.
Ядерная энергетика, возникшая чуть раньше термоядерной, оказалась по факту столь же капризной девушкой, как и термоядерный тор. И реакторы, которые в основном сейчас работают в мире, с точки зрения дедушки Сади Карно не то, что родственники — они практически родные братья.
Поэтому мы начнём наш рассказ с самого массового типа современных реакторов — водо-водяных реакторах на лёгкой и на тяжёлой воде.

Вода, как теплоноситель, известна инженерам уже давно. Воду в качестве теплоносителя использовал в своей паровой машине ещё английский изобретатель Томас Ньюкомен, который построил в 1712 году первый действующий паровой водоподъёмник.
Это, по современным меркам, был жуткий шушпанцер, который вместо расширения пара, как в более поздних агрегатах, использовал для подъёма воды силу атмосферного давления, конденсируя водяной пар в цилиндре:

802

В силу того, что паровая машина Ньюкомена работала только в пределе давлений до одной атмосферы (а большего от вакуумной машины и ожидать-то трудно) и пар из котла был вынужден каждый раз нагревать остывший цилиндр, то её КПД составлял просто таки эпические 0,5%. Однако подъёмник Ньюкомена уже мог использовать энергию угля, а не ставить на насос лошадей, которые требовали уже дефицитный тогда овёс.

Совершенствование машины Ньюкомена, однако, потребовало ещё целого полувека ожидания. Вплоть до 1763 года ёжики мучались и ели кактус горняки сыпали и сыпали тонны угля в топки котлов Папена, которые питали насосы Ньюкомена, но никто особо и не задумывался, "как же оно таки работает".
И лишь в 1763 году В Англии появился исследователь, который смог сделать следующий важный шаг в совершенствовании водяного парового цикла. Это был Джеймс Уатт.

804
"Папа" революции угля и пара.

Зимой 1763 года  приятель Уатта, профессор физики университета Глазго Джон Андерсон, обратился к нему с просьбой отремонтировать действующий макет паровой машины Ньюкомена, который Андерсон использовал в своей преподавательской деятельности. Уатт на то время занимался тем, что делал и чинил музыкальные инструменты.
Макет Андерсона был оснащен 2-дюймовым цилиндром и имел рабочий ход поршня в 6 дюймов — по факту это была лишь настольная игрушка, которую сейчас часто покупают детям для опытов по физике.
Уатт провел ряд экспериментов с макетом Андерсона, в частности, заменил металлический цилиндр на деревянный, смазанный льняным маслом и высушенный в печи, уменьшил количество поднимаемой за один цикл воды и макет, наконец, заработал. При этом Уатт убедился в неэффективности машины и внёс в конструкцию многочисленные усовершенствования. Уатт показал, что почти три четверти энергии горячего пара тратятся неэффективно: при каждом цикле пар должен нагревать цилиндр, так как перед этим в цилиндр поступала холодная вода, чтобы сконденсировать часть пара для уменьшения давления. Таким образом энергия пара тратилась на постоянный разогрев цилиндра, вместо того, чтобы быть преобразованной в механическую энергию.

Уатт проводит ряд опытов над кипением воды, изучает упругость водяных паров при различных температурах. Теоретические и опытные изыскания приводят к его к пониманию важности скрытой теплоты. Опытным путём он устанавливает, что вода, превращённая в пар, может нагреть до кипения в шесть раз большее количество воды. Уатт приходит к выводу: «…Для того, чтобы сделать совершенную паровую машину, необходимо, чтобы цилиндр был всегда так же горяч, как и входящий в него пар; но, с другой стороны, сгущение пара для образования пустоты должно происходить при температуре не выше 30 градусов Реомюра». Уатту остаётся сделать один шаг до того, чтобы отделить «сгущение пара» от цилиндра и осуществлять его в отдельном сосуде. Однако на этот шаг у него уходит очень много времени. А если точно — целых шесть лет. В 1765 году ему, наконец, приходит на ум догадка и начинаются попытки воплотить её в жизнь.
Первым значительным усовершенствованием, которое Уатт запатентовал в 1769 году, была изолированная камера для конденсации. В этот же год ему удаётся построить действующую модель, работающую по этому принципу. Вот принцип её работы:

803

Как видите — шесть лет ушло лишь на то, чтобы додуматься, что водяной пар надо конденсировать в отдельном от рабочего цилиндра объёме. Конечно, глядя сейчас на изобретение Уатта, любой школьник, прошедший курс термодинамики, скажет: "Да конечно же! Элементарно!".
Однако тогда это был поистине революционный прорыв.
Конденсатор Уатта позволил поднять эффективность паровых машин... до 2%. Ну или в четыре раза по сравнению с машинами Нькомена.

Надо сказать, что дальнейшая история, завязанная на персоналию Уатта, могла вполне сложиться совсем иначе. Уже в начале 1770-х годов Уатт получает предложение... от Российской академии наук.
Русское правительство предложило тогда в лице академии английскому инженеру «занятие, сообразное с его вкусом и познаниями» и с ежегодным жалованьем в 1000 фунтов стерлингов.
Однако уже тогда русских жутко не любили в Англии.
Намерение Уатта уехать в Россию вызвало переполох. Поэт Эразм Дарвин, дед создателя теории эволюции Чарльза Дарвина, пишет тогда Уатту: «О Боже, как я был напуган, когда услышал, что русский медведь зацепил Вас своей громадной лапой и тянет в Россию! Умоляю не ездить, если только это возможно… Я надеюсь, что Ваша огненная машина оставит Вас здесь».
Уатт в итоге Россию не поехал и создал, совместно с Мэттью Болтоном всемирно известную потом компанию "Baulton and Watt".

Российской инженерной школе не повезло тогда и ещё один раз.  В 1763 году, задолго до английских опытов с увеличением числа цилиндров, первая в мире двухцилиндровая вакуумная паровая машина была спроектирована механиком И. И. Ползуновым и построена им же в 1764 году для приведения в действие воздуходувных мехов на Барнаульских Колывано-Воскресенских заводах.
Однако, по злому року, сам Ползунов умер от чахотки за неделю до пробного пуска своей машины, по всей видимости, от напряжения постоянной работы над своим революционным механизмом.

В итоге первенство в изготовлении паровых машин всерьёз и надолго захватывают англичане.

К чему же мы пришли после более, чем 300 лет совершенствования паровых машин?
Да, мы по-прежнему кипятим воду. И пусть наши современные агрегаты мощнее машин Ньюкомена, Уатта и Ползунова в миллионы раз, пусть их КПД вырос до невозможных во времена Уатта величин в 40-42%, но мы по прежнему кипятим воду.

И это вызывает всё те же проблемы, которые мучали Уатта и Ньюкомена и которые описал в совём уравнении Сади Карно. И с чем бился всю свою жизнь Рудольф Дизель, пытаясь всячески поднять температуру и степень сжатия для своего двигателя.
Вот это фундаментальное ограничение на КПД любой тепловой машины:

805
Чем выше температура нагревателя, тем выше КПД. Чем ниже температура холодильника, тем выше КПД. Или наоборот.

В 1800 году, путём совершенствования машины Уатта, давления в цилиндрах паровых машин достигало уже 3-3,5 атмосфер. Сейчас это давление рассматривается как очень низкое — давление в современных паровых котлах сейчас в десятки раз выше.
И вот тут мы подходим к интересному факту. Для роста КПД тепловых машин нам надо повышать температуру. Однако, вместе с температурой для воды у нас начинает резко расти и давление.

806
Как видите, температура пара (которая нам, собственно говоря и нужна для КПД) растёт гораздо медленнее, чем давление водяных паров, которое так и норовит разнести нам на кусочки стенки котла.
Поэтому даже суперсовременные так называемые сверхкритические угольные блоки не рискуют запускать в работу при температурах более 600-650 °С. Именно на этой верхней планке сейчас и застыли самые современные угольные электростанции — поднимать давление (и нужную нам температуру!) в водяном цикле выше — уже просто боязно.
Скажу лишь, что при таких давлениях и таких температурах даже высоколегированные стали теряют до 80% своей прочности и каждый следующий десяток градусов вверх даётся современным конструкторам станций с водяным циклом всё труднее и труднее:

807
Каждая марка стали отбирается и испытывается чуть ли не поплавочно, строжайше контролируются химия, структура, процессы прокатки, термообработки и правки готовых труб и листов, сварка производится тоже со всеми предосторожностями и со строжайшим контролем.
Ну и потом — испытания, испытания и ещё раз испытания.  Сотни, тысячи часов испытаний. Или же — годы инженерного труда.

И сейчас вопрос уже стоит отнюдь не в сообразительности или в удаче, как было у мастера музыкальных инструментов Джеймса Уатта. Речь идёт именно о согласовании всех понимаемых, просчитанных и осознанных параметров сложной системы под названием "тепловая электростанция".

Однако, в случае атомных тепловых блоков никто даже и не думает рисковать повреждением какой-то трубы, которая не выдержит давления и температуры водяного пара внутри реактора.
Поэтому первые контура реакторов АЭС работают с водой при гораздо более низких температурах, нежели современные угольные блоки.
Исходя из соображений безопасности температура воды в первом контуре АЭС составляет "детские" 250-350 °С.
Конечно, не времена Джеймса Уатта, но вполне себе середина XIX века по уровню температуры и параметрам давления в котле.
Именно поэтому, как вы понимаете, КПД ядерных реакторов и современных АЭС в целом оказывается гораздо ниже, чем у современных угольных блоков.
Просто дедушка Карно не велит получать больше при такой небольшой разности температур, которая присутствует в современных водо-водяных реакторах АЭС.

А почему водо-водяные, собственно говоря?
Опять-таки, во главе угла у нас не шушпанцер, а безопасность. И поэтому тепло с реактора мы сейчас обычно снимаем не напрямую, а через промежуточный контур.
Как вы уже, наверное, слышали, реакторы у нас имеют первый и второй водяные контуры. Первый контур обычно содержит радиоактивную воду, поскольку постоянно соприкасается с излучающими во все стороны ТВС (тепловыделяющими сборками). Именно он и служит тем промежуточным теплоносителем, который снимает тепло с раскалённой активной зоны реактора.

810

А вот второй контур уже соприкасается только с водой первого контура, которая уже лучит гораздо меньше и практически не выделяет нейтронов распада, которые и наводят радиацию на всё, с чем соприкасаются.
Ведь только нейтроны являются источниками вторичных наводок в теплоносителе и в конструкции — обычные реакции α-распада, β-распада и излучения гамма-лучей никак не изменяют радиоактивность сопредельных материалов. Важен лишь источник нейтронов, а он находится внутри реактора, за щитом надёжной радиационной защиты.

808
Корпус водо-водяного реактора ВВЭР. Всё опасное — внутри.

Сейчас водо-водяные реакторы являются основным типов вновь вводимых в эксплуатацию машин. И именно водо-водяные реакторы уже составляют основу современного парка АЭС.

Однако не всегда в прошлом конструктора поступали столь мудро. До момента создания, в том числе и путём испытаний на "грязных" угольных блоках, материалов для корпусов водо-водяных реакторов, приходилось всё время выбирать между радиационной и конструкционной безопасностью. Ведь даже при температурах в 300 °С давление внутри корпуса реактора ВВЭР достигает 160 атмосфер.
Джеймс Уатт, Иван Ползунов, мы идём вперёд!

Именно таким весьма уродливым (но объективно осознанным) компромиссом и были так называемые кипящие водяные реакторы.
В таких реакторах, в отличии от водо-водяных, радиоактивный пар из первого контура реактора идёт прямо в турбину:

809

Давление воды в первом контуре кипящего водяного реактора составляет всего около 70 атм, по сравнению со 160 атмосферами водо-водяного реактора. При этом давлении вода закипает в объёме активной зоны уже при температуре 280 °C, что тоже ниже 350 °С для реакторов типа ВВЭР. Кипящие реакторы обладают рядом достоинств по сравнению с некипящими, водо-водяными реакторами. В кипящих реакторах корпус работает при более низком давлении, в схеме АЭС нет парогенератора, который в водо-водяных реакторах передаёт тепло из первого контура во второй, а повседневная регулировка такого реактора гораздо проще, чем в случае водо-водяной машины.

Но для устойчивой работы кипящего водяного реактора необходим режим, при котором массовое паросодержание в активной зоне не превышает определённую величину. При больших значениях массового паросодержания работа реактора может быть неустойчивой. Такая неустойчивость объясняется тем, что пар вытесняет воду из активной зоны, а это увеличивает свободный пробег нейтронов до момента замедления. При слишком бурном кипении пробег нейтронов возрастает настолько, что реактор получает отрицательную реактивность и мощность реактора начинает падать. Нейтроны просто "вылетают" из активной зоны, не оказывая никакого влияния на цепную реакцию.
То есть, с одной стороны — кипящие реакторы являются достаточно простыми саморегулируемыми машинами, но, с другой стороны — у них гораздо больше неустойчивых режимов из которых они могут свалиться как в полное "глушение", так и в ситуацию теплового взрыва.

Именно такая несложная регулировка кипящего реактора и простота его конструкции одновременно играет с ним и злую шутку.
Ведь именно к типу кипящих водяных реакторов относился и печально знаменитый реактор РБМК, установленный на Чернобыльской АЭС.
РБМК — это классический кипящий водный реактор, прямой наследник первого курчатовского реактора на Обнинской АЭС. И непонимание того, что лёгкая регулировка кипящего водяного реактора одновременно сопряжена с массой нештатных режимов, персонал станции на кажущейся легкости обращения с реактором бодро загнал его в состояние теплового взрыва.

Кроме того, РБМК в силу малых давлений, характерных для кипящих водяных реакторов, был выполнен вообще по бескорпусной схеме, и в итоге даже взрыв средней силы смог разбросать все его останки по громадной территории.В силу этого основной проблемой позже стало даже не глушение реактора (он остыл уже через неделю), а методичное отскребание графита от битума крыши и цезия от брони мирных бульдозеров.

811
Мирный советский бульдозер убирает внутренности и кишки горящего реактора.

Кстати, Фукусимская АЭС тоже была оснащена кипящими водяными реакторами — только в их американской версии, называющейся BWR  (Boiling water reactor). Поскольку корпус данного реактора совершенно не рассчитан на высокие давления (напомню, кипящие водяные реакторы никто и не проектировал на давления выше 70 атмосфер и температуры выше 280 °C), то и процесс выброса внутренностей и кишок американского собрата чернобыльского реактора произошёл почти столь же скоропалительно, как и в городе на Припяти.

Ну а роботов и мирных японских тракторов для уборки всего радиоактивного мусора, как и зондер-команды пожарников и ликвидаторов в Японии и вообще не нашлось, несмотря на всю продвинутость страны.

812

Вот так и происходит проектирование реальных шушпанцеров в реальном мире: хочешь высокого КПД — повышай параметры всех элементов, долго и нудно экспериментируй с материалами. Или же жертвуй системами безопасности и делай простой реактор, который может при нештатной ситуации выкинуть тебе какой-то непонятный фортель.

Поэтому сейчас реакторы на кипящей воде строят уже совсем уж последние нищеброды, а все передовые ядерные державы вовсю шлифуют концепцию водо-водяного реактора, навешивая на него дополнительные системы безопасности и понемногу поднимая температуру в активной зоне.

813
Ловушка расплава. "Китайский синдром" не пройдёт!

И вот тут мы подходим к ещё одной интересной особенности наших шушпанцеров.
Реакторы на кипящей воде и на воде под давлением (водо-водяные) обладают совершенно неудачным с точки зрения ядерной физики теплоносителем.
Всё дело в том, что вода в реакторе, кроме того, что радует своим нагревом дедушку Карно и всех нас, ещё и служит (в случае обычной воды) замечательным поглотителем и замедлителем нейтронов.
И с этим надо что-то делать — если мы, конечно, хотим выйти за все ограничения водяного цикла и научиться выращивать топливо в реакторах, как мы выращиваем на грядках огурцы или морковь.

Нам нужен какой-то другой элемент для нашего шушпанцера.
Нам нужна замена воде, которая служила нам верой и правдой со времён Ивана Ползунова и Джеймса Уатта.

Нам нужен Прорыв.


Вернуться назад