ОКО ПЛАНЕТЫ > Размышления о науке > Энергия вакуума

Энергия вакуума


22-03-2012, 15:56. Разместил: VP

Алексей Левин
«Популярная механика» №2, 2012

В конце мая прошлого года многие популярные газеты пестрели заголовками: «Ученые получили энергию из вакуума!». Владельцы вакуумных насосов радостно потирали руки и в мечтах уже видели себя новыми олигархами. Однако даровой энергии из вакуума на рынке пока не появилось.

В 1948 году голландские физики-теоретики Хендрик Казимир и Дирк Полдер в поисках объяснения свойств коллоидных пленок рассмотрели взаимодействие молекул, поляризующих друг друга электромагнитными силами. Оказалось, что сила притяжения поляризуемой молекулы к металлической пластинке обратно пропорциональна четвертой степени расстояния между ними.

Но этим дело не закончилось. Казимир обсуждал свои выводы с Нильсом Бором, и тот заметил, что притяжение можно объяснить и совершенно иначе. Тогда уже было доказано, что виртуальные частицы физического вакуума влияют на энергетические уровни внутриатомных электронов (лэмбовский сдвиг). По мнению Бора, вычисленный Казимиром эффект мог иметь точно такую же природу. Казимир произвел соответствующие расчеты и получил ту же самую формулу.

Эффект Казимира

В том же году Казимир предложил простой и наглядный пример силового воздействия вакуума. Представим себе две плоские проводящие пластины, расположенные параллельно. Плотность виртуальных фотонов между ними будет меньшей, нежели снаружи, поскольку там смогут возбуждаться лишь стоячие электромагнитные волны строго определенных резонансных частот. В результате в пространстве между пластинами давление фотонного газа окажется меньше давления извне, из-за чего они будут притягиваться друг к другу, причем опять-таки с силой, обратно пропорциональной четвертой степени ширины щели (при сближении пластин набор допустимых частот стоячих волн сокращается, так что различие плотности «внутренних» и «внешних» фотонов возрастает). Реально такое притяжение становится заметным на расстоянии нескольких микрометров. Это явление и получило название эффекта Казимира.


С современной точки зрения
именно вакуумные флуктуации порождают силовые взаимодействия между молекулами. Поэтому они проявляют себя при сближении тел различной формы (не обязательно плоских), изготовленных из металлов или диэлектриков. Первыми это полвека назад выяснили сотрудники теоротдела Института физических проблем Евгений Лифшиц, Игорь Дзялошинский и Лев Питаевский. Они же показали, что при определенных условиях на смену казимировскому притяжению приходит отталкивание. Достоверное экспериментальное подтверждение существования такого притяжения было получено в 1997 году Стивом Ламоро, Умаром Мохидином и Анушри Роем. Казимировские силы отталкивания впервые экспериментально измерила в 2009 году группа под руководством Джереми Мандэя.

Движущиеся зеркала

В 1970 году физик из американского Университета Брандейса Джеральд Мур опубликовал статью, где теоретически рассмотрел поведение вакуума в полости, ограниченной двумя сближающимися или расходящимися плоскопараллельными зеркалами. Он показал, что такие зеркала могут усилить вакуумные флуктуации... и заставить их породить реальные фотоны. Однако, согласно расчетам Мура, для генерации фотонов в сколь-нибудь заметных количествах зеркала должны иметь релятивистскую скорость. В конце 1980-х проблема «раскачки» вакуумных флуктуаций заинтересовала многих ученых. Ее теоретический анализ показал, что вакуум способен рождать реальные фотоны не только около материальных тел, обладающих субсветовой скоростью, но и вблизи материалов, быстро изменяющих свои электрические или магнитные свойства. Такое превращение виртуальных вакуумных флуктуаций в реальные кванты назвали динамическим, или нестационарным, эффектом Казимира.

Виртуальное зеркало, реальные фотоны


Эффект Казимира. Изображение: Популярная механика»

Обычный эффект Казимира заключается в притяжении двух плоских параллельных пластин за счет «селекции» резонансных стоячих волн между ними. Динамический эффект предполагает «развиртуализацию» фотонов при быстром (релятивистском) движении зеркал. Понятно, что чисто механическим способом повторить такую схему невозможно, поэтому группа из Университета Чалмерса в Гетеборге использовала «виртуальные» зеркала — с помощью колебаний магнитного поля они изменяли длину волновода, что аналогично движению его границы с релятивистскими скоростями.

До недавнего времени эти исследования ограничивались чистой теорией. Прямое воспроизведение схемы Мура, разумеется, не под силу современным технологиям, которые не умеют разгонять зеркала из любых материалов до субсветовых скоростей. В научной литературе неоднократно обсуждались более практичные устройства для наблюдения динамического эффекта Казимира — например, пьезоэлектрические вибраторы и высокочастотные электромагнитные резонаторы. В последние годы физики, работающие в этой области, утвердились во мнении, что эти эксперименты вполне осуществимы.

Проверка на практике

Первыми успеха добились Кристофер Уилсон и его коллеги по Технологическому университету Чалмерса в шведском городе Гетеборге вместе с коллегами из Австралии и Японии. «Овеществление» виртуальных фотонов происходило около волновода из алюминия, подключенного к сверхпроводящему квантовому интерферометру (два джозефсоновских туннельных перехода, параллельно соединенных в замкнутый контур). Экспериментаторы изменяли индуктивность этого контура, пропуская через него магнитный поток, осциллирующий с частотой порядка 11 ГГц. Колебания индуктивности сказывались на электрической длине волновода, которая осциллировала с вполне релятивистской скоростью (около четверти скорости распространения электромагнитных волн в волноводе, которая примерно равнялась 40% скорости света в вакууме). Волновод, как и ожидалось, излучал фотоны, извлеченные из вакуумных флуктуаций. Спектр этого излучения соответствовал теоретическим предсказаниям.

Исследователи меняли индуктивность SQUID и тем самым длину плоского одномерного волновода, «передвигая» его границу, которая и служила в качестве виртуального зеркала для фотонов. Изображение: «Популярная механика»

Изменяя магнитное поле
Исследователи меняли индуктивность SQUID и тем самым длину плоского одномерного волновода, «передвигая» его границу, которая и служила в качестве виртуального зеркала для фотонов. Изображение: «Популярная механика»

Однако использовать эту установку для получения энергии из вакуума невозможно: энергия полученного излучения неизмеримо слабее мощности, которую приходится закачивать в прибор. Это же справедливо и для прочих устройств, которыми можно воспользоваться для наблюдения динамического эффекта Казимира. В общем, вакуум — это вовсе не нефтеносный слой.


Вернуться назад