ОКО ПЛАНЕТЫ > Новость дня > Нобелевская премия по физике — 2010

Нобелевская премия по физике — 2010


12-10-2010, 12:36. Разместил: Редакция ОКО ПЛАНЕТЫ

Нобелевская премия по физике — 2010


Рис. 1. Лауреаты Нобелевской премии по физике за 2010 год Андрей Гейм (слева) и Константин Новосёлов. Фото с сайта nobelprize.org
Рис. 1. Лауреаты Нобелевской премии по физике за 2010 год Андрей Гейм (слева) и Константин Новосёлов. Фото с сайта nobelprize.org

Нобелевская премия по физике за 2010 год была присуждена Андрею Гейму (Andre Geim) и Константину Новосёлову (Kostya Novoselov) из Манчестерского университета за новаторские эксперименты с графеном — двумерной формой углерода. Возглавляемая ими группа ученых была первой, кому удалось получить графен и идентифицировать его. Помимо этого, работы Гейма и Новосёлова внесли важный вклад в исследования необычных свойств и характеристик нового материала.

Углерод — поистине уникальный химический элемент. Он способен образовывать самые разнообразные химические структуры в виде одномерных цепочек, циклических образований и пространственных соединений. Благодаря этому многообразию обеспечивается, среди прочего, функционирование генетических кодов всего живого на Земле.

Долгое время были известны три основные аллотропные модификации углерода — графит, алмаз и сажа (аморфный углерод). Однако с середины прошлого века углеродное семейство стало быстро пополняться. Сначала были найдены одномерный вариант углерода карбин и гексагональная разновидность алмаза лонсдейлит. В 1985 году были обнаружены молекулы фуллеренов С60 и их производные Сn (низкие фуллерены — C24, C28, C30, C32, — средние фуллерены — C50, C60, C70, — гиперфуллерены — C76, C78, C82, C84, C90, C96, C102, C106, C110 и фуллерены-гиганты — C240, C540, C960), впоследствии (в 1996 году) принесшие своим первооткрывателям Нобелевскую премию по химии. Менее чем через 10 лет мир узнал о существовании цилиндрической модификации углерода — одномерных однослойных и многослойных углеродных нанотрубках. И наконец, в 2004 году группой ученых из Англии и России была получена двумерная форма углерода — графен. А всего через 6 лет после открытия этой новой аллотропной формы углерода руководители группы Андрей Гейм и Константин Новосёлов были удостоены Нобелевской премии по физике «за новаторские эксперименты с двумерным материалом графеном».

Что такое графен и как его открыли?

Пусть в нашем распоряжении имеется наиболее встречаемая в природе разновидность углерода — графит. Графит — сильно анизотропное вещество; он состоит из слабо взаимодействующих плоских слоев атомов углерода (рис. 2). То, что связь между атомными плоскостями слабая, можно наблюдать в процессе рисования карандашом на бумаге, когда слои графита легко смещаются и отсоединяются, оставляя на бумаге след.

Рис. 2. Графен (верхний рисунок) — это 2D- (двумерный) строительный материал для других углеродных аллотропных модификаций. Он может быть свёрнут в 0D-фуллерен (слева), скручен в 1D-углеродную нанотрубку (в центре) или уложен в 3D-штабеля, образуя графит (справа). Рисунок из статьи A. K. Geim и K. S. Novoselov «The rise of graphene» в Nature Materials
Рис. 2. Графен (верхний рисунок) — это 2D- (двумерный) строительный материал для других углеродных аллотропных модификаций. Он может быть свёрнут в 0D-фуллерен (слева), скручен в 1D-углеродную нанотрубку (в центре) или уложен в 3D-штабеля, образуя графит (справа). Рисунок из статьи A. K. Geim и K. S. Novoselov The rise of graphene в Nature Materials

Предположим, что нам каким-то образом удалось «отщепить» от кристалла графита одну атомарную плоскость. Полученный единичный слой атомов углерода и есть графен (из-за плоской формы графен называют еще двумерной аллотропной формой углерода). Так что можно считать, что графит — это такой штабель графеновых плоскостей.

Атомы графена собраны в гексагональную кристаллическую решетку (по типу пчелиных сот); расстояние между соседними атомами 0,142 нм. Эта «упаковка» настолько плотная, что она не пропускает даже маленькие атомы гелия.

Хотя термин «графен» в качестве название единичного слоя графита появился относительно недавно, в 1987 году (см.: S. Mouras et al. Synthesis of first stage graphite intercalation compounds with fluorides // Revue de chimie minérale (1987). ISSN 0035-1032. V. 24. №5. P. 572–582), теоретическое изучение свойств этого вещества началось еще в далеком 1947 году. Канадский физик Филипп Уоллес рассчитал закон движения электронов в единичном слое графита и обнаружил, что в определенных его участках зависимость энергии электронов от их импульса (закон дисперсии) является линейной (подробнее об этом см. в разделе «Свойства графена»). Однако до 2004 года получить графен не удавалось. Главное препятствие, стоявшее на пути экспериментаторов, заключалось в невозможности стабилизировать форму графена. Из-за стремления минимизировать свою поверхностную энергию он сворачивается, трансформируясь в разнообразные аллотропные модификации углерода — фуллерены, нанотрубки и аморфный углерод. (Примерно так ведет себя свернутый в рулон лист ватмана, когда вы пытаетесь его распрямить.)

Не добавляло оптимизма исследователям и заявление авторитетных физиков-теоретиков Рудольфа Пайерлса и Льва Ландау, сделанное более 70 лет назад, о том, что двумерная форма кристаллов не может свободно существовать, поскольку смещения атомов под действием тепловых флуктуаций будут настолько велики, что это приведет к дестабилизации кристаллической решетки и ее распаду на отдельные участки.

Тем неожиданнее для научного сообщества стала статья Electric Field Effect in Atomically Thin Carbon Films, вышедшая в октябре 2004 года в журнале Science, в которой группа ученых из Манчестерского университета и Института проблем технологии микроэлектроники в Черноголовке под руководством Андрея Гейма и Константина Новосёлова сообщила об успешной стабилизации графена. В этой работе они описали методику получения графена и его идентификации как действительно единичного слоя графита. Невероятно, но синтез графена ученые осуществили с помощью обычной ленты-скотча. Они раз за разом наклеивали скотч на поверхность пластинки пиролитического графита, а затем ее отклеивали, повторяя процедуру до тех пор, пока графит не станет совсем тонким.

После манипуляций со скотчем графит переносился на подложку из окисленного кремния. Так как каждый раз клейкая лента уносила с собой разное количество слоев графита, то «на выходе» графитовая пластина имела крайне неоднородную толщину и содержала разное количество слоев. Однако в этом «рельефе» нашелся участок толщиной ровно в один слой атомов углерода — желанный графен (о других методиках синтеза графена см. Графен: новые методы получения и последние достижения, «Элементы», 30.09.2008).

Как это часто бывает с великими открытиями, ученым немного повезло. Дело в том, что детектировать графен в тонкой неоднородной по толщине графитовой пластине при помощи атомно-силовых и сканирующих электронных микроскопов технически трудно. Поэтому для поиска монослоя графита Гейм и Новосёлов использовали обычный оптический микроскоп. Толщина подложки из оксида кремния (300 нм), на которую переносилась тонкая пластина из графита, была подобрана настолько удачно, что из-за интерференции света участки разной толщины имели свою окраску (рис. 3). Наименее контрастные, почти бесцветные области соответствовали самым тонким участкам. Именно среди них и был обнаружен графен. Лишь потом Гейм и Новосёлов с коллегами, используя атомно-силовой микроскоп, убедились, что найденная ими область действительно является однослойной и вправе называться графеном.

Рис. 3. Слева: фотография графитовой пластины неоднородной толщины. Справа: изображение графена, полученное с помощью атомно-силового микроскопа. Черная область соответствует подложке окисленного кремния, темно-оранжевый участок толщиной 0,5 нм — это графен, светло-оранжевый участок содержит несколько слоев графена и имеет толщину 2 нм. Изображения из дополнительных материалов к статье K. S. Novoselov, A. K. Geim et al. Electric Field Effect in Atomically Thin Carbon Films в Science
Рис. 3. Слева: фотография графитовой пластины неоднородной толщины. Толщина отдельных участков приведена прямо на фотографии (указанные значения были получены с помощью атомно-силового микроскопа). Длина масштабной линейки 50 мкм. Справа: изображение графена, полученное с помощью атомно-силового микроскопа. Черная область соответствует подложке окисленного кремния, темно-оранжевый участок толщиной 0,5 нм — это графен, светло-оранжевый участок содержит несколько слоев графена и имеет толщину 2 нм. Изображения из дополнительных материалов к статье K. S. Novoselov, A. K. Geim et al. Electric Field Effect in Atomically Thin Carbon Films в Science

Хотя размеры первых полученных кристаллов графена были крошечными (порядка 1 мкм), ученые подсоединили к полученным образцам с помощью специального устройства электроды, чтобы изучить электронные свойства нового материала.

Свойства графена

Открытие Андрея Гейма и Константина Новосёлова спровоцировало настоящую графеновую лихорадку. Буквально за несколько лет теоретики и экспериментаторы из разных лабораторий провели всестороннее изучение свойств графена (группа Гейма и Новосёлова в Манчестерском университете и по сей день остается одним из лидеров в этой области).

Почти сразу выяснилось, что электронные свойства новой формы углерода коренным образом отличаются от свойств трехмерных веществ. В частности, эксперименты подтвердили предсказания теоретиков о линейном законе дисперсии электронов. Но физикам было известно, что подобную зависимость энергии от импульса имеют и фотоны — безмассовые частицы, распространяющиеся в пространстве со скоростью света. Получалось, что электроны в графене, как и фотоны, не имеют массы, но движутся в 300 раз медленнее фотонов и имеют ненулевой заряд. (Во избежание недоразумений подчеркнем, что нулевая масса электронов наблюдается только в пределах графена. Если такой электрон удалось бы «вытянуть» из графена, то он приобрел бы свои обычные свойства.)

Линейный закон дисперсии электронов, а также то, что они являются фермионами (имеют полуцелый спин), вынуждает использовать для описания графена не уравнение Шредингера, как в физике твердого тела, а уравнение Дирака. Поэтому электроны в графене называют дираковскими фермионами, а определенные участки кристаллической структуры графена, для которых закон дисперсии линеен, — дираковскими точками.

Поскольку эти особенности поведения электронов в двумерном углероде присущи релятивистским частицам (со скоростью движения близкой к скорости света), появляется возможность экспериментальным образом смоделировать в графене некоторые эффекты из физики высоких энергий (например, парадокс Клейна), которые в обычных условиях исследуются в ускорителях заряженных частиц. Поэтому графен в шутку называют «настольным ЦЕРНом» (ЦЕРН — Европейский центр ядерных исследований, под его эгидой работает Большой адронный коллайдер).

В макроскопическом масштабе линейный закон дисперсии приводит к тому, что графен является полуметаллом, то есть полупроводником с нулевой шириной запрещенной зоны, а его проводимость в нормальных условиях не уступает проводимости меди. Более того, его электроны чрезвычайно чувствительны к воздействию внешнего электрического поля, поэтому подвижность носителей заряда в графене при комнатной температуре теоретически может достигать рекордных значений — в 100 раз больше, чем у кремния, и в 20 раз больше, чем у арсенида галлия. Эти два полупроводника, наряду с германием, наиболее часто используются при создании различных высокотехнологичных устройств (интегральных схем, диодов, детекторов и т. п.), а поскольку быстрота и эффективность их работы определяется как раз подвижностью электронов, то чем больше эта величина, тем быстрее и производительнее работают устройства.

Графен установил рекорд и по теплопроводности. Измеренный коэффициент теплопроводности двумерного углерода в 10 раз больше коэффициента теплопроводности меди, которая считается отличным проводником теплоты. Интересно, что до открытия графена звание лучшего проводника тепла принадлежало другой аллотропной форме углерода — углеродной нанотрубке. Графен улучшил этот показатель почти в 1,5 раза.

Для наглядности рассмотрим гипотетический гамак из графена площадью 1 м2. Зная поверхностную плотность графена (0,77 мг/м2), нетрудно посчитать, что такой гамак имеет массу 0,77 миллиграмм. Несмотря на кажущуюся хрупкость, этот гамак спокойно выдержит взрослого кота (массой приблизительно 4 кг). И хотя из-за двумерности графена сравнивать его прочностные характеристики с другими 3D-материалами некорректно, для стального гамака такой же толщины «критическая» масса, приводящая к разрыву, была бы в 100 раз меньше. То есть графен на два порядка прочнее стали.

Рис. 4. Гипотетический пример, демонстрирующий механическую прочность графена. Графеновый гамак площадью 1 м2 (его масса меньше миллиграмма) способен выдержать взрослого кота массой 4 кг. Для сравнения: стальной гамак той же площади (если бы нам удалось его сделать той же толщины) удерживал бы в 100 раз меньше — всего 40 г. Изображение с сайта nobelprize.org
Рис. 4. Гипотетический пример, демонстрирующий механическую прочность графена. Графеновый гамак площадью 1 м2 (его масса меньше миллиграмма) способен выдержать взрослого кота массой 4 кг. Для сравнения: стальной гамак той же площади (если бы нам удалось его сделать той же толщины) удерживал бы в 100 раз меньше — всего 40 г. Изображение с сайта nobelprize.org

Что же касается оптических свойств, то графен поглощает лишь около 2,3% видимого света независимо от того, какую длину волны имеет падающее на него излучение. (Любопытно, что в теоретических расчетах эти 2,3% выражаются через произведение числа π и постоянной тонкой структуры α, определяющей силу электромагнитного взаимодействия.) Это означает, что графен практически бесцветен (то есть стороннему наблюдателю будет казаться, что никакого графенового гамака нет, а кот на рис. 4 завис в воздухе).

Перспективы графена

В настоящее время наиболее обсуждаемым и популярным проектом является использование графена как нового «фундамента» микроэлектроники, призванного заменить существующие технологии на базе кремния, германия и арсенида галлия (рис. 5). Высокая подвижность зарядов вместе с атомарной толщиной делают графен идеальным материалом для создания маленьких и быстрых полевых транзисторов — «кирпичиков» микроэлектронной промышленности. В связи с этим стоит отметить публикацию 100 GHz Transistors from Wafer Scale Epitaxial Graphene, появившуюся в одном из февральских выпусков журнала Science за этот год. Авторы этой работы, сотрудники лаборатории IBM, сумели создать графеновый транзистор, работающий на частоте 100 ГГц (это в 2,5 раза превышает быстродействие транзистора того же размера, изготовленного на кремниевой основе).

Рис. 5. Графен рассматривается как основа микроэлектроники будущего. Рисунок с сайта thebigblogtheory.wordpress.com
Рис. 5. Графен рассматривается как основа микроэлектроники будущего. Рисунок с сайта thebigblogtheory.wordpress.com

Сочетание прозрачности, хорошей электрической проводимости и эластичности графена привело к мысли использовать его при создании сенсорных дисплеев и фотоэлементов для солнечных батарей. В ходе экспериментов было доказано, что почти по всем показателям устройства подобного рода на основе графена лучше, чем используемые сейчас устройства на основе оксида индия-олова (сокращенно ITO).

Чтобы показать, насколько перспективен графен, приведем далеко не полный список областей, где его использование уже началось:

  • это материал для изготовления электродов в ионисторах — конденсаторах с огромной емкостью, порядка 1 Ф (фарад) и больше;
  • на основе графена создаются микрометровые газовые сенсоры, способные «почувствовать» даже одну молекулу газа;
  • с помощью графена ученые провели секвенирование ДНК;
  • в комбинации с лазером графен может оказаться лекарством от рака (см. Предложен способ лечения рака с помощью графена и лазера, «Элементы», 07.09.2010).

Справедливости ради заметим, что успехи, связанные с применением графена, носят пока что единичный характер. Основные трудности заключаются в синтезе высококачественных недорогих листов графена большой площади, имеющих стабильную форму. Тем не менее последние публикации, посвященные получению графена, внушают определенный оптимизм. В июне этого года в журнале Nature Nanotechnology появилась совместная статья корейских, сингапурских и японских технологов, в которой они пишут о получении 30-дюймовых (72 см; сравните с микрометровыми размерами первых кристаллов графена) графеновых листов методами, которые, возможно, поставят производство двумерного углерода на поток. И тогда, наверное, поутихнут разговоры о том, что Нобелевская премия по физике за 2010 год была выдана графену как своеобразный аванс на будущее.

Оригинальная статья лауреатов: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films // Science. V. 306. P. 666–669. 22 October 2004.

Источники:
1) Список публикаций группы Андрея Гейма и Константина Новосёлова на сайте Манчестерского университета (открытый доступ).
2) The Nobel Prize in Physics 2010 — официальная информация от нобелевского комитета.

См. также:
1) Graphene — the perfect atomic lattice (PDF, 1,44 Мб) — пресс-релиз Нобелевского комитета.
2) Graphene. Scientific Background on the Nobel Prize in Physics 2010ompiled by the Class for Physics of the Royal Swedish Academy of Sciences (PDF, 1,07 Мб) — научная история вопроса.
3) Графен: новые методы получения и последние достижения, «Элементы», 30.09.2008.

Юрий Ерин


Вернуться назад