ОКО ПЛАНЕТЫ > Новость дня > Вселенную «на грани» воссоздали в лабораторных условиях
Вселенную «на грани» воссоздали в лабораторных условиях21-04-2016, 13:25. Разместил: Редакция ОКО ПЛАНЕТЫ |
Вселенную «на грани» воссоздали в лабораторных условияхУсловия в нашей огромной Вселенной могут быть самыми разными. Жестокие падения небесных тел оставляют на поверхности планет шрамы. Ядерные реакции в сердцах звезд генерируют огромное количество энергии. Гигантские взрывы катапультируют вещество далеко в космос. Но как именно протекают процессы вроде этих? Что они говорят нам о Вселенной? Можно ли использовать их силу на благо человечества?
Чтобы выяснить это, ученые из Национальной ускорительной лаборатории SLAC провели сложные эксперименты и компьютерное моделирование, воссоздающее жестокие космические условия в микромасштабах лаборатории.
Три недавно проведенных исследования, подчеркивающих этот подход, затрагивают падения метеоров, ядра гигантских планет и космические ускорители частиц, в миллионы раз мощнее Большого адронного коллайдера, крупнейшего ускорителя частиц на Земле. Космические «побрякушки» указывают на метеорыИзвестно, что высокое давление может превращать мягкую форму углерода — графита, который используется в качестве грифеля — в чрезвычайно тяжелую форму углерода, алмаз. Может ли такое произойти, если метеор попадет в графит на земле? Ученые считают, что может, и что эти падения, по сути, могут быть достаточно мощными, чтобы произвести так называемый лонсдейлит, особую форму алмаза, которая даже еще прочнее, чем обычный алмаз.
Ученые нагрели поверхность графита мощным оптическим лазерным импульсом, который отправлял ударную волну внутрь образца и быстро его сжимал. Просвечивая источник яркими, сверхбыстрыми рентгеновскими лучами LCLS, ученые смогли увидеть, как шок изменил атомную структуру графита.
Гигантские планеты превращают водород в металлВторое исследование, опубликованное на днях в Nature Communications, посвящено другой важной трансформации, которая могла происходить внутри гигантских газовых планет вроде Юпитера, внутренняя часть которых по большей части состоит из жидкого водорода: при высокой температуре и давлении, этот материал переходит из «обычного», электроизолирующего состояния в металлическое, проводящее.
То есть не открывали до тех пор, пока Гленцер и его коллеги-ученые не провели эксперимент в Национальной лаборатории Ливермора (LLNL), где использовали высокомощный лазер Janus, чтобы быстро сжимать и нагревать образец жидкого дейтерия, тяжелой формы водорода, и создать вспышку рентгеновских лучей, которая выявила последовательные структурные изменения в образце. Ученые увидели, что выше давления в 250 000 атмосфер и температуры в 7000 градусов по Фаренгейту, дейтерий действительно меняется из нейтральной изолирующей жидкости в ионизированную металлическую.
В дополнение к планетарной науке, это исследование могло бы также помочь в исследованиях, направленных на использование дейтерия в качестве ядерного топлива для термоядерных реакций. Как построить космический ускорительТретий пример экстремальной вселенной, вселенной «на грани», это невероятно мощные космические ускорители частиц — вблизи сверхмассивных черных дыр, например — извергающие потоки ионизированного газа, плазмы, на сотни тысяч световых лет в космос. Энергия, которая содержится в этих потоках и их электромагнитных полях, может конвертироваться в невероятно энергичные частицы, которые производят очень короткие, но интенсивные вспышки гамма-лучей, которые могут быть обнаружены на Земле. Ученым хотелось бы узнать, как работают эти энергетические ускорители, поскольку это поможет понять Вселенную. Кроме того, из этого можно было бы извлечь свежие идеи для строительства более мощных ускорителей. В конце концов, ускорение частиц лежит в основе множества фундаментальных физических экспериментов и медицинских устройств. Ученые полагают, что одна из главных движущих сил, стоящих за космическими ускорителями, может быть «магнитным пересоединением» — процессом, в котором линии магнитного поля в плазме разбиваются и пересоединяются иным путем, выпуская магнитную энергию.
Его команда провела ряд компьютерных моделирований, которые предсказали, как должны вести себя частицы плазмы в таких экспериментах. Самые серьезные расчеты на основе 100 миллиардов частиц потребовали более миллиона часов работы CPU и более терабайта памяти суперкомпьютера Mira Аргоннской национальной лаборатории.
Вернуться назад |