ОКО ПЛАНЕТЫ > Новость дня > Проблемы квантовой теории или небольшая экскурсия в квантовую метафизику

Проблемы квантовой теории или небольшая экскурсия в квантовую метафизику


25-07-2012, 13:00. Разместил: gopman

 

 фото с сайта kabmir.com

 

В последнее время, особенно в связи с появлением качественно новых приложений квантовой теории, таких, например, как квантовая информатика, включающая в себя квантовую криптографию, квантовую телепортацию и, самое главное, активно развивающиеся работы направленные на создание квантового компьютера, напрямую использующие все особенности квантового мира, на первый план выходят вопросы наиболее глубокого понимания этих особенностей и, самое главное, более глубокого и однозначного понимания результатов, к которым приводят эти особенности.

 

В этой статье мы попробуем увидеть то, что принципиально отличает непривычный нам квантовый мир от хорошо известного и уютного и так привычного нам классического и посмотрим только на один из возможных вариантов решения имеющихся проблем. И начнем мы с краткого обзора того, что отличает квантовую физику от классической, но при этом ей нисколько не противоречит.

 

         Наиболее глубокое отличие между классической и квантовой теориями лежит в особой роли эксперимента, или иными словами, в особой роли измерения параметров исследуемой квантовой системы. Речь идет о проблеме измерения в квантовой теории. Если говорить совсем просто, эта проблема связана с тем, что, пытаясь провести измерения параметров микроскопической системы, экспериментатор с необходимостью воздействует на микроскопическую систему макроскопическим прибором, тем самым с неизбежностью изменяя состояние квантовой системы. Формально это выражается в том, что пока измерение не было проведено квантовая система, описываемая основным уравнением квантовой механики уравнением Шредингера, находится в суперпозиции (сумме) собственных состояний, которые могут быть реализованы с той или иной вероятностью. Такое описание полностью детерминировано, поскольку, зная начальное состояние системы, мы можем однозначно описать ее эволюцию в вероятностном ключе. Иными словами, мы не можем указать, в каком именно состоянии находится наша система, но как изменятся вероятные состояния этой системы, указать можем.

 

Однако экспериментатор, проводя измерения (воздействуя на систему макроскопическим прибором) обнаруживает ее в каком-то определенном состоянии, ставшем в процессе измерения, из вероятного реально существующим. Такая ситуация с необходимостью привела к появлению проективного постулата фон Неймана, который носит чисто вероятностный характер и описывает практически непредсказуемые изменения в системе, возникающие в результате проведенного экспериментатором измерения, нарушая тем самым детерминированность описания. Даже зная в каком состоянии находилась система в начальный момент времени, невозможно предсказать точно результат измерения.

 

Понятно, что такая ситуация не вполне корректна, если мы говорим о фундаментальной физической теории. Ведь точно так же, как и квантовая система, являющейся физической системой, так и прибор, который использовал экспериментатор, тоже является физической системой, а сам эксперимент является физическим процессом. Потому и исследуемая система и эксперимент, да и используемый в эксперименте прибор должны описываться единообразно. Вот тут и возникает вопрос о том, как примирить проективный постулат фон Неймана с возникающим противоречием?

 

          Нильс Бор, сформулировав свою копенгагенскую интерпретацию (несколько подробней о копенгагенской интерпретации Бора и краткой характеристике других интерпретаций, можно прочитать в статье, имеющейся на портале [1]), ответил на этот вопрос так. Поскольку прибор является макроскопически большим, то к нему просто неприменимы законы квантовой теории, а он обязан быть таковым, поскольку его свойства должны непосредственно восприниматься экспериментатором, так, как это имеет место в классической физике. Он и должен описываться исключительно законами классической физики. А уравнение Шредингера и проективный постулат фон Неймана применимы только к квантовым системам, причем последний вступает в силу, только если квантовая система вступает во взаимодействие с классическим прибором.

 

Эта точка зрения оказалась весьма удобной для применения и большинство физиков, особенно занимающихся расчетом реальных квантовых систем, другие точки зрения на этот вопрос просто не интересовали. Однако, из копенгагенской интерпретации с неизбежностью следует вывод о том, что наш физический мир разделен на два, абсолютно разных типа объектов – на квантовые и классические объекты, каждый из которых подчиняются своим собственным законам, что является не вполне понятным и приемлемым. И, как результат, стали возникать квантовые парадоксы, к формулировке которых приложили руку выдающиеся физики: Шредингер, Вигнер, Эйнштейн, Бор, Паули. Уиллер, ДеВитт и многие другие. Это, например, известный большинству читателей парадокс кота Шредингера, парадокс друга Вигнера, парадокс Эйнштейна – Подольского – Розена.

 

Есть и еще один момент, который стоит упомянуть. Он связан с тем, что тем или иным образом любое измерение с необходимостью связано с осознания его экспериментатором и поэтому результат эксперимента просто не отделим от осознания его человеком, проводящим его. Отделить сам эксперимент от осознания его результатов просто не удается, даже если об этом не вспоминать.

 

 Но мы не будем углубляться в тонкости копенгагенской интерпретации квантовой теории и ее критики (желающих совершить этот подвиг могу отослать к замечательной книге Садбери [2], ссылку на которую интересующиеся могут найти в конце статьи), а продолжим знакомство с отличиями квантовой теории от классической.

 

Остальные отличия являются не столь принципиальными, как проблема измерения, но сами по себе достаточно интересны и стоят хотя бы короткого упоминания:

 

1.  Квантовая теория принципиально отличается от теорий, возникших до нее, не только тем, что ее предсказания носят вероятностный характер, но и тем, что вероятность лежащая в ее основе носит принципиально фундаментальный характер. Если использование понятия вероятности в других теориях обусловлено неполнотой информации об исследуемой системе и полагается, что понятие вероятности можно из этих теорий исключить, получив более полные сведения о предмете исследования, то в квантовых теориях получение полной информации о системе невозможно в силу фундаментальных принципов, таких как принцип неопределенности, имеющих свое отображение в соотношении неопределенностей Гейзенберга или, в наиболее общем виде, в соотношении неопределенностей Шредингера.  

 

Эту особенность квантовой теории не столько сложно понять, сколько сложно принять. Дело в том, что в классической физике существует основное допущение, гласящее, что всякому событию должна предшествовать его причина. Однако если квантовые законы имеют принципиально вероятностный характер, то отдельные моменты квантовых явлений могут и не иметь предвосхищавших их причин. Именно с этим моментом и связано знаменитое выражение Эйнштейна: «Я не могу поверить, что Бог играет в кости». 

 

Из этой ситуации, если посмотреть на нее несколько иначе, можно сделать вывод о том, что утверждение «каждое событие имеет свою причину» мы должны рассматривать не как непреложную истину, неподлежащую сомнениям, а как утверждение о наших намерениях искать причину любого события. Самим своим существованием квантовая теория доказывает это положение;

 

2.  Наиболее загадочным в квантовой теории является способ, которым определенные свойства приписываются частицам в квантовой системе.  В отличие от классической физики, это отличие имеет два момента. Во-первых, в квантовой теории отрицается наличие определенных значений тех характеристик, которыми оперирует классическая физика. Делается утверждение, что квантовая частица может, например, не иметь определенного положения в пространстве и определенного значения импульса (одно из соотношений неопределенностей Гейзенберга).

 

Особенно удивительно то, что если частица в определенный момент времени и имеет определенное положение в пространстве (частица локализована), то ее импульс не может быть определен в принципе. Но более того, невозможно точно сказать, где она будет локализована в последующие промежутки времени. Или, другими словами, привычное в классической механике понятие траектории частицы в квантовой теории просто неприменимо, поскольку это понятие с необходимостью требует одновременного с локализацией частицы точного определения ее импульса. А на эту процедуру в квантовой механике наложен принципиальный запрет. Согласитесь, что представить себе такую частицу в рамках наших привычных воззрений достаточно сложно.

 

         Во-вторых, и это более существенно, в квантовой теории вообще не определен статус такого понятия, как свойства системы, когда она не находится в собственном состоянии, т.е., когда осуществляется на систему внешнее воздействие. Непонятно вообще обладает ли система в момент измерения таким свойством, находится ли в одном из собственных состояний. Дело в том, что в процессе измерения можно получить конкретное значение для любой наблюдаемой (наблюдаемой в физике называют любой параметр системы поддающийся измерению). Наблюдаемую можно измерить, придать ей любое значение, так что, нельзя утверждать, что полученные результаты бессмысленны.

 

Однако с другой стороны любое измеренное значение может быть фальсифицировано самим процессом измерения, который есть ни что иное, как эксперимент над квантовой системой, переводящий систему из собственного состояния в некое, достаточно неопределенное, новое состояние, при этом не являющиеся собственным;

 

3.  Положим, что квантовая система состоит, например, из двух частей.  Тогда ее состояние можно описать суперпозицией (суммой) двух векторов состояния, построенных по соответствующему закону. Заметим, что подобная ситуация и обсуждалась в знаменитой статье Эйнштейна, Подольского, Розена в которой и был сформулирован знаменитый парадокс, носящий имя авторов этой статьи.  Когда система находится в подобном состоянии, оказывается невозможным утверждение, что какая-либо из подсистем находится в определенном состоянии, но возможно получить информацию об одной из подсистем, произведя эксперимент над другой подсистемой.

 

Таким образом, квантовая теория просто отрицает возможность описания окружающего нас мира путем деления на его на части с последующим описанием этих частей. Этот момент является довольно неординарным по своей сути.

 

4.  Ненадолго вернемся к проективному постулату, который обсуждался немного выше. И просто сформулируем некоторые итоги этого обсуждения. Мы видели, что проективный постулат фон Неймана фактически является довольно плохо определенной процедурой. В нем нет точного определения, что есть на самом деле процесс измерения параметров квантовой системы. Нет никакого указания ни на момент времени, ни на механизм перехода системы из достаточно произвольного вероятностного состояния в обнаруженное в результате эксперимента конкретное состояние.

 

Во-вторых, сам по себе проективный постулат фон Неймана является дуалистичным, поскольку он требует принципиального разделения нашего мира на квантовый микроскопический мир и на макроскопический классический мир.  Он так же разделяет закон временной эволюции на закон, определяемый детерминированным (строго упорядоченным во времени) основным уравнением квантовой механики – уравнением Шредингера и на строго вероятностный закон, не вполне определенный проективным постулатом фон Неймана, что хорошо иллюстрируется известным парадоксом с котом Шредингера.

 

Другими словами, он делает физические события следствиями наблюдений вместо того, что бы полагать, что события наблюдаются только потому, что они действительно произошли в окружающем нас мире.

 

Проективный постулат фон Неймана сформулирован в строго локальной форме, когда неявно полагается, что измерения происходят мгновенно, и, следовательно, является чистой абстракцией, не учитывающий тот момент, что реальные измерения никогда не являются мгновенными. Это всегда протяженный во времени процесс. Из этого с необходимостью возникает вывод, что проективный постулат фон Неймана в некотором смысле чужероден самой сути квантовой теории и введен в нее по необходимости, что бы хоть как-то пояснить саму процедуру квантового измерения;

 

5.  И последний момент отличающий квантовую теорию от классической. Говоря об отличиях этих теорий друг от друга, нельзя не упомянуть формальную логику, заложенную в их основание.

 

Отличие квантовой логики от классической весьма существенно. Это вызвано тем, что существует явное неудобство в использовании векторов состояния, которыми оперирует теория, для описания физического состояния исследуемой системы. Это неудобство порождается тем, что в квантовой теории просто не существует взаимнооднозначного соответствия между векторами состояния, используемыми в теории, и физическим состоянием системы. Потому мы просто с необходимостью, пытаясь описать физическое состояние квантовой системы, вынуждены оперировать не с одним вектором состояния, а с целым классом векторов, кратных данному, что несколько усложняет построение геометрии пространства, с которым оперирует квантовая теория, переводя его в разряд проективного.

 

Если говорить проще, то отражением этого факта является утверждение о том, что мы просто не имеем возможности утверждать, что интересующая нас квантовая система находится в данный момент или в данной области пространства в определенном состоянии.

 

Для нас это конкретное состояние фактически остается неопределенным Потому привычная для нас бинарная логика, таблица истинности которой строится из двух элементов “ДА”, “НЕТ”, начинает входить в сильное противоречие с обсуждаемой теорией. Для квантовой теории непротиворечивой, и это можно показать строго, оказывается трехзначная логика, таблица истинности которой складывается уже из трех элементов – “ДА”, “НЕТ” и “НЕОПРЕДЕЛЕНО”. Но это отличие не является причиной для разделения двух миров – квантового и классического, поскольку при плавном переходе от одного описания к другому трехзначная логика столь же плавно переходит в бинарную.

 

Таким образом, мы просто с неизбежностью оказываемся перед двумя, достаточно существенными вопросами:

*Так что же представляет собой квантовая теория как теория физическая?

*Каким же образом она описывает физический мир?

 

В настоящее время существует множество ответов на эти вопросы, которые лежат уже больше в философской плоскости, называемой метафизикой, и составляют содержание того, что называется квантовыми интерпретациями, одна из которых, а именно, копенгагенская интерпретация, была нами упомянута выше.

         На настоящий момент существует чуть менее двух десятков различных вариантов интерпретаций, суть которых весьма многообразна. Начиная от довольно экзотических предположений о движении частиц во времени в противоположном направлении, расслоении многомерных пространств нашего мира, в основе которых лежат струнные космологические модели, и заканчивая интерпретациями откровенно идеалистическими. Но не будем погружаться в эту пучину “-измов”, поскольку многих из них, за редким исключением, объединяет одна и та же довольно неприятная вещь – предположения, заложенные в их основу если и непротиворечивы, то недоступны для прямого доказательства их истинности. Это бесспорно в отношении идеалистических интерпретаций,  ведь очень хорошо известно, что никакое утверждение, в основе которого лежит идеализм, не может быть ни опровергнуто ни доказано с помощью каких бы то ни было логических построений. В этом случае, решение главного для понимания вопроса перекладывается только на некие интуитивные суждения и другого тут просто не дано.

 

 Другие интерпретации, такие, например, как копенгагенская и производные от нее, позволяют довольно точно рассчитывать квантовые системы для прямого их применения, не озадачиваясь при этом вопросами, к какой картине мира они приводят. Они просто удобны в практической плоскости. Недаром копенгагенскую интерпретацию многие физики считают ортодоксальной и шутливо характеризуют фразой – “это интерпретация вида замолчи и считай!”. Но и с ней, как мы видели, не все так просто. К сожалению, и она не позволяет провести экспериментальную проверку и  однозначно сказать, что окружающий нас мир действительно разделен на два мира: квантовый и классический. 

 

Так что мы оставим в покое весь этот “квантовый зоопарк”, в котором каждый волен выбирать понимание мира себе по вкусу, впрочем, без малейшей надежды убедиться в правильности своего выбора. Мы сосредоточимся только на одной квантовой интерпретации, которая не только рисует логически стройную, возможно довольно непривычную  для нас картину мира, но при этом содержит в себе возможность хоть в будущем, но проверить ее экспериментально. Интерпретации, которая прямо указывает на области пересечения точных и естественных наук. Дальнейший разговор мы посвятим обсуждению квантовой многомировой интерпретации Эверетта.

 

В 1957 году вышла статья Хью Эверетта III, в которой была предложена принципиально новая на момент выхода статьи “многомировая” интерпретация квантовой механики, хотя сам Эверетт называл ее интерпретацией квантовой механики, основанной на понятии относительного состояния. Эта статья, в своё время, прошла почти незамеченной.

 

С развитием физики интерес к решению проблемы измерений совместно с противоречивостью проективного постулата в квантовой теории сильно возрос и к интерпретации, предложенной в этой статье. вернулись. Это связано, с одной стороны, с тем, что квантовая теория, нашедшая свои приложения в самых неожиданных областях науки и техники, стала превращаться в инженерную науку, и перестала быть “уделом избранных”. Все больше специалистов стало обращаться к ней.

 

Но были и иные причины возникновения интереса именно к основным проблемам квантовой теории. Потребовались расчеты не только сложных систем, таких как атомы, пучки электронов, фотонов и так далее, но и “элементарных” систем, таких как единичный электрон в одномерной кристаллической решетке, одноэлектронные транзисторы, единичный ион в магнитной ловушке и прочее. Для расчета таких систем хорошо привычная идеология Копенгагенской интерпретации   стала просто неприменима.

 

Кроме того, появились качественно новые области приложения квантовой механики, требующие более глубокого понимания квантового мира. Приложения уже напрямую использующие именно отличия квантовой теории от классической. Примером такого приложения является квантовая информатика со всеми своими приложениями, с упоминания которой и начиналась эта статья.

 

Формулируя свою интерпретацию, Эверетт попытался выйти за пределы, фактически чуждого квантовой теории, проективного постулата фон Неймана. Несколько позднее это сделали Уиллер и ДеВитт. Согласно интерпретации Эверетта, а вернее, многомировой интерпретации Эверетта – Уилера – ДеВитта, предполагается, что различные вероятностные состояния квантовой системы соответствуют различным классическим вероятностям, или классическим мирам.

 

Полагается, что эти классические миры равноправны, то есть, ни один из них не более реален, чем остальные.  Так возникла картина многих классических миров Эверетта – Уиллера – ДеВитта. Более подробное описание этой интерпретации, например, можно найти в статье [1].

 

Но при этом возникает довольно любопытный вопрос – а как быть с тем, что при проведении эксперимента\измерений сознание наблюдателя фиксирует только один из возможных результатов таких измерений? Ведь и в этом случае происходит с неизбежностью все тот же выбор одного из возможных состояний квантовой системы (редукция состояний) и нет ли тут явного противоречия с многомировой интерпретацией. На самом деле, такого противоречия просто не возникает и это можно показать. Дело в том, что сознание наблюдателя как бы разделяется между “возникающими” классическими мирами и каждая “компонента” разделившегося сознания видит только то, что происходит в каждом из этих миров.

 

“Таким образом, сознание наблюдателя расслаивается, разделяется в соответствии с тем, как квантовый мир расслаивается на множество альтернативных классических миров”[3]

 

В интерпретации Эверетта – Уилера - ДеВитта количество таких альтернативных миров определяется исключительно тем набором собственных состояний, к которых может находиться квантовая система. В принципе, их может быть и бесконечное количество, в отличие от картины, которую дает копенгагенская интерпретация Бора, в которой все эти альтернативы просто исчезают, происходит селекция альтернатив. И это исчезновение альтернатив является прямым следствием проективного постулата фон Неймана.  

 

В интерпретации Эверетта такой селекции не происходит. Вместо этого происходит как бы “расслоение” квантового мира  на альтернативные реальности и сознание наблюдателя способно воспринимать возникающие альтернативы независимо друг от друга. Или, другими словами, сознание “расслаивается” на свои компоненты, каждая из которых воспринимает свой собственный классический мир. Но субъективно наблюдатель в целом воспринимает так, как будто существует только один классический мир.

 

Согласно Эверетту в каждом из альтернативных классических миров существуют “двойники” одного и того же наблюдателя, воспринимающие каждый свою альтернативу. Эта интерпретация довольно сложна для понимания, поскольку в ней все альтернативы реализуются, а сознание наблюдателя разделяется между всеми альтернативами, но в то же время, индивидуальное сознание воспринимает эту картину так, как будто существует только одна альтернатива, только один классический мир, в котором оно и живет.

 

Подытоживая сказанное, можно утверждать, что сознание в целом разделяется между существующими альтернативами, но при этом индивидуальное сознание субъективно осуществляет селекцию альтернатив, выбирая из всего набора только одну.

 

Такова вкратце интерпретация Эверетта – Уилера – ДеВитта. На первый взгляд она кажется довольно фантастической, но это не совсем так. Во-первых, стоит напомнить, что такая картина мира вполне логична, поскольку связана с отказом от противоречивого по-сути проективного постулата фон Неймана. Постулата, нарушающего одну из основ квантовой теории – ее линейность, отказ от которого напрямую следует из самой сути квантовой теории. Во-вторых, картина становится еще более фантастической, когда интерпретацию Эверетта – Уилера – ДеВитта воспринимают буквально и начинают утверждать, что эвереттовские миры реально существуют.

 

 Однако при этом надлежит помнить, что никаких многих миров в действительности нет. Реально существует только один мир и этот мир квантовый по своей природе. Мир, который может находиться во многих вероятностных состояниях, каждое их которых соответствует своему классическому миру. Миру, который и воспринимает сознание.

 

Иными словами, каждый из эвереттовских миров есть ни что иное, как “классическая проекция” единого квантового мира. И эти проекции создаются ни чем иным, как сознанием наблюдателя, в то время, как квантовый мир един и существует независимо от сознания наблюдателя.

 

Если это помнить, то многие фантазии и недоразумения, которые могут возникнуть, просто исчезают. Однако и интерпретации Эверетта – Уиллера – ДеВитта присущ все тот же существенный недостаток. Эту интерпретацию, равно как и подавляющее большинство других, невозможно проверить экспериментально. Сама квантовая теория, да и обсуждаемая интерпретация не содержат, на первый взгляд, инструментов, позволяющих выполнить подобную проверку. Однако, все расчеты, которые могут быть проведены в рамках этой интерпретации, по сути, являются все теми же квантовомеханическими расчетами. Иными словами, интерпретация Эверетта – Уилера – ДеВитта не есть новая квантовая теория. Это всего лишь иное понимание обычной квантовой теории.

 

Прежде, чем мы пойдем дальше, обратим внимание на следующий момент, вытекающий из обсуждаемой интерпретации – если в соответствии с законами квантовой теории разделения альтернатив не происходит, а наблюдатель всегда видит только одну из них, значит, разделение альтернатив и выбор одной из них происходит в сознании наблюдателя.

 

Эта мысль не нова, поскольку об этом говорил и сам Эверетт. Однако можно пойти в этом направлении дальше и предположить, что мы имеем дело не с двумя связанными явлениями (сознанием и разделением квантовых альтернатив), а с одним объектом и отождествим понятие сознания с понятием разделения альтернатив. Рассмотрим эту мысль подробнее.

 

В интерпретации Эверетта – Уиллера – ДеВитта само понятие сознания имеет два аспекта. Во-первых, сознание в целом разделяется между альтернативами, а его “компонента” живет в одной классической альтернативе. Заметим, что в психологии под сознанием понимают именно эту ”компоненту”, живущую в своем классическом мире (сознание, как его определяет психология, это то, что воспринимается субъективно). Таким образом, у нас довольно последовательно возникает гипотеза отождествления, сформулированная известным российским физиком – теоретиком, доктором физико-математических наук, Михаилом Борисовичем Менским:

 

«Способность человека (и любого живого существа), называемая сознанием, - это то же самое явление,  которое в квантовой теории называется редукцией состояния или селекцией альтернатив, а в концепции Эверетта фигурирует как  разделение единого квантового мира на классические альтернативы» [3]

 

Эта гипотеза, являющаяся сутью расширенной интерпретации Эверетта, позволила намного расширить понимание окружающего мира. Поскольку мы полагаем теперь, что сознание и разделение альтернатив есть суть одно и тоже явление, у нас возникает, по крайней мере, один общий элемент – сознание, связывающий между собой такие, казалось бы, отстоящие далеко друг от друга области познания, как квантовая физика и психология.

 

Однако этот момент требует некоторого пояснения.   Эту самую общую часть квантовой физики и психологии следует отождествлять лишь с самым глубинным, самым “примитивным” уровнем сознания. Этот уровень лежит на самой границе сознания и непосредственно связан с процессом осознавания - процесса перехода от состояния “неосознано” к состоянию  осознания окружающего мира. Следует так же уточнить, что в данном случае речь не идет о сознании в целом, а лишь о том, неуловимом, отличающим состояния “неосознано” и “осознано”. Становится понятным и еще один момент – почему эти два явления сознание и разделение классических альтернатив, лежащие в традиционно разных сферах познания, плохо поддаются пониманию  в рамках традиционного понимания. Просто важнейшие аспекты этих явлений лежат в иных областях, отделяя которые друг от друга, мы упускаем самое важное.

 

В рамках расширенной интерпретации Эверетта стало возможным понимание того, что же есть на самом деле жизнь, в самом общем ее понимании. Для того. Что бы это увидеть попробуем понять, что же есть на самом деле выбор среди возможного набора возможных классических альтернатив.  При этом надо иметь в виду, что этот выбор осуществляют и используют живые организмы. Важнейшим моментом является то, что каждая альтернатива есть ни что иное, как вероятное поведение “микроскопической” системы и ее “макроскопического” окружения. 

 

Иными словами, это именно та картина окружающего мира, которая возникает в сознании живого организма. В этой картине мир становится классическим, ведущим себя в соответствии с хорошо привычными классическими законами, то есть. этот мир становится предсказуемым, пусть даже в отдельной области, окружающей организм, и живой организм становится в состоянии выработать оптимальную стратегию для выживания в этом мире. Причем важнейшим фактором является именно классичность картины, формируемой сознанием, ее предсказуемость, поскольку в квантовом случае мир бы стал вероятностным, непредсказуемым. Миром, в котором не всегда выполняется принцип причинности. В этом случае выработка оптимальной стратегии выживания живого организма была бы невозможна в принципе, а, следовательно, стала бы невозможной предсказуемость эволюции живых организмов. Таким образом, классичность эвереттовских миров является просто необходимым условием для существования живых организмов.

 

Другими словами, живое существо в отличие от неживого обладает уникальной способностью особым образом воспринимать квантовый мир, проецируя его своим сознанием на мир классический. Мир, в котором с неизменностью осуществляется принцип причинности, в котором хорошо срабатывают приобретенные навыки. Мир, являющийся, по крайней мере, локально предсказуемым. 

 

Эти рассуждения делают правдоподобным предположение о том, что явление разделения альтернатив, которое отождествляется с сознанием, не является законом природы, как это обычно предполагается в явной или неявной форме.  Сознание является способностью, которую живые существа выработали в процессе эволюции, а точнее – в процессе зарождения жизни. Отсюда следует еще один, казалось бы, парадоксальный вывод о том, что классические законы природы, сформулированные с той или иной степенью точности  высшими уровнями сознания, и успешно используемые нами в описании окружающего неживого мира просто не применимы для описания явлений, связанных с сознанием, с живыми организмами, особенно, для описания социума, поскольку в той или иной форме социум есть ни что иное, как продукт высших функций сознания.

 

Но самым интересным в обсуждаемой нами расширенной интерпретации Эверетта является заложенная в ней возможность, пусть и пока гипотетическая, экспериментальной проверки. Надежда ее проведения напрямую связана с разрабатываемыми в настоящий момент квантовыми компьютерами.  Это так, поскольку в квантовых компьютерах эволюционируют квантовые состояния - кубиты, то есть, суперпозиции, содержащие огромное число компонент. Каждая компонента несет в себе некоторую информацию и эволюция всей квантовой системы такого компьютера развивается по законам квантового мира, а, следовательно, и обеспечивает одновременное преобразование всех вариантов классической информации. Следовательно, можно надеяться, что квантовый компьютер позволит моделировать такое явление, как сознание. Сознание, как оно определено в рамках расширенной интерпретации Эверетта. Задача состоит в том, что бы каким-либо образом сформулировать критерий выживания и подобрать закон эволюции так, что бы эволюция всех альтернатив была предсказуемой, и выживание в этих альтернативах было возможным. Задача эта крайне сложна, но принципиального запрета на ее реализацию пока не видно.

 

На этом мы завершим нашу небольшую экскурсию в квантовую метафизику, оставив за бортом еще много интересного и удивительного.

 

Автор выражает искреннюю благодарность редактору Damkinу за длительные и плодотворные дискуссии и профессору, доктору технических наук, Семенову Александру Николаевичу за неоценимую техническую помощь, без которой появление этой статьи было бы весьма затруднительно.

 

Литература

 

1.  gopman Квантовые измерения, феномен жизни и стрела времени

2.  А.Садбери Квантовая механика и физика элементарных частиц.- М.Мир, 1989 г.

3. М.Б.Менский Концепция сознания в квантовой механике.- УФН, т.175, №4, 2005 г., с. 423 – 435. 

 

gopman

 

Специально для портала "ОКО ПЛАНЕТЫ"

 

При цитировании и копировании ссылка на "Око Планеты" обязательна


Вернуться назад