ОКО ПЛАНЕТЫ > Космические исследования > Гравитационная линза помогла открыть новую экзопланету
Гравитационная линза помогла открыть новую экзопланету23-11-2015, 10:23. Разместил: Редакция ОКО ПЛАНЕТЫ |
|||||
Гравитационная линза помогла открыть новую экзопланету
Сейчас счет открытым экзопланетам идет на тысячи, причём подавляющее большинство из них были обнаружены методом транзитов или методом радиальных скоростей. Недавно две группы астрономов, ищущие экзопланеты на телескопах в Новой Зеландии и Чили, выпустили статью, в которой описали открытие новой планеты пока еще довольно экзотическим методом гравитационного микролинзирования. Эта планета имеет массу порядка Сатурна и обращается вокруг красного карлика, находящегося от нас на расстоянии 6,43 килопарсека. В последние два десятилетия открытие экзопланет, то есть планет, вращающихся вокруг других звёзд (а не нашего Солнца), — это одна из самых горячих тем в астрофизике. Первая экзопланета была открыта в 1991 году, потом находили по несколько планет в год, но в XXI веке их поиск был поставлен на поток (особенно с запуском телескопа «Кеплер», специально предназначенного для охоты за экзопланетами), и сейчас, по официальным данным, открыты и подтверждены 1901 экзопланета и ещё более 4600 планет находятся в статусе кандидатов (то есть нужны дополнительные наблюдения, но с большой долей вероятности они скоро будут добавлены в официальный список). Сегодня открытие новой экзопланеты — это довольно рядовое событие, которое не всегда попадает в новостные издания. Вот изучение атмосферы «внеземли» или обнаружение планеты, похожей на нашу, — это всё ещё интересно. Однако сегодня мы расскажем об открытии обыкновенной планеты, описанном в статье большой международной группы астрономов. Масса этой планеты чуть меньше Сатурна, знаем мы про неё довольно мало и в ближайшее время вряд ли узнаем намного больше. Интересна эта планета методом, которым её обнаружили: её заметили наземные телескопы, использующие предсказанное Эйнштейном в общей теории относительности отклонение света при прохождении вблизи массивных тел. Такая техника называется гравитационным микролинзированием (см. также: Гравитационная линза). Идея, лежащая в основе этого метода, состоит том, что свет далёкой звезды, проходя вблизи более близкого к наблюдателю массивного объекта (например, другой звезды), отклоняется в его гравитационном поле, из-за чего на зеркало телескопа попадает больше света, чем обычно. Для астронома это будет выглядеть как плавное увеличение яркости звезды, которое через некоторое время (от недели до месяцев) сходит на нет. Если же вокруг линзирующей звезды обращается планета, то она может выступить в роли дополнительной «линзочки», которая на короткое время еще немного усиливает блеск далекой звезды. Схематично это показано на рис. 2.
Вообще, звезда может увеличивать свой видимый блеск несколькими способами: она может захватывать материал звезды-компаньона (так называемая вспышка новой звезды), она может просто «дышать» — устойчивое гидродинамическое равновесие в звезде позволяет сбрасывать излишнее давление в центре за счёт расширения и охлаждения внешних слоёв (такие звёзды называются переменными). Отличать события гравитационного линзирования достаточно легко: переменным звёздам характерна некоторая периодичность, а вот вероятность повторения (и тем более — периодического повторения) линзирования исчезающе мала. Это связано с тем, что все звёзды в нашей Галактике движутся: их скорость складывается из упорядоченного движения звёзд вокруг центра Галактики и собственного хаотического движения (звезда, сформировавшаяся из облака газа, изначально имеет какую-то скорость по закону сохранения энергии и импульса, а ещё добавляется гравитационное взаимодействие с соседними звёздами, которое может изменить её траекторию). То есть довольно быстро телескоп, звезда и линзирующий объект перестанут находиться на одной оптической оси и линзирование прекратится.
Поиск планет методом гравитационного микролинзирования сводится к наблюдению за определёнными участками неба (понятное дело, что чем больше — тем лучше) с целью заметить изменение блеска звезды, которое будет выглядеть примерно так, как на рис. 3. На нем показана кривая блеска, полученная при обнаружении экзопланеты OGLE-2005-BLG-390, вращающейся вокруг красного карлика где-то в центре нашей Галактики.
Надо отметить преимущества гравитационного микролинзирования:
Из недостатков метода можно выделить уже упомянутую неповторяемость события (если событие пропустили, больше оно уже не повторится) и его кратковременность (среднее время события микролинзирования для звёзд в нашей Галактике — от недели до месяца). Кроме того, более удалённая звезда должна пройти вблизи гравитационной каустики — особой области, где гравитационные потенциалы звезды и её планеты складываются, усиливая проходящий свет (в статье Каустики на плоскости и в пространстве можно прочитать про световые каустики, которые появляются при отражении и преломлении света сквозь сложные поверхности и могут служить некоторой аналогией гравитационным каустикам). То есть микролинзирование не обязательно происходит, даже если наблюдатель, звезда с планетой и фоновая звезда оказываются на одной оси: области каустики достаточно малы, и если свет от фоновой звезды туда не попадает, то мы наблюдаем основной пик, а вторичный пик, который и является сигналом о присутствии экзопланеты, не наблюдается. На сегодня есть три группы астрономов, которые ищут планеты методом микролинзирования:
Кроме того, существуют профессиональные сообщества астрономов (например, MicroFUN и PLANET), которые предоставляют свои телескопы и наблюдательное время в случае обнаружения микролинзирования. После появления сообщения о потенциальном микролинзировании эти группы наводят свои телескопы на указанный участок неба и снимают свои собственные кривые блеска звезды. Потом все данные накладываются на один профиль. Такая взаимопомощь нужна, чтобы собрать как можно больше информации об изменении яркости источника — это помогает получить точные физические характеристики объекта (количество планет, их массы, расстояние до звезды). На момент выхода обсуждаемой статьи методом микролинзирования обнаружены всего 33 экзопланеты (чтобы увидеть их все, нужно в таблице подтвержденных экзопланет в поле "Discovery Method" выбрать значение "Microlensing"). И поэтому открытие каждой новой экзопланеты — это всё ещё результат «ручной работы», когда методы обнаружения и обработки результатов всё ещё обтачиваются, а каждое подобное событие достойно упоминания. Планета, о которой идёт речь в статье, получила имя MOA-2010-BLG-353 и была обнаружена уже после окончания события микролинзирования — при обработке данных, полученных группами OGLE и MOA. Поэтому никаких дополнительных наблюдений провести не удалось. Но и имеющихся данных вполне хватает для уверенного заявления об открытии новой экзопланеты: группа MOA получила 9130 точек на кривой блеска и ещё 3248 точек на неё добавили наблюдения OGLE (рис. 4).
Обычно звёзды в балдже Галактики находятся в окружении пыли и газа, то есть часть видимого излучения поглощается этой средой и цвет звезды кажется нам более красным, чем он есть на самом деле (не путать с красным смещением). Эта проблема известна, и для оценки вклада пыли используют так называемые «стандартные свечи» — красные гиганты особого типа, в которых горит гелий (см. Красное сгущение). Светимость таких звёзд несколько выше обычных, и, что особенно важно, она не меняется, пока гелий горит (в это время у звезды образуется углеродное ядро). Сравнивая цвет таких звёзд с эталонным, можно оценить влияние пыли и скорректировать данные наблюдения. Использовав эти поправки, учёные пришли к выводу, что потенциальная планета вращается вокруг красного карлика класса М, в то время как фоновая звезда, свет которой усиливается гравитационной линзой, — это красный субгигант класса K5 по стандартной классификации с температурой поверхности 3750 К (температура Солнца для сравнения — 5770 К). Точное положение этого субгиганта установить не удалось — возможно, он находится на противоположной от нас стороне балджа, в этом случае его цвет ещё сильнее подвержен влиянию пыли, в то время как масса должна быть чуть выше. Такая возможность учтена в статье, хоть там и подчёркнуто, что это не оказывает сильного влияния на параметры открытой экзопланеты. Чтобы узнать характеристики экзопланеты, надо оценить массу звезды и расстояние до неё. Несмотря на то, что обычно это вполне можно сделать по яркости звезды, сравнивая абсолютные и относительные звёздные величины, для нашего случая это не подходит — тут очень важна точность. Дело в том, что математические модели, использующиеся для определения массы планеты, оперируют параметром, который равен отношению массы планеты к сумме масс звезды и вращающейся вокруг неё планеты. И из-за огромной разницы масс даже небольшая погрешность измерения массы звезды ведёт к драматическим изменениям высчитанной массы планеты. Очень помогла бы учёным регистрация параллакса, то есть сдвига источника относительно звезды по мере вращения Земли вокруг Солнца (он даёт очень точные расстояния до звёзд, но, увы, работает только для достаточно близких к нам источников). Однако фоновая звезда и звезда с планетой находятся недостаточно далеко друг от друга, да и линзирование наблюдалось всего 11 дней, так что обнаружить параллакс не удалось и пришлось использовать статистические методы, основанные на моделях. Рассчитанные параметры системы таковы: масса звезды составляет всего 18% от массы Солнца, а масса планеты — 0,9 массы Сатурна; расстояние между звездой и планетой — 1,72 астрономические единицы, что соответствует области между Марсом и астероидным поясом в нашей Солнечной системе; расстояние до этой системы от нас — 6,43 килопарсека. К сожалению, больше узнать про эту экзопланету сейчас невозможно: как уже говорилось, вероятность повторения микролинзирования практически равна нулю, а другими методами её пока не наблюдали (и не факт, что это в принципе возможно). Поэтому в ближайшее время мы вряд ли поймем что-то про состав этой планеты, её атмосферу или наличие других планет в этой системе. Однако само обнаружение важно потому, что холодных, плотных планет, размером сравнимых с Сатурном, было открыто очень мало, и непонятно: это потому, что их действительно мало, или потому, что они плохо регистрируются существующими методами? Ещё одна планета, конечно, не изменит всю статистику, но может стать существенным шагом вперёд для построения стройной модели образования планет в планетных системах нашей Галактики. Источник: N. J. Rattenbury et al. MOA-2010-BLG-353Lb: A Possible Saturn Revealed // Статья доступна как препринт arXiv:1510.01393 [astro-ph.EP]. Марат Мусин Вернуться назад |
Рис. 1. Планета, вращающаяся вокруг красного карлика, в представлении художника. Рисунок David A. Aguilar с сайта universetoday.com