ОКО ПЛАНЕТЫ > Гипотезы и исследования > Наследственная тревога: Генетический стресс
Наследственная тревога: Генетический стресс24-08-2010, 14:26. Разместил: VP |
||||||||||||||||||||||||||||||||
Склонность к повышенной тревожности связана с повышенной активностью в двух областях мозга, и в одной из них передается по наследству.
Уже с раннего детства склонность к тревожности может служить опасным знаком. Болезненно мнительные, стеснительные и нервные дети, повзрослев, чаще подвержены депрессии и всевозможным тревожным состояниям и неврозам. Ну а такие взрослые чаще обращаются к самым простым и прямым успокоительным средствам – алкоголю и другим наркотикам.
Какова же причина тому, что некоторые люди с самого раннего детства проявляют повышенную тревожность? Исследование, проведенное на обезьянах, показало, что причины тут – наследственные, и затрагивают они определенную область мозга, ответственную за формирование эмоций.
«Дети с излишней тревожностью могут просто замереть, спрятаться, столкнувшись с незнакомым человеком или оказавшись в ситуации, которую почему-то восприняли потенциально опасной или неприятной», - говорит психиатр и нейрофизиолог Нед Калин (Ned Kalin). Вместе со своими коллегами Калин обнаружил, что подобное случается и с высшими обезьянами. Когда в комнату входит «посторонний» человек и приближается к вольеру, избегая контакта глазами, такие «тревожные обезьянки» буквально замирают на месте, сохраняя полную неподвижность и молчание. При этом в крови у них резко возрастает количество стрессовых гормонов.
Тогда Калин и его команда изучили таких обезьяньих детенышей более детально. Исследование охватило 238 молодых макак-резусов из семьи более чем в 1,5 тыс. особей, не первое поколение живущих в лабораторных условиях и имеющих прекрасно документированную генеалогию. Проанализировав родственные отношения «тревожных обезьянок», ученые пришли к выводу о том, что повышенная тревожность, действительно, частично наследуется.
Затем ученые поместили своих «тревожных обезьянок» в томограф, способный следить за активностью мозга. Обнаружилось, что в стрессовой ситуации у таких особей наблюдается особенно высокая активность в двух областях – миндалевидном теле и переднем гиппокампе. Само по себе это неудивительно, поскольку и предыдущие работы уже показали вовлеченность этих областей в стрессовые ситуации. Удивительно другое: повышенная активность гиппокампа, как показано, наследовалась, тогда как миндалевидного тела – нет. С чем связан этот эффект и какие гены вовлечены в процесс – еще предстоит установить.
О взаимном влиянии тревожности и генов читайте также в заметке «Дамкин - Расслабьтесь» (см. ниже).
По публикации ScienceNOW
Расслабьтесь: Всё — в голове
Сегодня каждый понимает, что душевное и телесное здоровье тесно связаны. Но связь эта, оказалось, действует на очень глубоком уровне, влияя на активность генов.
Более 35 лет назад ученые впервые научно описали состояние релаксации, запускаемое с помощью ряда приемов, в том числе медитацией, глубоким дыханием и молитвой. Со временем в научных журналах стали появляться публикации, показывающие, что релаксация не только подавляет симптомы психологических расстройств, таких как тревожность, но и оказывает серьезное влияние на физиологические параметры, в том числе частоту сердечных сокращений, артериальное давление, потребление кислорода и активность мозга. Но, несмотря на всеобщее признание того, что состояние релаксации является противоположностью запускаемой адреналином реакции «борьба/бегство», механизм, лежащий в основе этого эффекта, оставался неизвестен. Но вот ученые сразу из нескольких американских медицинских центров, работая под руководством Герберта Бенсона (Herbert Benson) и Товия Либермана (Towia Libermann), установили, что душевное состояние влияет на тело на самом глубоком уровне, изменяя активность генов в клетках нашего организма. В рамках первого этапа работы авторы сравнили профили генной экспрессии 19-ти человек, в течение длительного времени практикующих различные методики релаксации, с профилями генной экспрессии других 19-ти человек, никогда не прибегавших к подобным методикам. На втором этапе члены группы контроля прошли 8-недельную тренировочную программу с целью выяснения возможных изменений в экспрессии генов в результате приобщения к практикам релаксации. Согласно результатам обоих этапов исследования, состояние релаксации действительно изменяет экспрессию генов, участвующих в таких процессах, как воспаление, запрограммированная клеточная гибель (апоптоз) и нейтрализация свободных радикалов – побочных продуктов нормального метаболизма, неадекватная нейтрализация которых ведет к повреждению клеток и тканей. Для подтверждения результатов оба этапа повторили с участием еще 6-ти человек, практикующих различные методы релаксации, и 5-ти человек группы контроля. Наблюдаемые изменения генной экспрессии были достоверно сходны с полученными ранее результатами. По словам авторов, изменения активности тех же самых генов ранее наблюдались при таких состояниях, как посттравматический стресс, однако наблюдаемые при релаксации изменения имеют противоположную направленность и более выражены у людей, в течение длительного времени практикующих методы релаксации. Люди тысячелетиями использовали различные релаксационные методики, и авторы установили, что изменения генной активности не зависят от конкретного способа (йога, глубокое дыхание, повторение молитвы и т.п). Впрочем, они подчеркивают, что генная экспрессия значительно различается даже у здоровых людей, что значительно усложняет анализ таких небольших вариаций и идентификацию незначительных изменений. Подробнее о геноме человека и о наших общих предках читайте: «Сыновья Адама», «Дочери Евы». «Вечная молодость» Добавлено: 16.07.08
Сыновья Адама: Гены, история и география
С помощью меток, оставленных случайными мутациями на Y-хромосоме, вы можете проследить свою родословную по мужской линии вплоть до Адама. Правда, не библейского.
Сейчас любой из нас может определить свою родословную до прародителей человечества. Правда, не библейских, а молекулярно-генетических – «митохондриальной Евы» и «Y-хромосомного Адама». К ним, жившим в Юго-Восточной Африке (по самым общепринятым из условных и приблизительных оценок – 150–170 или 60–80 тысяч лет назад), сходятся ветви генеалогического древа каждого из живущих на Земле 6,6 млрд человек. За прошедшие века в нашей ДНК, как визы в паспорте, добавились пометки о путях, по которым потомки Адама разбрелись по миру. Какой народ каким путем добрался до нынешнего места жительства за тысячелетия великих и незаметных переселений, завоеваний, объединений и смешений? Как носило по свету лично ваших предков с тех пор, как они покинули колыбель народов – Африку? И от какой из групп этих переселенцев вы происходите – отдельно по отцовской и материнской линии? Сколько поколений назад жил ближайший предок, от которого по прямой линии произошли лично вы и кто-нибудь из ныне царствующих особ? На все эти вопросы может ответить анализ ДНК. Генографический проект Изучать этногеномику начали в 1980-х годах, когда компьютеры еще не обладали таким быстродействием, а методы анализа ДНК были на несколько порядков медленнее и дороже нынешних. Сейчас самый простой, но достаточно полный анализ индивидуальной молекулярной генеалогии, по 12 маркерам Y-хромосомы, стоит $100–150, а более чем достаточный, по 37 маркерам Y-ДНК + полный тест митохондриальной ДНК, – около $400. Базы данных на десятки тысяч образцов ДНК есть у ряда коммерческих фирм и общественных институтов, и большинство из них (с определенными ограничениями на допуск к персональной информации) открыты для всех. За счет интереса людей к своим индивидуальным родословным информация в этих базах накапливается быстрее, чем ученые успевают ее обработать. Самое грандиозное из исследований целых популяций – Genographic Project («Генографический проект»), начатый в 2005 году Национальным географическим обществом США (National Geographic Society) при поддержке компании IBM. Цель проекта – за пять лет собрать не менее 100 000 образцов ДНК типичных представителей народов или племен, история которых известна по данным этнографии, истории и археологии, чтобы уточнить пути миграций человечества по Земле. На самом деле и такая огромная выборка – капля в море по сравнению с реальным разнообразием рас и племен, но по мере добавления информации результаты можно будет уточнять. Даже черновой план, составленный участниками проекта под руководством доктора Спенсера Уэллса, – захватывающее зрелище, особенно в виде интерактивной карты на сайте проекта. Но для начала разберемся с терминами. Молекулярная генеалогия При образовании половых клеток из диплоидных клеток-предшественников их соматические хромосомы (а у женщин – и половые) обмениваются участками – примерно так, как происходит, если не слишком тщательно перетасовать две колоды карт с рубашками разного цвета и снова разложить их на два одинаковых набора независимо от цвета рубашек. По четверти генома мы получаем от каждого из двух дедушек и двух бабушек, 1/8 – от прадедов и прабабок... В наших хромосомах есть гены не только Адама и Евы, но и всех их близких и дальних родственников, живших 70–80 тысяч лет назад, когда численность нашего вида снизилась до критической величины – примерно 10 000 особей, и более далеких предков, вплоть до первых млекопитающих и даже первых многоклеточных животных. Но от них мы получили только соматические и X-хромосомы, гены которых в результате постоянного перемешивания расплываются по всей популяции. Почти неизменными из поколения в поколение переходят только Y-хромосома и митохондриальная ДНК. На этом «почти» и основана вся молекулярная генеалогия, изучающая историю по мутациям, произошедшим у предков и сохранившимся в ДНК потомков. Мутации: полезные, вредные и нейтральные Обычно крупные мутации – например, перемещение на другое место, удвоение или, наоборот, выпадение крупного участка хромосомы, несущего один или несколько генов, – не приводят ни к чему хорошему. Как, впрочем, и часто встречающиеся одиночные нуклеотидные полиморфизмы – SNP (см. врезку), если они происходят в пределах одного из 21 000 человеческих генов. Полезные мутации происходят намного реже и сохраняются в последующих поколениях. Вредные – удаляются из популяции вместе с носителем или еще на стадии эмбриона, или, при тяжелой наследственной болезни, до того, как этот носитель успеет обзавестись потомством. В результате действия стабилизирующего отбора и происходивших время от времени снижений численности вида, уменьшающих его генетическое разнообразие, строение генов у двух выбранных наугад людей совпадает на 99,9%. Все наши отличия, от цвета кожи и разреза глаз до роста и склонности к определенным болезням, определяют в основном генные полиморфизмы – незначительные различия в нуклеотидных последовательностях практически одинаковых генов и, соответственно, в строении и функциях закодированных в этих генах белков. Во-первых, случайные мутации происходят постоянно, и полиморфизмами считают те из них, которые произошли давно и поэтому встречаются чаще, чем у 1% людей в данной популяции (граница здесь условная – можно было бы считать случайными и варианты генов, встречающиеся реже, чем у 2–3%). Во-вторых, полиморфизмы не оказывают заметного влияния на здоровье их носителей или даже носят приспособительный характер. Правда, и здесь граница довольно размытая. Классический пример – SNP, обусловливающий у гомозигот – носителей двух мутантных генов – тяжелое наследственное заболевание, серповидноклеточную анемию. Но гетерозиготы по этому гену – носители здорового варианта на одной хромосоме и «испорченного» на другой – реже болеют малярией, а симптомы анемии испытывают только в экстремальных условиях, например в высокогорье. Эта мутация встречается на юге Индии, в Средиземноморье и у жителей Западной Африки и их потомков на других континентах. При копировании хромосом «снипы» происходят с вероятностью 10–8 на один нуклеотид за поколение. При размере гаплоидного генома в 3 млрд (3х109) нуклеотидов за счет случайных точечных мутаций каждый ребенок имеет в среднем около 30 однонуклеотидных различий со своими родителями. По счастью, большинство таких мутаций приходится не на гены, а на так называемую мусорную ДНК – примерно 95% человеческого генома, не кодирующих ни белков, ни служебных РНК. Эти мутации ни на что не влияют, отбору они безразличны – вот они и сохраняются среди остального генетического «хлама». Именно их, а также короткие тандемные повторы (см. врезку), и используют в молекулярной генеалогии в качестве хромосомных маркеров – характерных особенностей. Мальчики и девочки Начнем с Адама: с мужской молекулярной генеалогией разобраться проще (впрочем, все сказанное ниже о своем происхождении по мужской линии могут узнать и дамы – для этого нужно проанализировать ДНК отца, или брата, или дяди – любого прямого родственника по отцу). Примерно 300 млн лет назад у первых млекопитающих одна из хромосом, несущая среди прочих несколько генов, определяющих принадлежность к мужскому полу, начала терять остальные гены и вместе с ними – способность обмениваться участками ДНК с парной хромосомой. У человека на Y-хромосоме осталось всего 27 генов, большинство из них работают в семенниках. Остальная часть Y-хромосомной ДНК может пригодиться разве что для этнографии и генеалогии. Мутации – выпадения, замены или добавления одиночных нуклеотидов (SNP) и изменения числа повторений трех-четырех одинаковых нуклеотидов (STR) – происходят в разных участках Y-хромосомы с разной частотой, в среднем – одна мутация на каждые 500 поколений. В самых консервативных участках мутации случаются раз в 100 000 лет. Y-хромосомный Адам жил примерно 80 000 лет назад, но «раз в 100 000 лет» – это вероятность мутации в этом участке хромосомы в непрерывном ряду поколений, и можно подсчитать, что даже такой редкий случай может произойти один раз в поколение примерно у одной из 3000 пар «отец–сын». Время и место жизни нашего общего прямого предка вычислили по анализу распределения в популяциях из разных регионов планеты Y-хромосомных маркеров. Их используют и для исследований в области этногеномики, и для выяснения индивидуальных генеалогий. История и география У населения старинных русских городов чаще всего встречаются гаплогруппы R1a, I1b и N. Очень условно их носителей можно назвать соответственно потомками восточных, южных и северных славян. На самом деле мутация, определяющая принадлежность к ветви R, предположительно появилась на северо-западе Азии 30–35 тысяч лет назад: в племени, все мужчины которого (или большинство из них) относились к более ранней гаплогруппе P, родился мальчик, в Y-хромосоме которого произошел сбой – замена всего одного нуклеотида, аденина на гуанин. Его потомки расселились по Европе и западной части Азии, по дороге смешиваясь с местными племенами, но у всех его прямых наследников сохранилась эта метка – маркер M207. Ее нашли и у мужчин одного из изолированных племен Камеруна – скорее всего, это потомки части доисторического племени, которая вернулась из Евразии в Африку. У кого-то из пра-пра…правнуков родоначальника гаплогруппы R, двигавшихся понемногу на юг, 25 000 лет назад произошла еще одна мутация, M127. Ее носители, представители гаплогруппы R2, составляют 5–10% населения юга Центральной Азии, Пакистана и северной Индии. Еще одна ветвь этой группы повернула на запад, на земли, с которых сползал последний ледник. Подгруппа R1, у которой к предыдущим меткам на Y-хромосоме приблизительно 30 000 лет назад добавилась мутация M173, – самая распространенная в Европе и западной Евразии. Этногеномика имеет дело с вероятностями мутаций, полученными путем приблизительных подсчетов, выборками из популяций и другими среднестатистическими величинами. Даже число тысячелетий в расчетах зависит от того, какое время смены поколений, от 20 до 35 лет, выберут авторы работы. Максимальное приближение во времени, которое показывает гаплогруппа даже с самым длинным буквенно-цифровым индексом, – это вероятность появления одного SNP, в лучшем случае 5000 лет, так что деталей индивидуальной генеалогии по ней не определить. Можно разве что спорить, родственниками в двухсотом или трехсотом колене приходятся друг другу больше трети жителей северной Индии, почти половина русских и почти треть норвежцев. Генеалогия А можно ли построить генеалогическое древо человека с более высокой точностью? Можно, но SNP для этого не подходят. Для детальных исследований в молекулярной генеалогии применяют короткие тандемные повторы – STR (см. врезку). При образовании сперматозоидов ферменты, копирующие ДНК клетки-предшественника, иногда пропускают или добавляют к такому тандему один из повторов. Если этот сперматозоид примет участие в рождении мальчика, все его сыновья, внуки и правнуки сохранят новую запись в этом маркере до тех пор, пока прямой род по мужской линии не оборвется – или до следующей мутации в том же STR. Повторная мутация может увеличить разницу в большую или меньшую сторону, сделав различия между ветвями древа более четкими, а может и восстановить исходное состояние. Но при использовании большого числа маркеров степень родства можно установить достаточно точно. У всех мужчин на Земле в локусах DYS19, 388, 390, 391, 392 и 393 есть тандемные повторы разной длины. Например, квадруплет TAGA (DYS19) может повторяться от 10 до 19 раз, триплет АТА (DYS388) – 10–16 раз и т.д. У 98% мужчин к базовому набору из шести общих маркеров, унаследованных от хромосомного Адама, добавился DYS385 – от 7 до 28 повторов «GAAA». У 34% есть еще DYS438 и 439 и т.д. В качестве генеалогических маркеров выбраны самые информативные из почти пятисот обнаруженных на Y-хромосоме STR. Стандартные ДНК-генеалогические тесты проводят по 12, 25, 37 или 67 маркерам, хотя уже шести часто достаточно для того, чтобы по комбинации числа повторов отнести «владельца» этого гаплотипа (индивидуального набора маркеров) к одной из гаплогрупп, от A до R. Например, так называемый «атлантический модальный гаплотип», наиболее распространенный на западе Европы, выглядит так: DYS19=14, DYS388=12, DYS390=24, DYS39=11, DYS392=13, DYS393=13. Человек с таким гаплотипом практически со стопроцентной вероятностью относится к гаплогруппе R1b или ее подвариантам. Чем меньше расхождений в числе повторов нуклеотидных групп во всех проанализированных DYSах между двумя гаплотипами, тем больше вероятность того, что их носители – родственники. В тесте по 37 маркерам вероятность случайного совпадения всех из них – 1/637, 1 шанс из 6х1028 (население Земли, напомним, 6,6х109). Даже по 12 маркерам вероятность случайного совпадения – 1 шанс из двух с лишним миллиардов, и при полном совпадении чьих-нибудь DYS с вашим гаплотипом (и совпадении гаплогруппы) можно быть уверенным, что вы нашли брата, отца, дядю или «многоюродного» (но не более чем в десятом – пятнадцатом колене) родственника по прямой мужской линии. А что может быть в случае, если в такой базе вы найдете последовательность чисел, отличающуюся от вашей на 1, 2 или 5 единиц? Можно прикинуть, сколько поколений назад жил ваш ближайший общий предок. Расхождение на один повтор в любом из маркеров происходит в среднем один раз в 500 поколений, примерно раз в 15 000 лет. В гаплотипе из 37 маркеров одна мутация может произойти примерно раз в 13 поколений, или в 300–400 лет. Хотя средние частоты мутаций в различных DYS отличаются, они известны, так что можно еще немного уточнить возможное время расхождения. Правда, все равно это будет всего лишь вероятность, но дальше уже можно будет покопаться в бумажных данных, от семейных архивов до летописей. И в любом случае вы узнаете много интересного, особенно если к информации об Y-хромосоме добавить анализ митохондриальной ДНК. Но о родстве по материнской линии читайте в следующих номерах. Благодарим Анатолия Клёсова за помощь в написании статьи. Материал подготовлен при содействии журнала National Geographic Россия. Октябрь 2007 | Автор: Александр Чубенко, интернет-журнал «Коммерческая биотехнология»
Дочери Евы: Гены, история и географияВ прошлом номере журнала мы рассказывали о проекте «Генография» и о том, как можно проследить родословную до Y-хромосомного Адама по мужской линии. А как насчет Евы? По меткам, оставленным случайными мутациями на митохондриальной ДНК, и мужчины и женщины могут проследить свою родословную по женской линии вплоть до самой «праматери» – Евы.
Предыстория В молекулярной генеалогии, как и в обычной, происхождение целых народов и отдельных людей прослеживается отдельно по отцовской и материнской линиям. Если мужчина – носитель Y-хромосомы – не оставит потомков мужского пола, ветвь генеалогического древа по мужской линии обрывается. Наследование по женской линии, через митохондриальную ДНК (мтДНК), обрывается на каждом мальчике: полученные от матери митохондрии, дающие энергию для вращения хвостика сперматозоида, если и попадают в яйцеклетку, то по каким-то причинам разрушаются. И мужчины и женщины получают митохондрии из цитоплазмы материнской яйцеклетки, женщины передают ее своим дочерям, те – своим… Женская линия полностью обрывается в случае, если у женщины не будет дочерей. Так что даже при стабильной численности популяции, когда в среднем у каждой пары двое детей доживают до репродуктивного возраста, из-за случайных комбинаций пола потомков (два мальчика, две девочки или мальчик и девочка) в каждом поколении прервется четверть прямых линий половых маркеров, в следующем – еще четверть… Теоретически через несколько десятков поколений число прародительских мтДНК и Y-хромосом уменьшится до исчезающее малой величины. Практически в популяции сохраняются маркеры тех родов, в которых такие обрывы не произошли – по чистой случайности или из-за редких положительных мутаций. Генетическое разнообразие дополнительно уменьшается, когда после засухи, наводнения, голодной зимы и т.д. от целого племени остается только горстка выживших. Увеличиваться разнообразие наследственных маркеров и генома популяции в целом может и за счет принятых в племя чужаков, и за счет случайных мутаций, особенно тогда, когда популяция растет, – но потом снова случаются голод, война, извержение вулкана или наступление ледника. Наверняка у Адама были братья и дяди по отцовской линии, а у Евы – сестры и тетки, но рассмотреть их следы по половым маркерам невозможно. Африканское происхождение Евы вычислили еще в 1980-х годах. Адама – на 10 лет позже: число нуклеотидных пар в Y-хромосоме в тысячи раз больше, чем в мтДНК, и анализировать их последовательности намного сложнее. В обоих случаях по распределению мутаций-маркеров в пробах ДНК представителей племен, которые, по этнографическим данным, являются прямыми потомками первых поселенцев на данной территории, общие для всех современных народов маркеры нашли только в Африке. Оставшиеся на прародине человечества племена за тысячи лет приобрели свои маркеры, а наследники тех, кто разными путями расселился по свету, – свои. По частоте встречаемости этих меток в разных регионах планеты можно восстановить пути древних миграций и по Африке, и по всему миру. А знание вероятности появления случайных мутаций позволило рассчитать время жизни наших общих прямых предков по женской и мужской линиям – 150–200 тысяч и 60–80 тысяч лет назад соответственно – очень приблизительно и с огромными доверительными интервалами. От сотворения мира Миллиарды лет назад митохондрии были бактериями, которые поселились в клетках примитивных эукариотических (имеющих клеточное ядро с линейными хромосомами) организмов и взяли на себя работу по производству тепла и энергии для хозяина. За время совместной жизни часть своих генов они растеряли за ненадобностью при жизни на всем готовом, часть – передали в ядерные хромосомы, и сейчас двойное кольцо мтДНК человека состоит всего из 16 569 пар нуклеотидных оснований. БЧльшую часть митохондриального генома занимают 37 генов. Из-за высокой концентрации свободных радикалов кислорода (побочных продуктов окисления глюкозы) и слабости механизма восстановления ошибок при копировании ДНК мутации в мтДНК происходят на порядок чаще, чем в ядерных хромосомах. Замена, выпадение или добавка одного нуклеотида здесь происходят примерно один раз в 100 поколений – около 2500 лет. Мутации в митохондриальных генах – нарушения в работе клеточных энергостанций – очень часто бывают причиной наследственных болезней. Тандемных повторов, которые используют в мужской ДНК-генеалогии, в мтДНК нет, и бессмысленных последовательностей очень мало: гены расположены вплотную друг к другу, разделяясь вставками из нескольких нуклеотидов. Для молекулярно-генетических исследований пригодна главным образом так называемая петля смещения – некодирующий участок размером 1143 пары нуклеотидов. Зато и мутации в нем происходят (вернее, сохраняются, так как практически не влияют на работу митохондрий) еще чаще, около одного раза в 1000 лет. Этот гипервариабельный участок мтДНК делят на два отрезка, лежащих по сторонам от нулевой точки, с которой начинается расхождение двойной спирали мтДНК при ее копировании. На отрезке от 16 001-го до 16 569-го нуклеотида находится «область низкого разрешения», HVR1 (hypervariable region 1), по которой можно определить гаплогруппу и, если повезет, получить немного дополнительной информации. Отклонения от стандарта в области высокого разрешения (HVR2), в 1–575-х нуклеотидах, используют для детального анализа. Правда, для индивидуальной родословной проследить родство по материнской линии удается не так точно, как по отцовской. Женская логика Путаница с классификацией в молекулярной генеалогии по женской линии началась еще в 1981 году, когда ученые Кембриджского университета опубликовали полученные под руководством нобелевского лауреата Фредерика Сэнджера результаты первого секвенирования – анализа последовательности нуклеотидов – человеческой мтДНК. Этот текст из 16 569 нуклеотидов, Кембриджскую стандартную последовательность (Cambridge Reference Sequence, CRS), и приняли за эталон. Отклонения от него называют мутациями и обозначают комбинацией числа (номера нуклеотида) и буквы (названия нуклеотида). Например, 1651С означает, что нуклеотид под номером 1651 (в «стандартной» CRS это тимин, Т) заменен на цитозин (C), а 315.1С говорит о том, что после 315-го нуклеотида в «стандартную» цепь вставлен один лишний цитозин. CRS относится к одной из самых молодых гаплогрупп мтДНК. Она – результат сотен мутаций исходной последовательности, ведущей начало от «Евы». Но менять устоявшуюся классификацию слишком сложно, проще приспособиться к сложившейся номенклатуре. Гаплогруппы мтДНК, как и Y-хромосомные, обозначают латинскими буквами (это иногда приводит к путанице среди любителей, когда один из спорщиков пишет о материнской, а другой – об отцовской группе). Мужские гаплогруппы от A до R проиндексированы в порядке появления на генеалогическом древе соответствующих точечных мутаций. Самые древние женские относятся к надгруппе L, от L0 до L3, а относительно поздние, встречающиеся у индейцев Южной Америки и их азиатских родственников, получили индексы от A до D. К тому же, несмотря на то что на Y-хромосоме места для мутаций намного больше, женские гаплогруппы намного разнообразнее, и для вновь выявленных промежуточных групп приходится вводить комбинированные индексы вроде CZ и pre-JT. Тысячи лет и километров Автор книги «Семь дочерей Евы» Брайан Сайкс придумал для предполагаемых прародительниц большей части населения Европы имена – Урсула (гаплогруппа U), Ксения (X), Елена (H), Велда (V), Тара (T), Катрин (K) и Жасмин (J). Можно проследить и нанести на карту магистральные дороги, по которым они и остальные наши прапрабабки кочевали во времени и пространстве, и рассчитать предполагаемое время для каждой развилки – появления новой мутации, от первых «дочерей Евы» до самых недавних – гаплогрупп I и V, которым всего около 15 000 лет. Но, глядя на такую карту, надо учесть, что группы мтДНК расплываются по Земле намного шире, чем Y-хромосомные. Казалось бы, путешествия – мужское дело, но из них мужчины возвращались с выручкой или добычей (а также с невестами или пленницами). Многие, конечно, оставались на завоеванных землях, но даже походы Аттилы и Чингисхана – пустяки по сравнению с тем, что у большинства народов жена переезжала в дом мужа, а ее дочери тоже выходили замуж в соседнюю деревню. В результате разнообразие женских гаплогрупп в современных популяциях в несколько раз больше, чем мужских. В массовых исследованиях вроде проекта «Генография» в мтДНК анализируют только зону низкого разрешения, HVR1, по которой можно определить принадлежность к одной из двух дюжин гаплогрупп по материнской линии. При этом чем более распространенной является ваша группа, тем больше дальних родственников вы найдете в базе данных. Но все пробы ДНК – и полученные в ходе плановых работ у «типичных туземцев», и присланные индивидуальными участниками, хранятся годами и десятилетиями, так что за отдельную плату желающие уточнить детали своей молекулярной генеалогии могут заказать дополнительные анализы, сужая число совпадающих гаплотипов. Правда, даже полное совпадение у двух человек всех маркеров в обеих областях петли, HVR1 и HVR2, говорит только о том, что с вероятностью 50% их общая прапра…бабушка по материнской линии жила около 700 лет назад. Можно секвенировать полную последовательность мтДНК и несколько соматических маркеров, но это вряд ли даст дополнительную информацию об индивидуальной генеалогии – разве что в особых случаях. Один из бесконечных бразильских сериалов крутится вокруг бесконечных анализов ДНК, а в жизни всё намного проще – и намного сложнее. О чистоте крови По половым маркерам можно не обнаружить наличия «черных» генов даже у очень чернокожего мулата, если неграми у него были мать отца и отец матери. Чтобы отыскать восьмушку африканской крови (см. врезку про Пушкина) в индивидуальной пробе, а не в достаточно большой выборке – неизвестно, сколько тысяч соматических маркеров нужно перебрать и возможно ли это в принципе. Со специалистами в области этногеномики разговоры о «чистоте крови» лучше не заводить – можно и на грубость нарваться. Это среди дилетантов встречаются любители померяться длиной и толщиной хромосом с представителями других гаплогрупп, но расистам и националистам делать анализ ДНК опасно: как бы не случился от этого кризис самоидентификации. Представьте себе сочетание неонацистской идеологии, светловолосого и голубоглазого фенотипа, который определяют соматические хромосомы, и типично еврейской гаплогруппы J1 по отцовской линии, а по материнской – то ли азиатской, то ли индейской митохондриальной группы X. Часть ее носительниц, двигаясь вслед за отступающим ледником, в степях к востоку от Аральского моря повернула не на восток, вплоть до Америки, а на Запад, добравшись еще в доисторические времена аж до Оркнейских островов у берегов Шотландии. А ортодоксальный иудей с живописной фамилией Левитан вполне может найти у себя истинно нордическую, выдержанную финно-угорскую гаплогруппу N: евреи-ашкенази долго жили на западе Европы… Изучение молекулярной генеалогии – лучший способ не только понять, что все люди – братья, но и найти дополнительную информацию для анализа персональной родословной. В базе данных компании Family Tree DNA, той самой, в лабораториях которой делают анализы для проекта «Генография», весной 2007 года было свыше 90 000 результатов тестирования Y-DNA, более 41 000 записей анализа мтДНК и почти 4000 фамильных проектов. И это далеко не единственная такая база, и доступ в большинство из них открытый и бесплатный или очень дешевый. Правда, все исследования связей фамилий и гаплотипов проводятся в странах Западной Европы и Северной Америки, а в России есть только один такой проект – Фамильный клуб Сычевых. Но у нас еще всё впереди. Благодарим Анатолия Клёсова за помощь в написании статьи. Материал подготовлен при содействии журнала «National Geographic Россия». Ноябрь 2007 | Автор: Александр Чубенко, интернет-журнал «Коммерческая биотехнология»
Вернуться назад |