ОКО ПЛАНЕТЫ > Размышления о кризисах > Общее впечатление от работы с LLM за последние два года

Общее впечатление от работы с LLM за последние два года


Вчера, 07:26. Разместил: Око Политика

Все, что касается ГИИ/языковых моделей (LLM) устаревает в момент публикации, но тем не менее фиксировать актуальную диспозицию весьма полезно и интересно.

Большая часть из критических замечаний, которые я публиковал на протяжении всего 2024 года уже не являются в полной мере актуальными, хотя большая часть фундаментальных ограничений так и не решена. Подробная расшифровка всех слабых и сильных сторон займет слишком много времени – слишком масштабный и комплексный анализ потребуется.

Остановлюсь для начала на списке/реестре наиболее сильных моделей. 

Ниже сводная информация о топовых языковых моделях:

1.  ChatGPT o1: США, OpenAI, сентябрь 2024, контекстное окно 128 тыс токенов.

2.  Google Gemini 2 flash: США, Google, декабрь 2024, 2 млн токенов.

3.  Claude 3.5 Sonnet: США, Anthropic, октябрь 2024, 200 тыс токенов.

4.  Amazon Nova Pro: США, Amazon, декабрь 2024, 300 тыс токенов.

5.  Llama 3.3 70B: США, Meta Platforms, декабрь 2024, 128 тыс токенов.

6.  xAI Grok: США, xAI, ноябрь 2024, 8 тыс токенов.

7.  Phi-3 Medium: США, Microsoft, апрель 2024, 128 тыс токенов.

8.  Reka Flash: США, Reka AI, февраль 2024, 128 тыс токенов.

9.  Command R+: Канада, Cohere, апрель 2024, 128 тыс токенов.

10.  Mistral Large 2: Франция, Mistral AI, июль 2024, 128 тыс токенов.

11.  Qwen 2.5: Китай, Alibaba, декабрь 2024, 131 тыс токенов.

12.  DeepSeek V3: Китай, DeepSeek, декабрь 2024, 128 тыс токенов.

13.  Jamba 1.5 Large: Израиль, AI21 Labs, август 2024, 256 тыс токенов.

14.  YandexGPT 4: Россия, Яндекс, октябрь 2024 года, 32 тыс токенов.

15.  GigaChat: Россия, Сбербанк, май 2024, 32 тыс токенов.

16.  T-Pro: Россия, Т-банк, декабрь 2024, 8 тыс токенов.

Попробовал все, за исключением T-Pro. Мой рейтинг самых мощных по совокупности факторов: OpenAI o1, Claude 3.5 Sonnet, DeepSeek V3, Qwen 2.5 и Google Gemini 2 flash.

Примерно сопоставимы плюс-минус во втором эшелоне: Llama 3.3 70B, Amazon Nova Pro и Mistral Large 2. Все остальные в третьем эшелоне с учетом достаточно слабой модели от Илона Маска.

LLM от Google на протяжении всего 2024 были полным дерьмом, но относительный прогресс наступил только в сентябре с внедрением обновленной модели Gemini 1.5 pro и закрепление успеха в декабре с Gemini 2 flash.

Очень удивили китайцы (DeepSeek V3 и Qwen 2.5) – вполне тянут на открытие года и самый значимый прогресс. DeepSeek V3 уже точно сильнее GPT-4o, но уступает последней модификации GPT o1.

Конкуренция невероятная. Всего два года назад в это время была на рынке только одна модель GPT 3.5 и как все изменилось.

OpenAI пока вне конкуренции по совокупности факторов, но разрыв уже не такой значительный, как в 2023 (была целая пропасть) и даже, как в середине 2024. 

В декабре 2024 вышло очень много обновлений LLM и даже изначально слабая и вечно отстающая Llama смогла сократить отставание с модификацией 3.3 70b, показывая неплохие результаты. В начале 2025 будет модификация 3.3 405b, которая закрепит успех. Также ожидается релиз полной версии Gemini 2, Open AI o3 и Claude 4.0.

Нет универсальной LLM, здесь скорее правильно говорить о комбинациях под конкретные задачи. Например, с текстом хорошо работает Claude 3.5 Sonnet, а с математическими вычислениями сейчас в лидерах OpenAI, DeepSeek и Google.

Удалось ли мне что-либо из представленных LLM внедрить в свои рабочие проекты? НЕТ! Не удалось.

Количество ошибок настолько критически высоко. Время и ресурсы, затраченные на коррекцию ошибок, перекрывают любую потенциальную выгоду. Ни одна из моделей не пригодна для научно-исследовательских проектов в данный момент.

Пока способны закрывать очень узкие локальных задачи в генерации кода и решении математических задач. Уже успех, но до автоматизации и полноценного внедрения очень далеко.

Однако, я верю в будущий успех (1, 2 и 3). Темпы развития ГИИ невероятны, так что впереди много интересного, как и циклы статей, посвященных прогрессу и проблемам во внедрении.

Общее впечатление от работы с LLM за последние два года

Я отношусь к очень небольшой группе людей, которые не только знакомы со всеми современными LLM (тестирую их практически сразу после релиза), но и активно пытаются внедрять их в рабочие и научно-исследовательские проекты

До этого на протяжении многих лет была теоретическая подготовка. Этот тот случай, когда был отслежен весь путь созревания технологии от момента зарождения и внедрения технологии до текущего состояния.

Прогресс есть, как с точки зрения качества генерации данных, так и в расширении спектра инструментов для взаимодействия с LLM.

Можно ли сказать, что «научно-исследовательские проекты разделились на эпоху ДО внедрения технологии и новую эпоху ПОСЛЕ внедрения»?

Нет, ничего качественно не изменилось. Наличие или отсутствие LLM не оказало никакого влияния ни на R&D процессы, ни на сам канал Spydell_finance. Глубина внедрения пока около нуля процентов.

Почему так плохо? Нет стабильности и предсказуемости в выходных данных/результатах. Наука тем и отличается, что эксперименты при повторяемости опытов в изолированных условиях при статичных параметрам должны давать идентичные и прогнозируемые результаты. Это как работа калькулятора. 

На практике LLM генерируют слишком много ошибок, на проверку и верификацию которых требуется несоизмеримо много времени и ресурсов, что делает применение ГИИ нерентабельным.

LLM генерируют широкий спектр непредсказуемых результатов, что категорически не подходит для расчетов, где необходима точность. Однако, не сказать, что это плохо.

Вариативность выходных результатов может быть полезна не в расчетах, а в «мозговых штурмах», где как раз требуется расширение границы допустимых векторов и траекторий результатов. Условно говоря, в выработке направлений и идей для исследований.

LLM очень полезны для неструктурированных массивов данных, для категоризации/каталогизации неструктурированных наборов данных в разных форматах. 

LLM могут быть применимы для генерации отчетов по шаблонам.

LLM более, чем полезны для формирования гранд нарратива в огромных массивах текстовой информации. Например, анализ новостного потока и вычленение основной концепции, которую пытаются продвинуть СМИ. Нарративы «экономика прекрасна, а будет еще лучше» и «ИИ спасет мир», которые я часто публиковал во второй половине 2024 в контексте тональности западных СМИ были получены частично с использованием ГИИ.

Попытка оценить тональность и «болевые точки» корпоративного сектора через анализ пресс-конференций по итогам корпоративных отчетов, это же применимо к анализу комментариев общественности.

Это в теории. На практике ограничения контекстного окна, блокировка поисковых роботов ГИИ в ведущих СМИ и высокая стоимость обработки токенов не позволяют использовать этот ресурс на полную мощность.

Автоматический анализ новостного потока – хорошая идея и уже технически реализуема, но на практике пока нет.

Как экспертная система ГИИ очень слаб. Проверял в направлениях, в которых имею высокую квалификацию. На запрос о факторах роста рынка или причинах возникновения инфляции, - LLM создадут весьма примитивную блеватню на уровне среднестатистических новостных экстрактов, что совершенно не соответствует уровню Spydell_finance.

Сейчас все LLM генерируют низкое качество «экспертного контента», где требуется понимание причинно-следственных связей в условиях противоречивой среды с недостатком входных данных и многоуровневой конструкции параметров. Писать материалы в канале уровня Spydell_finance с помощью ГИИ не получится еще очень долго.

Где применимы LLM в научной среде? Очень ограниченные локальные задачи с точки зрения помощи в программировании, решении математических и статистических задач, помощь в адаптации информационных комплексов на уровне проводника по мануалам. 

Еще неплохой потенциал есть в умном поиске информации в сети, хотя сейчас реализация на 4 из 10.

Инструмент полезный, но на чудеса пока не тянет, хотя потенциал очень серьезный.  Я указал не все применения, а только в рамках собственных рабочих задач.

Генерация изображений и видео – что нового за последний год?

С высокоуровневой аналитикой и сложными научно-исследовательскими проектами ГИИ еще долго не достигнет «минимального порога зрелости», когда технологию можно будет применять в бизнес-проектах, в науке или при создании новых технологий.

Однако, есть сегменты, где прогресс более, чем впечатляющий – это изображение и видео. Я отследил весь процесс эволюции от первых кастрированных версий до весьма развитых инструментов генерации изображений и видео.

Честно говоря, не было еще ни одного раза за пару лет, где бы весь этот синтетический контент можно было бы применить (с моей стороны). Пользуюсь даже не ради забавы (особо нет на это времени), а из-за необходимости отслеживания прогресса в технологиях.

С точки зрения темпов развития технологии – достаточно любопытно, а конечный результат часто бывает весьма захватывающим. ГИИ в формате создания изображений и видео похож на волшебный инструмент, действительно можно создавать шедевры при должной подготовке. Пространство для творчества – невероятное. 

Если бы я был художником и дизайнером, имел бы более восторженное мнение о ГИИ. 

Отрасль только зарождается, поэтому здесь нет и быть не может стабильности. Лидеры, которые были вчера - могут уйти в конец списка (DALL-E от OpenAI), а новые игроки (FLUX) создают правила функционирования и определяют тренды.

В наибольшей степень трансформирующее влияние на экономику окажет сегмент ГИИ в генерации изображений и видео. Здесь будут затронуты широкие сегменты: видеоигры, дизайн и искусство, кинематограф (в перспективе 3-4 лет), маркетинг и реклама, контент для медиа индустрии и социальных сетей, образование и обучение (интерактивные курсы). 

В перспективе технологии могут быть применены в архитектуре, промышленном инжиниринге, медицине и т.д. 

Актуальный список (на январь 2025) топовых инструментов по генерации изображений (по собственным тестам):

1.  FLUX

2.  Midjourney

3.  ImageFX от Google

4.  Ideogram

5.  Recraft 

6.  Playground

7.  Dall-e

8.  Artflow

9.  Leonardo

10.  Stable Diffusion

  Тестировал все сервисы. В самом начале 1.5 года назад лидерами были Dall-e и Stable Diffusion, теперь в конце списка. 

Сейчас по качеству, наверное, первые три в списке. Все очень быстро меняется. Никто бы не мог предположить, что вечно отстающий Google создаст неплохой инструмент ImageFX, но на практике слишком зацензурированный и малопригодный для генерации, плюс нет редактирования и контроля сцены. Самый развитый инструментарий у Midjourney.

Актуальный список (на январь 2025) топовых инструментов по генерации видео:

1.  Kling (Китай)

2.  Runway

3.  Sora от OpenAI

4.  Voe 2 от Google

5.  PixVerse

6.  Hailuo MiniMax (Китай)

7.  Pika

8.  Hunyuan (Китай)

9.  Luma Dream Machine

10.  Genmo

В начальной фазе развития технологий генерации видео в топах были Luma Dream Machine и Genmo, а сейчас хуже всех. 

Открытие года – внедрение в топы китайцев, которые развиваются более высокими темпами, чем коллеги из США. Распиаренная Sora оказалась средней, на мой взгляд, плюс проблема цензуры и невозможности генерировать сцены по запросам. Самый развитый инструментарий у Runway.

В конце года удивили Google DeepMind с Voe 2, который потенциально один из лучших на рынке, но полноценно еще не тестировал. 

С изображениями уже очень хорошо, с видео пока плохо – несогласованность и неадекватное взаимодействие объектов, нереалистичная симуляция физических и природных процессов, света, теней и так далее.

Конкуренция невероятно высокая. Как минимум, 10 сервисов по каждому направлению, причем все очень быстро меняется, как в представленной группе, так и в плане внедрения новых игроков. Через год все опять поменяется.


Вернуться назад