ОКО ПЛАНЕТЫ > Человек. Здоровье. Выживание > Парадокс "Лжеца"

Парадокс "Лжеца"


31-12-2014, 15:33. Разместил: sasha1959

 

 

Здесь вы найдете несколько решений известного с древности парадокса "Лжеца". Или, как его еще называют, парадокса Эпименида. Он же - парадокс Евбулида. Текст составлен по мотивам обсуждения на форуме "Мембрана", в котором на вопросы EndevER отвечали ZeNoN, Inex, sova и Гражданин Гадюкин. Еще пара решений добавлена позже.

-

-Формулировка парадокса

- Исходная (древняя) формулировка представляет собой рассказ о том, как некий Эпименид, уроженец острова Крит, в пылу спора воскликнул: "Все критяне - лжецы!". На что услышал возражение: "Но ведь ты сам - критянин! Так солгал ты или нет?".

-

-

-

- Если предположить, что Эпименид сказал правду, то выходит, что он, как и все критяне,- лжец. А значит, он солгал. Если же он солгал, тогда получается, что он, как и все критяне,- не лжец. А значит, он сказал правду.

-

- Это рассуждение, вообще говоря, некорректное, в нем есть явные ошибки. На одну из них указал приславший мне письмо Михаил Лейтус: если Эпименид солгал, то отрицание фразы "все Критяне лжецы" будет звучать так: "не все Критяне лжецы", а вовсе не так: "все критяне не лжецы". Но если внести такое исправление в рассуждение, доказательство развалится. Если Эпименид лжец, а остальные критяне - нет, то никакого парадокса не возникает.

-

- Другая ошибка заключается в том, что лжецами мы называем не тех, кто лжет всегда, а тех, кто делает это всего лишь часто. Соответственно, даже если Эпименид - лжец, то не обязательно он солгал именно в этой фразе. Снова доказательство разваливается там, где написано: "А значит, он солгал". Может, в этот раз не солгал, а вообще он и другие критяне - лжецы и лгут регулярно. Снова нет парадокса.

- Подробнее о правилах преобразования подобных фраз см. в пункте о логике предикатов. Из-за этих ошибок в древней формулировке используется другая, более сильная формулировка парадокса.

- Сильная (современная) формулировка такова. Некто произносит: "Я сейчас лгу. Солгал ли я в предыдущей фразе?" Или просто: "Я лгу". Есть еще варианты: "Я всегда лгу", "Лгу ли я, когда лгу?", и т.п. Если фраза имеет форму утверждения, то надо определить, истинная эта фраза или ложная. Если фраза имеет форму вопроса, то надо определить, какой ответ ("да" или "нет") для нее правилен.

- Современные варианты сводятся к такому противоречию. Если я лгу, значит, говоря это, я не лгу. Значит, говоря это, я говорю правду. Если я говорю правду, то утверждение "я лгу" - правдиво. И значит я все-таки лгу. Как бы ни ответить на вопрос - возникнет противоречие.

-

-Почему решение не одно?

- Какое из решений правильное? Все правильны. Как такое может быть? Потому, что парадокс - это рассуждение, ведущее к противоречию. Избавиться от противоречия можно разными способами. Все они сводятся к замене некоторого сомнительного кусочка рассуждений на более правильный. В результате получается рассуждение, похожее на прежнее, но без видимых противоречий. Кроме того, мы рассматриваем решение через разные виды логик.

- Заменять можно разные кусочки. В каждом случае получатся различные решения, а какое из них предпочесть - дело вкуса. Одному самым сомнительным кажется один кусочек, другому - другой. Иногда самый первый сомнительный кусочек заметен и очевиден. Например, в школьной задаче с ошибкой в решении. Тогда "вкусы" большинства читателей более или менее совпадают. В нашем же случае вместо одной яркой, выделяющейся ошибки есть несколько в равной мере подозрительных мест.

-

-Решение "психологией"

- Это решение предложила одна моя знакомая, увлекающаяся психологией. Ее идея заключалась в том, чтобы попытаться представить себе, что в действительности происходило в описанной ситуации. В самом деле, фраза явно сказана в пылу спора. Далее, вряд ли оратор имел в виду себя. Тогда противоречие снимается: если все критяне, кроме Эпименида - лжецы, тогда он сказал правду, а остальные критяне - лгут. Далее, маловероятно, чтобы Эпименид считал лжецами своих родителей (хотя все бывает). Тогда фраза смягчается до "почти все критяне - лжецы". И опять нет противоречия. Далее, вряд ли Эпименид имел в виду и ту фразу, которую произносил, иначе зачем об этом заявлять во всеуслышание? Тогда, опять же, фраза смягчается до "все критяне лгут, но не всегда".

- В целом это решение сводится к тому, что Эпименид в пылу спора выразился в гораздо более категоричной форме, чем хотел бы сказать. Условие задачи несколько меняется, и в результате последующие рассуждения к парадоксу не приводят. Но что будет, если оставить условие прежним?

-

-Решение Бертрана Рассела

- Б. Рассел предложил в свое время решение, которое я тут попытаюсь популярно изложить. Пусть человек оценивает каждую фразу рассуждения как "ложную" или "истинную". Он произносит фразу: "я лгу" и немедленно оценивает ее как ложную. Но сама оценка - тоже ложная, или же нет? А оценка оценки - тоже ложная или нет?

- Рассел считал, что подобное рассуждение отдает шизофренией. В том смысле, что человек раздваивается: один еще только произносит фразу, а другой - уже заранее ее оценил. А можно сказать, что есть еще и третий, который забежал еще дальше вперед и оценил оценку. И так далее.

- В результате мы либо признаем Эпименида шизофреником, который одновременно и согласен с собой, и не согласен. Либо мы признаем, что в этой фразе на самом деле спрятано множество фраз, и у каждой из них есть своя истинность или ложность:

-
я лгу = истина
я лгу, что я лгу = ложь
я лгу, что я лгу, что я лгу = истина
я лгу, что я лгу, что я лгу, что я лгу = ложь
и так далее

- или так:

-
я лгу = ложь
я лгу, что я лгу = истина
я лгу, что я лгу, что я лгу = ложь
я лгу, что я лгу, что я лгу, что я лгу = истина
и так далее

- В обоих случаях правильный ответ на вопрос парадокса гласит: "в чем-то лжец лжет, а в чем-то - говорит правду". Решение сводится к тому, чтобы признать: не всякую фразу можно назвать целиком ложной или целиком истинной. Прежде надо убедиться, что в ней только одна смысловая часть. Иначе одни части могут быть ложными, а другие - истинными.

-

-Решение по теории множеств

- Часто множество задается как часть другого множества, удовлетворяющая какому-то условию. Например, есть множество птиц. А в этом множестве - подмножество "водоплавающие". Условие: птица должна уметь плавать. Но условие не всегда дает хотя бы одну птицу. Скажем, условие: птица должна уметь стрелять. Результат - ни одной птицы. Или "пустое" множество. Короче, таких птиц не существует.

- Теперь вернемся к парадоксу. Пусть все условия прежние и все "скрытые" части высказывания - ложные. Выделим из множества людей тех, кто мог сказать такое. Получим пустое множество. То есть таких людей не существует. Или же условие - неправильное.

-

-Решение интерпретацией

- Еще одно решение основано на точной интерпретации понятия "лжец". Обычно лжецом называют не того, кто лжет всегда и во всем, а того, кто лжет регулярно. Но не всегда. Тем самым мы имеем решение Рассела для современного варианта парадокса и психологическое решение для варианта древнего.

-

-Решение в логике предикатов

- Согласно логике предикатов (которая является более общей и универсальной), отрицание утверждения "все X" правильно звучит как: "не все X" или как: "некоторые не X". Но ни в коем случае не как: "все не X". Пример: "все американцы белые" - утверждение ложное, ведь там живут и чернокожие. Противоположное утверждение: "не все американцы белые" или "некоторые американцы не белые" - истинны. А вот неправильно составленное отрицание: "все американцы не белые" - опять-таки оказывается ложным. Аналогично правильное отрицание для "всегда X" звучит как: "иногда не X". Правильное отрицание "во всем X" звучит как: "кое в чем не X".

- Зная этот факт, можно придумать еще одно решение. Берем фразу "я лгу". Для того, чтобы избежать ситуации, когда в этой фразе некоторые части истинны, а некоторые ложны (как в решении Рассела), мы вынуждены уточнить ее: "я во всем лгу". Пусть это - ложь. Тогда истиной будет: "я не во всем лгу". Или: "я кое в чем говорю правду". Из этого утверждения нельзя вывести, что в данном случае все части утверждения ложные. А без этого мы не получим противоречия с исходной посылкой и не получим парадокса. В самом деле, может быть, как в решении Рассела, одна половина - ложь, а другая - правда. Тогда слишком категоричное утверждение "я во всем лгу" - действительно ложно, никаких противоречий не видно, и мы другим путем пришли к тому же выводу, что и Рассел.

- Итак, использование более универсальной логики тоже позволяет решить парадокс.

-

-Решение в многозначной логике

- Согласно логике Лукасевича, мы не всегда можем говорить: "истина" и "ложь". Вместо этого иногда нам приходится признать, что в какой-то части фраза истина, а в какой-то части - нет. Степень истинности выражается величиной от 0 (абсолютная ложь) до 1 (абсолютная истина). Отрицание в логике Лукасевича выполняется вычитанием из единицы: ~X = 1 - X.

- Тогда пусть фраза "я лгу" истинна на 0,5. Это значит, что ее отрицание - тоже истина на 0,5. Вспоминаем решение Рассела. Там тоже половина ответов - ложная, а половина - истинная. Пришли к тому же выводу еще одной дорогой.

- Очень похоже выглядит решение в другой многозначной логике: трехзначной. Там есть три степени истинности: "да", "нет" и "не знаю" (или "истина", "ложь" и "неопределенно"). Между истиной и ложью есть третье, промежуточное по смыслу значение. Оно и является правильным ответом на вопрос парадокса (отрицание "не знаю" дает "не знаю").

- Вообще, как вы понимаете, в жизни помимо черного и белого, есть много промежуточных оттенков. Так же, как помимо истины и лжи, есть много промежуточных состояний вроде "правда, но не во всем". Поэтому логика Лукасевича - более точный вариант, трехзначная - менее точная, а двузначная - еще менее. А бывает еще точнее, чем логика Лукасевича. Когда же мы пытаемся приблизить величину 0,5 величинами 0 и 1, то вынуждены применять всякие ухищрения, чтобы не исказить смысл. Вроде того, что делим истинность фразы на две равные части. Одной половине назначаем истинность 0, а другой - 1. Если же мы попытаемся выбрать только 0 или 1, то неизбежно проигнорируем важную часть смысла. Ну и придем к парадоксу, как следствие.

-

-Решение в двузначной логике

- Я предложил решение в булевой алгебре (она же - двузначная логика), которое получило на форуме наилучшие отзывы. При этом мы не вводим новые условия, не изменяем их и остаемся в пределах предполагаемых ответов: "да" и "нет"; а также в пределах предполагаемой логики: двузначной. В литературе я такого решения не встречал, но в принципе, оно довольно близко к остальным, так как исходит из общей идеи: не закрывать глаза на то, что в этой фразе содержится на самом деле несколько фраз-утверждений.

- Итак: "я лгу". Более того, все скрытые смыслы фразы: "я лгу, что я лгу", "я лгу, что я лгу, что я лгу" и так далее - тоже ложь. Обозначим через X простейшую из этих фраз "я лгу". Остальные выразим через нее и составим систему уравнений:

- X = ложь
(X = ложь) = ложь
((X = ложь) = ложь) = ложь
(((X = ложь) = ложь) = ложь) = ложь
...

- Получаем систему из бесконечного количества уравнений. Обратите внимание, не высказываний, а уравнений. В этом - вся соль. Если высказывание может быть истинным или ложным, то уравнение (или система уравнений) не может быть истинным или ложным. Оно может иметь решение или не иметь. Например, уравнение

-x = x + 1

- решений не имеет. Наша система уравнений тоже не имеет решений. Это означает буквально следующее: на заданный вопрос нельзя ответить ни "да", ни "нет". Поскольку ни вариант "X = истина", ни вариант "X = ложь" не подходят. Этот вывод согласуется с остальными решениями, поскольку все они так или иначе отказываются давать однозначный ответ "да" или "нет".

-

-Решение в стиле программирования

- Sova предложил еще один вариант: ограничить количество уравнений. Конечно, это не избавляет нас от парадокса, но зато приближает к реальности. Вряд ли человек, произнося слова "я лгу", в самом деле рассматривает бесконечное количество скрытых высказываний и осознает, что все они - ложны. То есть, таким образом мы формализуем процесс произнесения парадоксальной фразы, описываем программу, по которой рассуждает "лжец".

-

-Решение в аксиоматическом методе

- Напоследок приведу решение, предложенное Inex.

- Парадоксы в математике возникают тогда, когда используемая система аксиом несовместна. Это слово означает, что из такой системы можно вывести как само утверждение, так и его отрицание. То же самое относится и к системе логических формул. Мы считаем, что система аксиом логики высказываний непротиворечива. К ней добавляется новая система аксиом.

- Словесно она такая: каждый критянин либо всегда лжет, либо всегда говорит правду; и один из них сказал, что все критняне - лжецы. Можно ли из аксиом логики высказываний и новых аксиом вывести, что "все критняне лжецы" или обратное утверждение? Можно и то и другое. Следовательно новая логическая система несовместна.

- Тогда:
- либо существуют критяне, которые могут как лгать, так и говорить правду. Тогда такой критянин, солгав, может и не являться лжецом.
- либо не верно, что существует критянин, сказавший, что все критяне - лжецы.

- Вот и все. Парадокс не в логике, а в предпосылках. Из ложной посылки можно вывести любое следствие.

- От себя добавлю: это означает, что иногда (как в данном случае) условия задачи могут быть специально подобраны так, чтобы противоречить применяемой логике. В этом ведь и смысл парадокса лжеца: наглядно продемонстрировать, как можно сформулировать такую задачу, что ее ответ не будет двузначным, не уложится в "да" или "нет". Аксиоматический метод со своей стороны отвечает на вопрос, как и почему это происходит.

 

Заключение

Инженеры имеют много инструментов для измерения длины. Иногда достаточно небольшой точности и применяется простая линейка. А иногда нужна точность повыше, и применяется микрометр или микроскоп. Но всегда помнят о том, какая точность нужна и какую можно получить. И выводы всех приборов будут вполне определенны и разумны с учетом их погрешности.

 

 

Математика имеет много вариантов логики для измерения истинности. Иногда достаточно небольшой точности, и используется двузначная логика. А иногда нужна точность повыше, и применяются более сложные методы. Опять же, выбранный метод определяет точность результата.

Как видим, математика позволяет решить парадокс лжеца с применением любой из наиболее популярных видов логики. Тип логики определяет ответ. Но в принципе все "логики" сходятся в одном. На вопрос лжеца нельзя дать один ответ потому, что в самом вопросе на деле спрятан не один, а несколько вопросов. Если же учесть этот факт, то мат. логика даст четкий ответ.

Зато можно дать вполне определенный ответ на другой вопрос: нет, парадокс лжеца не является неразрешимым. Он хорошо решается в разных видах математической логики. Он замечателен тем, что является хорошим "испытанием" и для новых видов логики, которые несомненно еще будут изобретены.

http://psi-logic.narod.ru/psi/lier.htm


Вернуться назад