Сделать стартовой  |  Добавить в избранное  |  RSS 2.0  |  Информация авторамВерсия для смартфонов
           Telegram канал ОКО ПЛАНЕТЫ                Регистрация  |  Технические вопросы  |  Помощь  |  Статистика  |  Обратная связь
ОКО ПЛАНЕТЫ
Поиск по сайту:
Авиабилеты и отели
Регистрация на сайте
Авторизация

 
 
 
 
  Напомнить пароль?



Клеточные концентраты растений от производителя по лучшей цене


Навигация

Реклама

Важные темы


Анализ системной информации

» » » Ещё раз о бароне Мюнхгаузене. Весёлая дорога к Луне

Ещё раз о бароне Мюнхгаузене. Весёлая дорога к Луне


4-06-2016, 11:00 | Необычные явления / Хроника необычного | разместил: Редакция ОКО ПЛАНЕТЫ | комментариев: (0) | просмотров: (4 991)

Ещё раз о бароне Мюнхгаузене. Весёлая дорога к Луне.


Для чистоты эксперимента давайте на время забудем вышеизложенное в предыдущих частях данного раздела и рассмотрим некоторые интересные моменты этих потешных экспедиций от старта с Земли до момента выхода на окололунную орбиту в официальном изложении НАСА. Техническими подробностями мы займёмся более плотно в 4-м разделе, а пока я хотел бы обратить ваше внимание на некоторые эпизоды, которые присутствуют в официальной версии, растиражированы всевозможными способами и от которых уже откреститься не получится никак.

Существует документальный фильм от НАСА, снятый в 1970 году, который называется «Moonwalk One» («Первая лунная прогулка»). Очень советую его целиком посмотреть. Если у кого-то возникают сомнения в доводах скептиков, этот фильм полностью развеивает такие сомнения. Фильм продолжается более чем полтора часа, но натянуть видеоматериала собственно о покорении Луны в нём удалось едва ли на 20 минут. Всё остальное время показывают что угодно: начиная от камней Стоунхенджа и едущих по дороге автомобилей, заканчивая всевозможными видами ЦУПа в Хьюстоне с разным оборудованием (множество раз) и какими-то хибарами с жителями монголоидного вида.

Также в других документальных видеоматериалах НАСА есть удивительный эпизод, когда будто бы после выхода на околоземную орбиту одному члену экипажа приспичило выйти в открытый космос (!) для того, что помахать ручкой и сказать «Алилуйя, Хьюстон». По этому моменту уже столько раз «проехались» на специализированных форумах, что повторяться наверное смысла нет. Я лишь хочу добавить, что такой совершенно дикий эпизод появился в документальном (!) фильме наверняка благодаря тому, что о процедурах выхода в открытый космос и об особенностях работы в таких условиях к тому времени у самого НАСА было довольно смутное представление.

* * *

К фильмам НАСА мы ещё вернёмся. А сейчас прошу ещё раз вспомнить историю об «Аполлоне-13», вернее эпизод об ухудшении условий внутри корабля вследствие неполадок после взрыва кислородного бака. О самом взрыве мы уже говорили, а вот о его последствиях официальная версия НАСА должна была что-нибудь придумать. Кроме всего прочего, когда экипажу «на честном слове и одном крыле» благодаря героическим умственным усилиям ЦУПа удалось совершить манёвр облёта Луны и лечь на обратный курс к Земле, вследствие отказа неких систем жизнеобеспечения астронавтам стало… холодно.

Чтобы понять всю глубину прикола, надо вспомнить элементарную физику и немножко воспользоваться мозгами. Представьте себя внутри герметически закрытой металлической коробки объёмом в несколько кубических метров, которая на протяжении нескольких десятков часов стоит на солнцепёке. Как вы думаете, вы будете там замерзать или загнётесь от жары? Конечно, если такую коробку обдувает ветер, тогда шансы выжить у вас есть. Но в космосе вокруг корабля вообще-то вакуум, поэтому теплоотдача невозможна. Если бы дело обстояло по-другому, человечество не использовало бы такое чудесное изобретение, как термос. Так вот, в космическом полёте в окрестностях Земли есть очень большая проблема – охлаждение корабля, постоянно нагреваемого Солнцем в условиях идеального термоса. Корабль не имеет возможности ни с чем поделиться повышающейся температурой. И если в таком корабле падает энергоснабжение, вследствие чего отключается оборудование кондиционирования (охлаждения) воздуха, космонавты имеют значительно больше шансов испечься внутри, как цыплята в духовке, нежели замёрзнуть.

Реальный выход из положения состоит в том, что весь космический корабль, который более чем полтора суток находится на пути следования от Земли к Луне под прямыми лучами Солнца, должен быть полностью изолирован тонкой зеркальной фольгой, прикреплённой к корпусу с помощью креплений из материала, имеющего низкую теплопроводность. Или же на время такого полёта над кораблём должен раскрываться специальный зеркальный зонтик, в тени которого спасётся корабль. Это техническое решение способно существенно сэкономить на весе оборудования жизнеобеспечения и его энергоснабжении.

Вопросы скептиков о терморегулировании внутри корабля при межпланетном перелёте так достали НАСА, что в недрах их документации со временем нашелся ответ, достойный премии имени барона Мюнхгаузена первой степени. Оказывается, НАСА оригинальнейшим образом решило эту непростую техническую проблему. Приготовьтесь… Корабль в полёте вращался! Поэтому одна часть его нагревалась, в то время как другая… охлаждалась.

Когда я это впервые прочитал, думал умру со смеху. Но, к счастью, пока жив. Мало того, что в НАСА работают одни актёры, так они наверное никогда в жизни шашлык не делали…

Нет, конечно, здравомыслящие люди в НАСА были, поскольку мы имеем частичное подтверждение именно такого технического решения (с помощью зеркальной фольги), о котором я уже говорил. Забегая наперёд и справедливости ради, следует отметить, что весь посадочный модуль, в котором астронавты должны были сесть на Луну, был наверняка запроектирован обёрнутым в фольгу. Однако, выглядел он при этом… не очень. Не для голливудского фильма – это точно. Поэтому для съёмок «на поверхности Луны» фольгу ободрали, лишь на опорах – забыли. Вот так и ходят официальные фото- и видеоматериалы НАСА «с Луны»: корабль жарится на Солнышке, зато опоры защищены…

* * *

Вопрос критичного для человеческого организма разогрева космического корабля ещё больше усугубляется тем, что данный корабль (согласно официальных данных НАСА) имел исключительно тонкие стенки, а внутри – чистый кислород.

Чтобы вы могли оценить всю «красоту вопроса», напомню некоторые ограничения, налагаемые на специальные медицинские операционные, в которых практикуются операции в чисто кислородной атмосфере. В них, согласно правилам техники безопасности, все электрические переключатели отсутствуют напрочь, а вместо них – специальные дистанционно управляемые органы управления, иногда на фотоэлементах, при нажатии на которые информация передаётся на реле или выключатели, находящиеся в соседней комнате в нормальной земной атмосфере. Для чего это сделано: при любом переключении электрического соединения возникает искра, которая приводит к возгоранию практически любых материалов, даже некоторых металлов, если этот механизм находится в чистом кислороде.

Больным, проходящим курс лечения в кислородных барокамерах, категорически запрещено иметь на теле любые металлические предметы, а также синтетическую одежду. В большинстве случаев такие больные находятся в атмосфере из чистого кислорода только в натуральных бинтах и в минимуме одежды из 100% натуральных материалов – хлопка, льна или другого органического волокна. Нарушение данного ограничения чревато возникновением микроискры даже вследствие небольшого шевеления звеньев золотой цепочки, не говоря уже об огромных по меркам микромира искрах, возникающих при ношении синтетической одежды.

Теперь давайте вспомним внутренний интерьер «Аполлонов» и одежду астронавтов. Пусть первым бросит в меня камень тот, кто скажет, что там не было никаких электрических переключателей и вся одежда, включая скафандры, была из натуральных материалов. Собственно говоря, трагическим подтверждением моих выводов служит гибель трёх астронавтов – Гриссома, Уайта и Чаффи – даже во время наземного эксперимента в атмосфере из чистого кислорода в «Аполлоне-1». Согласно выводам официальной комиссии НАСА, потеря сознания и смерть могли наступить уже начиная с 14-й секунды от начала пожара, ведь в кислороде все материалы, включая проводку, горят очень быстро и интенсивно выделяют токсичные газы.

Некоторые исследователи справедливо отмечают, что данная трагедия скорее похожа на организованное убийство, чем на несчастный случай во время тренировок полётов в космос. Действительно, нужно быть очень сильно умственно неполноценным, чтобы закрыть трёх человек в маленьком объёме, заполненном чистым кислородом и заставить щёлкать тумблерами на панели, имитируя космический полёт…

Но баронам Мюнхгаузенам из НАСА всё нипочём. В документальных кадрах «полётов на Луну» астронавты ухитряются даже бриться электробритвой в чистом кислороде! Наверняка, сразу после включения электробритвы в таких условиях сама электробритва, а также борода вместе с отрастившим её астронавтом сгорели бы значительно раньше, чем астронавт успел бы воспользоваться этой бритвой по назначению. Любая микроискра в таком «космическом корабле» могла привести к феерическому взрыву в космосе.

* * *

Также в фильмах от НАСА имеется такой пикантный эпизод, когда во время полёта на Луну кто-то из астронавтов, извините, пукнул. Остальные корчат недовольные рожи вперемешку с дурацкими ухмылками. Видимо, голливудские режиссёры предполагали, что зрителю в этом месте должно быть очень весело. Если бы такое произошло на самом деле, весёлого было бы мало. Ведь газы, выделяющиеся из кишечника человека, очень горючи. На youtube полно видеороликов от идиотов, развлекающихся поджиганием своих газов. Фейерверки получаются ещё те. Кстати, не пытайтесь повторить: запросто можно поджечь одежду или повредить глаза. Так вот, можно только представить, что будет, если такие газы попадут в чистый кислород, где вокруг полно электрических переключателей…

Раз уж затронута такая деликатная тема, нелишне будет напомнить, что по официальным данным НАСА полёты на Луну продолжались в среднем около 7 суток. Даже если на протяжении этого времени питаться так, чтобы только не упасть в обморок от голода, минимум пару раз нужно будет сходить в туалет «по большому» – таково устройство человеческого организма; от этого никуда не деться. Это не говоря уже о том, что хотя бы раз в сутки придётся «отлить», причём всем трём членам экипажа.

Исходя из этого, НАСА должно было каким-то образом решать эту проблему. Но, как и во многих других случаях при «покорении космоса», официальные борзописцы эпических подвигов астронавтов из США опять, извините, жидко обосрались. Оказывается, всё, что они сумели придумать для решения этой довольно непростой проблемы – пластиковые пакетики…

Что же делать, придётся напомнить, чем отличается процесс испражнения на Земле и в условиях невесомости. На Земле все предметы имеют свойство падать вниз, поэтому практически все живые организмы избавляются от отходов своей жизнедеятельности быстро и без особых проблем. Но вот в невесомости, смею предположить, никакой пластиковый мешок такому деликатному делу не поможет. После выхода наружу экскременты совершенно не обязаны покидать окрестности тела хозяина, поэтому пользующиеся пластиковыми пакетиками астронавты имели бы все шансы много раз повторить любимую фразу американцев из голливудских боевиков: «Мы по уши в дерьме!».

Кроме этого, что делать с запахом в маленьком закрытом пространстве; с остатками кала и шарообразными капельками мочи, которые будут летать в кабине корабля и прилипать к любым предметам? В космосе ведь форточку не откроешь и химическими средствами панель управления от своего же дерьма не отмоешь…

Если бы американцы действительно ставили задачу летать в космос, решать проблему с космическим туалетом им пришлось бы обязательно. И к 1969 году решение у них должно было появиться. Однако, по официальным данным, всё обходилось пластиковыми пакетиками.

Остаётся добавить, что когда после развала Союза американцы впервые побывали в космосе на станции «Мир», они очень удивились космическому туалету, поскольку ранее ничего подобного не видели. Как же устроен настоящий космический туалет? В принципе, ничего сверхсложного в нём нет. Он работает по принципу домашнего пылесоса, который засасывает и экскременты, и запах. После этого нужно ещё забросить в него влажные салфетки, которыми завершается процесс. Далее в космическом туалете происходит выделение и фильтрация воды, а также регенерация воздуха. Обезвоженные фекалии пакуются вакуумным методом в пакеты, которые выбрасываются в космос через маленькую шлюзовую камеру, после чего они постепенно опускаются к Земле и полностью сгорают в плотных слоях атмосферы, как метеориты.

* * *

Есть ещё одна физиологическая проблема, о которой тогда бравые постановщики космических небылиц из НАСА даже не подозревали. Это – влияние на живые организмы магнитного поля Земли. Оказывается, если посадить человека в специальную камеру, где для жизнедеятельности будут созданы все условия, кроме одного – будет создан экран от электромагнитных полей, тогда у такого человека (или людей) очень скоро начнутся довольно сильные расстройства психики. Таким образом, для обеспечения пилотируемых межпланетных полётов внутри корабля должно быть создано искусственное магнитное поле, точно имитирующее магнитное поле Земли. Такой роскоши у «Аполлонов» конечно же не предусматривалось.

Наконец, самым большим вопросом к пилотируемым полётам по маршруту Земля-Луна-Земля является двукратное пересечение пояса Ван Аллена, когда организм человека может «нахватать» радиоактивного поражения вплоть до уровня острой лучевой болезни. Всё зависит от того, под каким углом эту область пересекать и какие при этом средства защиты будут применяться.

Оценки исследователей по этому поводу очень разные: от полного игнорирования данного фактора, пребывая фактически на точке зрения НАСА, до безапелляционных утверждений о невозможности пересечения пояса Ван Аллена без специальных средств защиты в виде стенок из свинца или генерации специальных электромагнитных полей вокруг обитаемого отсека корабля. Ситуация в этом вопросе очень неопределённая ещё и потому, что все данные по поводу величины напряжения магнитного поля и интенсивности облучения биологических объектов в поясе Ван Аллена, которых за время исследований космического пространства должно было накопиться очень много, до сегодняшнего дня являются строго засекреченными. Причём по этому поводу хранят гробовое молчание не только специалисты НАСА, что совершенно естественно, но и космические агентства других государств, предпринимавших попытки запусков автоматических аппаратов к Луне, например, России, Японии или Индии.

Представьте себе ситуацию, когда в справочнике значений некоторой математической функции имеются все необходимые данные, кроме тех, которые находятся в некотором определённом диапазоне. И все попытки выяснить ответ хотя бы на вопрос, почему никто не публикует эти данные, разбиваются о стену молчания. Приблизительно так же выглядит ситуация с поясом Ван Аллена.

Отсюда совершенно логично предположить, что правы те исследователи, которые склоняются к мысли о больших значениях радиоактивного облучения в поясе Ван Аллена. А если это так, то очередной убийственный козырь против небылиц НАСА ещё ждёт своего часа…

* * *

Хоть я обещал пока не грузить читателя техническими подробностями, но об одной интересной особенности полёта от Земли к Луне наверняка стоит вспомнить именно сейчас. Дело в том, что теоретически никак не удавалось запихнуть всё необходимое хозяйство для данной экспедиции в одну ракету. Пробовали и так, и эдак – всё никак не получалось. Конечно, паззл всё-таки складывался, но только при одном дополнительном условии – что командный модуль, которому предстояло кружить на орбите Луны, пока двое астронавтов попрыгают по её поверхности – мог находиться в сборке стартующей ракеты только задом наперёд. Это означало, что в космосе надо будет перестыковать командный модуль, т.е. отстыковать его от посадочного лунного модуля, развернуть и пристыковать другим боком.

Любая стыковка-расстыковка в космосе – сложнейшая техническая операция, требующая создания и многочисленных испытаний стыковочных узлов, систем автоматического поиска, сближения и причаливания, дублированных ручным управлением, опыта и навыков космонавтов. Любая ошибка на пару сантиметров или лишний метр в секунду скорости при стыковке чревата фатальными повреждениями космических кораблей, которые не приспособлены к жёстким ударам между собой, а также к поломкам различного внешнего оборудования.

Но в случае пилотируемых полётов на Луну по версии НАСА тогдашние астронавты и конструкторы космической техники вообще не заморачивались ни с созданием соответствующих систем, ни специальных стыковочных узлов: стыковались себе в космосе, сколько хотели, чем хотели и где хотели: подумаешь – делов-то… Исходя из таких представлений НАСА о стыковочных процедурах в космосе между двумя кораблями или модулями, они включили в свою историю о покорении Луны никем до сих пор не объяснённый эпизод.

Я много раз спрашивал на различных форумах, почему перестыковку командного модуля нельзя было выполнить, ещё находясь на орбите Земли, а не лететь для этого аж на Луну? Представьте себе ситуацию, когда вам нужно ехать в очень дальнее и опасное путешествие, например, через большую пустыню, где отсутствует всякая техническая помощь, но при этом у вас в автомобиле есть некая техническая проблема, которую по дороге обязательно следует решить, иначе автомобиль до цели не доедет. Что вы будете делать: отремонтируете автомобиль около гаража или поедете пару сотен километров в пустыню и начнёте ремонт там?

Совершенно естественно, что в реальном космическом полёте (согласно схеме НАСА) сразу же после вывода связки частей космического корабля и третьей ступени ракеты-носителя на околоземную орбиту следовало выполнять эту сложнейшую операцию по перестыковке. Ведь, если она вдруг завершится неудачно или же не получится вовсе, с околоземной орбиты домой возвращаться вообще-то проще, чем с Луны…

Но, видимо, такое очевидное решение тогда никому в НАСА в голову не пришло. Поэтому после вывода комплекса на околоземную орбиту (по их словам) только лишь выполнялась работа по корректировкам орбиты, после чего маршевый двигатель последней ступени «Сатурна-5» включался для разгона связки кораблей до второй космической скорости, позволявшей начать полёт от Земли к Луне. И лишь после того, как ¾ пути к Луне оставалось позади, начиналась операция по перестыковке. Это называется «мы не ищем лёгких путей», мягко говоря…

В данном случае не учтено ещё и то, что если вдруг операция по перестыковке затягивается или, например, командный модуль отстыковался и пристыковаться не может, тогда весь комплекс – весело и с песнями – пролетает на второй космической скорости мимо Луны, становясь через некоторое время новым искусственным спутником Солнца… с медленно умирающим экипажем.

Вот скажите, на здоровую голову можно было придумать такую схему пилотируемого полёта к Луне? Может быть, пейсатый голливудский кинорежиссёр такое придумать и мог, но только не технарь.

Этот момент является интересной ловушкой для защитников НАСА. Совершенно очевидно, что какая-то очень серьёзная причина не позволяла совершить операции по перестыковке, находясь на околоземной орбите. Об этой причине я расскажу в 4-м разделе.

* * *

В завершение этого раздела не могу не упомянуть об удивительных фото- и видеоматериалах, снятых астронавтами НАСА по пути следования от Земли к Луне, вернее, об их отсутствии. На этом фоне ещё более удивительным выглядит следующее. По подсчётам энтузиастов на поверхности Луны астронавты наснимали такое огромное множество фотографий и видео, что для этого следовало в среднем каждые полторы секунды нажимать на затвор фотоаппарата. Ситуация выглядит, как в анекдоте про цыгана, который сумел пробежать сквозь дождь между капель, оставшись сухим. Наши «цыгане» из НАСА успели при этом побегать, попрыгать, отдать честь флагу, покататься на машинке и установить тучу научного оборудования.

Так вот, на протяжении полтора суток полёта между Землёй и Луной, когда делать экипажу было в общем-то нечего, кинороликов и фотографий Земли и Луны… практически нет. Есть, конечно, забавные эпизоды американского оригинального жанра «игровой документалистики» внутри тесного помещения «Аполлона» длительностью не более 40 секунд, которые запросто могут быть сняты на борту падающего по параболе самолёта, но не более того. А где же уникальные кадры удаляющейся и вращающейся Земли или приближающейся и вращающейся Луны, которые нигде и никогда больше невозможно было бы снять с рук, кроме как в таких полётах? Таких записей нет.

НАСА в ответ на такой – в общем-то закономерный – вопрос всегда подсовывает один и тот же видеоролик, на котором красочная цветная Земля очень быстро – порядка нескольких сотен километров в секунду – уплывает из кадра. Причём, эта Земля уплывает из кадра не как-нибудь, а находясь точно по центру, уменьшаясь в размерах и… не вращаясь ни на одну угловую секунду! Да таких фильмов можно наснимать миллион в любой сельской фотолаборатории.

Как же должна выглядеть Земля с борта космического корабля, удаляющегося от неё согласно официальной версии НАСА? Во-первых, с борта космического корабля, летящего вокруг Земли с первой космической скоростью, даже за несколько секунд непрерывной киносъёмки очень отчётливо видно, что Земля вращается с характерной скоростью, приблизительно 4 угловых градуса в минуту. Во-вторых, если такой корабль разгонять до второй космической скорости, он начнёт описывать вокруг Земли траекторию в форме клотоиды (раскручивающейся спирали), а сама Земля под таким кораблём начнёт постепенно отдаляться, но вращаясь уже со скоростью до 5.6 угловых градусов в минуту. В-третьих, после выхода на траекторию движения к Луне вращение Земли по отношению к кораблю наоборот замедляется, а удаление – ускоряется.

Если бы существовали – хотя бы после одной из девяти пилотируемых экспедиций НАСА к Луне – три последовательных видеоролика первого, второго и третьего этапа такого полёта, на которых было бы видно облачность над конкретными континентами Земли, это служило бы неоспоримым свидетельством того, что пилотируемый корабль хотя бы однажды в истории набирал вторую космическую скорость.

Но, мало того, что в НАСА не могли тогда подделать ничего похожего, они даже не догадались разыграть сценки работ по перестыковке по дороге к Луне, о которых мы уже говорили выше. Кажется, они вообще забыли в своих фильмах о таком критическом этапе этих «полётов».

Источник: http://otstoja.net/st2/8/

 

Ещё раз о бароне Мюнхгаузене. Нет ракеты – нет космических полётов.


В пилотируемых экспедициях на Луну краеугольным камнем, о который, кстати, споткнулась советская лунная пилотируемая программа, является ракета-носитель. Эта ракета для выполнения полной программы полёта по т.н. «однопусковой» схеме должна – по самым скромным, теоретически минимально допустимым расчетам – выводить на низкую («опорную») околоземную орбиту груз 140 тонн полезной массы. А лучше – больше. Это как раз тот случай, при котором каждый грамм, не говоря уже о килограммах или центнерах, действительно «на вес золота» или даже на порядки дороже.

Таким образом, если не удаётся создать такую ракету, говорить собственно дальше не о чем.

Об испытательных полётах этой фантастической ракеты имеется очень противоречивая информация. Да, попытка её создания была. Вернее, во всех… двух испытательных полётах предпринимались попытки тестирования кислородно-водородных двигателей J-2 большой мощности разных ступеней, которые неизменно заканчивались неудачно. Стараясь показать некие «достижения» в процессе лётных испытаний этой ракеты, НАСА занялось банальными приписками. При проверке оных всплыли крайне неприятные (для официальной версии) нестыковки, которые НАСА даже пыталось объяснить выводом на орбиту… 9-тонной металлической болванки!

В конце концов, как мы уже знаем, вместо доводки технических решений сразу пошел «счастливый период» полётов на Луну. После этого ракета «Сатурн-5» была… списана в музеи и больше никогда не использовалась.

Взлётная масса этой ракеты, снаряжённой для полёта на Луну, согласно данным НАСА составляла 3000 тонн. А маршевых двигателей первой ступени было всего… 5 (пять). Соответственно, тяга каждого двигателя только лишь для отрыва такой ракеты от стартового стола должна быть не менее 600 тонн (по официальным данным – 690 тонн!). Этот двигатель был снаряжен лишь одним соплом (камерой сгорания), т.е. был однокамерным, и назывался F-1. И он также нигде и никогда больше не использовался. 

Максимально мощным двигателем космической ракеты на сегодняшний день является РД-180, тяга которого – 180 тонн. Но при этом у него четыре камеры сгорания, нагрузка на каждую поверхность сопла у которых составляет всего 45 тонн.  

***

Тут спорное утверждение автора, по другим данным:

РД-180 спроектирован на базе двигателя РД-170, используемого на ракетах-носителях «Энергия» и «Зенит». В отличие от четырехкамерного РД-170, двигатель РД-180 имеет две камеры сгорания и новый турбонасосный агрегат меньшей мощности, приводимый в действие одним газогенератором. Тяга РД-180 составляет 400 тонн. 

Удельный импульс показывает, сколько секунд двигатель может развивать тягу в 1 Ньютон на одном килограмме топлива.

Рекордсмены по тяге оказываются, в лучшем случае, в середине списка, если отсортировать его по удельному импульсу, а F-1 с твердотопливными ускорителями оказываются глубоко в хвосте. Казалось бы, вот она, важнейшая характеристика. Но посмотрим на лидеров списка. С показателем 9620 секунд на первом месте располагается малоизвестный электрореактивный двигатель HiPEP. (Их не рассматриваем. Не в этой статье. И не работают они в атмосфере, и хитрожопые американцы забыли написать, что тяга HiPEP указана в граммах.)

С показателем 462 секунды в лидерах среди химических двигателей окажутся отечественный КВД1 и американский RL-10. И если КВД1 летал всего шесть раз в составе индийской ракеты GSLV, то RL-10 — успешный и уважаемый двигатель для верхних ступеней и разгонных блоков, прекрасно работающий уже много лет. В теории, можно собрать ракету-носитель целиком из таких двигателей, но тяга одного двигателя в 11 тонн означает, что на первую и вторую ступень их придется ставить десятками, и желающих так делать нет.

Можно ли совместить большую тягу и высокий удельный импульс? Химические двигатели уперлись в законы нашего мира (ну не горит водород с кислородом с удельным импульсом больше ~460, физика запрещает). Были проекты атомных двигателей (раз, два), но дальше проектов это пока не ушло. Но, в целом, если человечество сможет скрестить высокую тягу с высоким удельным импульсом, это сделает космос доступней. Есть ли еще показатели, по которым можно оценить двигатель?

Напряженней

Ракетный двигатель выбрасывает массу (продукты сгорания или рабочее тело), создавая тягу. Чем быстрее летит эта самая масса, тем эффективней двигатель ее выбрасывает. И у жидкостных ракетных двигателей есть параметр, который показывает эффективность истечения продуктов сгорания — давление в камере сгорания. Чем больше давление, тем быстрее будут лететь молекулы продуктов сгорания. Двигатель с более высоким давлением в камере сгорания будет эффективнее двигателя с низким давлением на том же топливе. И если мы отсортируем список двигателей по давлению в камере сгорания, то пьедестал будет оккупирован Россией/СССР — в нашей конструкторской школе всячески старались делать эффективные двигатели с высокими параметрами. Первые три места занимает семейство кислородно-керосиновых двигателей на базе РД-170: РД-191 (259 атм), РД-180 (258 атм), РД-171М (246 атм).

Камера сгорания РД-180 в музее. Обратите внимание на количество шпилек, удерживающих крышку камеры сгорания, и расстояние между ними. Хорошо видно, как тяжело удержать стремящиеся сорвать крышку 258 атмосфер давления.

Четвертое место у советского РД-0120 (216 атм), который держит первенство среди водородно-кислородных двигателей и летал два раза на РН «Энергия». Пятое место тоже у нашего двигателя — РД-264 на топливной паре несимметричный диметилгидразин/азотный тетраоксид на РН «Днепр» работает с давлением в 207 атм. И только на шестом месте будет американский двигатель Спейс Шаттла RS-25 с двухсот тремя атмосферами. 

Про SpaceX, чуть -чуть: (ну не смог не написать)

Двигатель, который ты не можешь построить или купить, не имеет для тебя никакой ценности. Этот параметр не выразить в числах, но он не становится от этого менее важным. Частные компании часто не могут купить готовые двигатели задорого, и вынуждены делать свои, пусть и попроще. Несмотря на то, что те не блещут характеристиками, это лучшие двигатели для их разработчиков. Например, давление в камере сгорания двигателя Merlin-1D компании SpaceX составляет всего 95 атмосфер, рубеж, который инженеры СССР перешли в 1960-х, а США — в 1980-х. Но Маск может делать эти двигатели на своих производственных мощностях и получать по себестоимости в нужных количествах, десятками в год, и это круто.

Раз уж зашла речь о спейсэксовских «Мерлинах», нельзя не упомянуть характеристику, которую всячески форсили пиарщики и фанаты SpaceX — тяговооруженность. Тяговооруженность (она же удельная тяга или TWR) — это отношение тяги двигателя к его весу. По этому параметру двигатели Merlin с большим отрывом впереди, у них он выше 150. На сайте SpaceX пишут, что это делает двигатель «самым эффективным из всех когда-либо построенных», и эта информация разносится пиарщиками и фанатами по другим ресурсам. В английской Википедии даже шла тихая война, когда этот параметр запихивался, куда только можно, что привело к тому, что в таблице сравнения двигателей этот столбец вообще убрали. Увы, в таком заявлении гораздо больше пиара, нежели правды. В чистом виде тяговооруженность двигателя можно получить только на стенде, а при старте настоящей ракеты двигатели будут составлять меньше процента от ее массы, и разница в массе двигателей ни на что не повлияет. Несмотря на то, что двигатель с высоким TWR будет более технологичным, чем с низким, это скорее мера технической простоты и ненапряженности двигателя. Например, по параметру тяговооруженности двигатель F-1 (94) превосходит РД-180 (78), но по удельному импульсу и давлению в камере сгорания F-1 будет заметно уступать. И возносить тяговооруженность на пьедестал как самую важную для ракетного двигателя характеристику, по меньшей мере наивно.

Вывод

Как вы уже, наверное, догадались, введение было написано несколько провокационно (простите). На самом деле, у ракетных двигателей нет одного параметра, по которому их можно выстроить и четко сказать, какой самый лучший. Если же пытаться вывести формулу лучшего двигателя, то получится примерно следующее:

Самый лучший ракетный двигатель — это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько (удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас.

****

Но продолжим:

И этот двигатель (РД-180)… продается Россией в США для использования на тамошних ракетах класса «Атлас». А своего двигателя большей или хотя бы сравнимой мощности с 180 тонн у США до сих пор нет.

Да что там говорить о 180-тонном двигателе, если с 2011 года оказалось, что у США вообще нет средств для доставки космонавтов даже на околоземную орбиту! После вывода из эксплуатации (как экономически не оправдавшего себя) комплекса «шаттлов» доставкой пилотируемых кораблей-наследников советских «Салютов» на околоземную орбиту к Международной Космической Станции занимаются исключительно ракеты-наследники советских «Союзов» – «Союзы-ТМ», а полезных грузов и топлива для обеспечения функционирования МКС – наследники советских «Прогрессов»-космические «грузовики», выводимые на орбиту ракетой-наследницей советского «Протона». Это – реальные космические системы, обеспечивающие полёты в космос.

А что имеется у НАСА для доставки людей в космос по состоянию на 2012 год? Ничего.

Если бы существовал двигатель с тягой 690 тонн, это радикальным образом изменило бы всю пилотируемую космонавтику. Для создания обитаемых космических станций на околоземной орбите достаточно было бы двух-трёх пусков сверхтяжелых ракет с выводом на орбиту полезного груза по 140 тонн, а не 10-15 тонн – максимум 24 тонны (с помощью «шаттла»), как это вынужденно происходит по сегодняшний день. Кроме этого, минимум 10-15% всей массы отдельных космических аппаратов должны составлять стыковочные узлы, переходы, шлюзовые камеры. Из-за этого масса бесполезных стыковочных переходов на больших станциях (типа «Мир» или МКС) доходит до 25% от общей массы всего комплекса, который нужно время от времени доразгонять, используя лишние тонны горючего, постоянно охлаждать, контролировать герметичность и т.д.

Исходя из такого невероятного расточительства НАСА, похоронившего уникальную ракету и не менее уникальный двигатель, исследователи всегда очень живо интересовались техническими характеристиками того и другого. Выяснилось много чего интересного… Среди прочего, например, то, что материал сопел двигателей F-1 не может выдерживать заявленные нагрузки по давлению и температуре, возникающие в рабочем режиме его использования. Этот материал попросту разлетелся бы на куски при подобных нагрузках. В конце 60-х по этому поводу можно было навешать макарон на уши хоть всему миру, но за последние 40 лет материаловедение достигло такого уровня, что вышеуказанную информацию можно просто и легко проверить с помощью специализированных справочников и программ. Но об этом, конечно, в новостях вам никто не расскажет, просто «уже никто никуда не…» летит.

Сами же неиспользованные ракеты «Сатурн-5», переданные в музеи, вдруг начали… ржаветь. Понятно, что материалы, используемые в космической ракетной технике, ржаветь не могут по определению, поскольку они не состоят из низкокачественной стали или железа. Но для хранения ракет «Сатурн-5» потребовался ремонт и покраска, дабы очередной ляп легенды НАСА не бросался в глаза хотя бы посетителям музея.

Но что же за ракеты стартовали «на Луну» при большом стечении публики?

О, барон Мюнхгаузен, как мы помним, был не только самым смелым и сильным, но исключительно находчивым! Без изрядной доли находчивости – на грани фокуса – и здесь не обошлось.

Когда появились современные развитые средства для анализа видеоматериалов, отснятых при стартах «лунных» экспедиций на ракете «Сатурн-5», выяснились очень пикантные подробности начальных этапов этих полётов.

Во-первых, на сегодняшний день невозможно различить, какие именно двигатели работают у этих ракет – F-1, двигатели ракеты «Сатурн-1В» или какие-либо другие кислородно-керосиновые двигатели, имеющиеся у НАСА под рукой на то время; например, от неких МБР, одолженных по случаю у военных.

Во-вторых, различными исследователями, среди которых выделяются имена Покровского, к.ф.м.н. Попова и других, были выполнены независимые оценки скорости данной ракеты в различные моменты полёта и на разных высотах на основе имеющихся официальных видеоматериалов НАСА и любительских киносъёмок. Для этого применялись методики оценки скорости по углу конуса Маха, по динамике деформирования взрывного облака в момент завершения работы первой ступени, по времени достижения ракетой слоя высотных перистых облаков, по угловому размеру ракеты и некоторые другие.

Все эти методики показывают хорошую сходимость результатов, что само по себе подтверждает корректность поставленных задач и достаточную точность их решений. Так вот, на наблюдаемых участках полёта ракет «Сатурн-5» во время официально заявленных НАСА пусках экспедиций «на Луну», скорость оказалась не менее чем в два раза меньшей, чем официальные данные НАСА по динамике разгона. Другими словами, наблюдаемые ракеты «Сатурн-5» в первые минуты их полёта, до и после отделения первой ступени, летят вовсе не в космос, так как набора первой космической скорости не происходит. Видеозаписи показывают, что остатки ракеты после завершения работы двигателей первой ступени (неизменно заканчивавшиеся мощнейшим взрывом непонятной природы) летели по свободной баллистической траектории на восток с космодрома НАСА, находящегося на западном берегу Атлантического океана. При этом скорость движения этой потешной ракеты в этот момент составляла приблизительно 1100 м/сек (или ~4000 км/час).

При этом официальные данные, которые приводятся также и в Википедии, гласят: «В течение своих двух с половиной минут работы, пять двигателей F-1 поднимали ракету-носитель Сатурн-5 на высоту 68 км, придавая ей скорость 9 920 км/ч.». Это ложь.

      Посмотрите небольшой отрывок из документального фильма «Moonwalk One» 1970 года выпуска, в котором снят момент отделения первой ступени ракеты «Сатурн-5».

Обратите Ваше внимание на момент странного перебоя в работе двигателей, который происходит за двадцать секунд до момента разделения ступеней. Ничего подобного в реальных космических полётах не происходит. Ракетные двигатели не работают с перебоями, как двигатель в автомобиле с плохо отрегулированным карбюратором. Но, поскольку такой перебой налицо, придётся признать, что в данной конкретной ракете имеются, мягко говоря, некоторые технические проблемы, например, с насосами, подающими компоненты ракетного топлива в камеру сгорания.

Далее происходит момент «отделения» первой ступени «Сатурна-5» в виде невероятно мощного взрыва, выбрасывающего облака газов далеко вперед (!) от летящей ракеты, после которого чётко и ясно видно, что никакого включения двигателей последующей ступени ракеты не происходит. Вместо этого спустя пару десятков секунд отбрасывается кольцеобразный переходник, а также часть оборудования передней части ракеты, имитирующего САС. При этом, в момент отделения САС отчётливо видно, что ракета продолжает полёт в достаточно плотных слоях атмосферы, поскольку после отстрела САС его тут же постепенно сносит назад, как и кольцевой переходник.

Если бы у этой ракеты действительно работали двигатели второй ступени, кольцевой переходник отбросило бы назад с достаточно большим ускорением и он скрылся бы из кадра буквально через секунду. То же самое относится и к САС, отстреливаемой с передней части ракеты, которая ещё долгое время летит параллельно ракете и постепенно отстаёт от неё. Ведь ракета, имея форму пули, обладает лучшими аэродинамическими характеристиками, поэтому её торможение в верхних слоях атмосферы происходит несколько медленнее, чем у переходника и остатков САС.

Вполне прогнозируемо видеоролик на этом заканчивается, поскольку долго показывать полёт простой болванки, в которой не работают никакие ракетные двигатели, постеснялись даже тогда. Дело в том, что для вывода полезного груза на околоземную орбиту по официальной версии НАСА у ракеты «Сатурн-5» должна была полностью отработать первая ступень (а мы видим, что после феерического отстрела первая ступень продолжает отрабатывать двигателями – что за странная расточительность и нерасчётливость !?), потом – полностью вторая ступень, и далее ещё частично третья ступень! Лишь после этого связка «Орла», посадочной лунной платформы, командного модуля «Коламбия» и третьей ступени ракеты должна была оказаться на опорной околоземной орбите.

Но записные шуты из ЦУПа, одетые подозрительно одинаково, с нахлобученными на головы гарнитурами 60-х годов выпуска наверняка этого не знают. Они вообще непонятно чем занимаются: крутят головами, постоянно норовят выскочить с места – короче, никакой иллюзии сосредоточенности и невероятного груза ответственности не наблюдается…

Показательно, что сразу после ухода остатков ракеты из области видимости, когда произошло отделение лишь первой ступени, «специалисты» ЦУПа, вернее имитирующие их актёры, вместе с самим Вернером фон Брауном, побросали все свои занятия (которые до этого времени сводились к сидению за мониторами и наблюдениям за ракетой через бинокли), начали вставать, очень радоваться и поздравлять друг друга, как будто астронавты уже возвратились на Землю с Луны, а не продолжается выход лишь на околоземную орбиту… Но такая радость и беспечность понятна, если знать, что весь «полёт» на этом завершен, а далее просто включена заранее смонтированная запись переговоров между экипажем и ЦУПом, т.е. Луна, можно смело сказать, послезавтра уже «покорена»…

Итак, далее все остатки ракеты продолжают полёт по свободной баллистической траектории. Наверняка после полёта над Атлантикой внешняя обшивка передней части ракеты-пустышки разрушается (возможно, также принудительно, как и при отстреле первой ступени) при входе в более плотные слои атмосферы, а спускаемый аппарат немного обгорает и падает в воду.

       Красноречивым подтверждением сказанному выше являются фотографии стартующих «Сатурнов-5.

Согласно официальной схеме компоновки топливных баков в разных ступенях данной ракеты, вторая и третья ступень якобы работали исключительно на криогенных топливных компонентах – сжиженном кислороде и водороде. Однако, во время старта отчетливо видно, что сжиженный газ находится только в первой – нижней – ступени ракеты, 

поскольку «шуба» намерзшего на поверхность первой ступени атмосферного водяного пара начисто отсутствует на поверхностях второй и третьей ступеней, где якобы плещется ни много-ни мало 1253200 литров жидкого водорода и 423350 литров жидкого кислорода!

Получив и проанализировав хотя бы один непрерывный видеоролик запуска ракеты «Сатурн-5», любой грамотный баллистик с достаточной степенью точности смог бы рассчитать предполагаемое место падения верхней части такой ракеты, что и было сделано в конце 60-х годов советскими специалистами. Что из этого получилось – об этом отдельный увлекательный рассказ в следующем разделе. А пока ещё раз вернёмся к описанию уровня находчивости баронов Мюнхгаузенов из НАСА.

Ошалевшей от великих «успехов» в покорении Луны публике после «возвращения с Луны» нужно было показать – хотя бы мельком – спускаемый аппарат, на котором доблестные астронавты будто бы только что возвратились на Землю. Капсула этого аппарата должна иметь характерные повреждения от горения в высокотемпературной плазме во время торможения в атмосфере: абляционная защита должна была частично сгореть, мелкие выступающие части – быть обугленными или оплавленными. Чтобы не повторять прежних ошибок (как с капсулами «Джемини», на которых после приводнения «из космоса» гордо красовались свежеокрашенные в белый цвет антенны и надписи), в НАСА решили убить двух зайцев: показать многочисленной публике ракету, улетающую «на Луну», и одновременно поджарить в плотных слоях атмосферы спускаемый аппарат, который ещё предстояло найти в водах восточной Атлантики с помощью большого количества американских военных кораблей и подводных лодок.

Насколько удалось бы поджарить в атмосфере макет спускаемого аппарата с помощью такой ракеты, сказать трудно. Поэтому, не исключено, что данную работу немного доделывали прямо на земле.

       Потом этот спускаемый аппарат перевозили к месту возвращения экспедиции «с Луны», цепляли к парашюту и сбрасывали с вертолёта, записывая «последние минуты» славной лунной экспедиции. В этот момент вся военно-пропагандистская машина США была исключительно честной и искренней, показывая возвращение на Землю очередных героев в прямом эфире! Народ плакал от переизбытка чувств…

Советские ракетчики озадаченно чесали затылки. К сожалению, тогда ещё работал «железный занавес», поэтому информации к вероятному противнику не поступало практически никакой. Ну слетали, куда надо. Вот и всё. Но если бы тогда по советскому телевидению показали хотя бы кадры встречи астронавтов, которых извлекают из только что приводнившейся капсулы (не говоря уже о многом другом), ничего, кроме гомерического хохота, эта комедия вызвать не смогла бы. Человек, переживший торможение в атмосфере Земли по однонырковой схеме от второй космической скорости с перегрузками минимум 12G – максимум 40G, точно не смог бы радостно улыбаться, махать руками и бегать по палубе авианосца. Как минимум ему потребовалась бы срочная реанимационная помощь, а как максимум – останки астронавтов ещё долго отскребали бы от внутренностей капсулы. Ну, разве что при зашитой заднице и герметически задраенном скафандре останки находились бы в своеобразных мешках…

Но не будем такими кровожадными, ведь живых людей никто в здравом уме не стал бы подвергать таким закритическим перегрузкам и прочим опасностям, о которых немало будет сказано далее.

Продолжением является: Источник: http://otstoja.net/st2/6/



Источник: cont.ws.

Рейтинг публикации:

Нравится35



Комментарии (0) | Распечатать

Добавить новость в:


 

 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Чтобы писать комментарии Вам необходимо зарегистрироваться либо войти на сайт под своим именем.





» Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. Зарегистрируйтесь на портале чтобы оставлять комментарии
 


Новости по дням
«    Апрель 2024    »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930 

Погода
Яндекс.Погода


Реклама

Опрос
Ваше мнение: Покуда территориально нужно денацифицировать Украину?




Реклама

Облако тегов
Акция: Пропаганда России, Америка настоящая, Арктика и Антарктика, Блокчейн и криптовалюты, Воспитание, Высшие ценности страны, Геополитика, Импортозамещение, ИнфоФронт, Кипр и кризис Европы, Кризис Белоруссии, Кризис Британии Brexit, Кризис Европы, Кризис США, Кризис Турции, Кризис Украины, Любимая Россия, НАТО, Навальный, Новости Украины, Оружие России, Остров Крым, Правильные ленты, Россия, Сделано в России, Ситуация в Сирии, Ситуация вокруг Ирана, Скажем НЕТ Ура-пЭтриотам, Скажем НЕТ хомячей рЭволюции, Служение России, Солнце, Трагедия Фукусимы Япония, Хроника эпидемии, видео, коронавирус, новости, политика, спецоперация, сша, украина

Показать все теги
Реклама

Популярные
статьи



Реклама одной строкой

    Главная страница  |  Регистрация  |  Сотрудничество  |  Статистика  |  Обратная связь  |  Реклама  |  Помощь порталу
    ©2003-2020 ОКО ПЛАНЕТЫ

    Материалы предназначены только для ознакомления и обсуждения. Все права на публикации принадлежат их авторам и первоисточникам.
    Администрация сайта может не разделять мнения авторов и не несет ответственность за авторские материалы и перепечатку с других сайтов. Ресурс может содержать материалы 16+


    Map